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Abstract. Faults injection attacks have become a hot topic in the do-
main of smartcards. This work exposes a source code-base simulation
approach designed to evaluate the robustness of high-level secured im-
plementations against single and multiple fault injections. In addition
to an unprotected CRT-RSA implementation, we successfully attacked
two countermeasures with the high-level simulation under the data fault
model. We define a filtering criterion that operates on found attacks and
we refine our simulation analysis accordingly. We introduce a broader
fault model that consists in skipping C lines of code and exhibit benefits
of such high-level fault model in term of simulation performance and
attack coverage.

1 Introduction

Effects of physical attacks on secure implementations were first described in
1997. In particular, fault injection attacks aim at modifying a program’s state
using an external event such as laser beams, voltage glitches or electromagnetic
waves. Among the numerous possibilities opened by such attacks, an attacker can
perform a Differential Fault Analysis (DFA) [1,2] and retrieve secret information
such as embedded cryptographic keys.

Smartcard-based products, which are widespread in the daily life, can be a
profitable target for attackers. Banking or biometric credentials for instance are
stored on such devices. They may be sensitive to such fault attacks and therefore
require a high security certification standards such as the Common Criteria [3].
Their compliance to those standards are evaluated by governmental agencies that
deliver certificates accordingly. One of the very first step of a certification process
is the security code review. In order to bring out vulnerabilities, evaluators and
developers perform high-level security code reviews at the source code level.
Suspected points are then audited at the assembly level, but not systematically.
However, mostly manual, this task is time consuming and error prone. A code
reviewer could miss critical errors that might lead to a major security breach.

These two reasons encourage the development of automated high-level code
analysis to help evaluators and developers. Complete and exhaustive approaches
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are often used at the binary level where all impacts of a fault can be considered
(such as code operation modification) but this takes a long time to perform. In
order to rapidly point out vulnerabilities in the security evaluation process, the
high-level fault simulation becomes definitely useful. It constitutes a complemen-
tary step to other following low-level simulated or practical analyses. From the
research point of view, on the one hand, we must provide fault models as ac-
curate as possible on which simulation can rely with a high level of confidence.
On the other hand, a comprehensive understanding of fault properties would
allow us to better analyze its impacts on software and to design more efficient
countermeasures accordingly.

Contributions. We propose an efficient high-level approach to analyze source
codes against multiple fault injections. To achieve this end, we built tools to ex-
haustively explore a data fault model defined a the C variable level. Helped by
an oracle, they can for each combination of faults tell if an attack worked on the
program. Thanks to the testing approach we are able to produce detailed coun-
terexamples or state on the program’s robustness with respect to the chosen fault
model. We demonstrate the validity of our approach on three implementations
of the CRT-RSA [4] algorithm in the signature process by performing BellCoRe
attacks [1]. Moreover, we propose two attack classification criteria aiming at re-
grouping them, which becomes time-saving when dealing with multiple faults
on realistic implementations. Finally, we study the results of the analysis with a
line-skip fault model, lighter than the data fault model.

Organization of the paper. In section 2, we define useful terms widely used
to express several concepts and security notions. We also recall the CRT-RSA
algorithm and the BellCoRe attack. Section 3 further explains the considered
fault model and the approach we use to evaluate implementations. Section 4
shows the results of our tests on the three CRT-RSA implementations. Finally,
section 5 defines two classification criteria and discusses outcomes obtained from
the three examples under the line-skip fault model.

2 State-of-the-art and definitions

2.1 Terminology

This section proposes succinct definitions of four notions: an attack, a fault, a
security breach and a vulnerability. We explain how these notions are related
and we will refer to these definitions all along this paper.

A security breach is the deviation of a program from its expected behavior
in terms of security. A vulnerability names the presence of an error or lack of
security in the program that might lead to a security breach. This term will be
defined more precisely in section 5 using our classification criteria. A fault rep-
resents an external event changing the program’s state. Effects of fault and its
behavior is formalized through a fault model. A fault model is characterized by
its parameters such as the attacker control or the fault persistence. The spatial
control parameter for instance, reflects the ability of the attacker to accurately



locate its target in the source code whereas the timing control reflects his ability
to tamper with its target at a particular moment during an ongoing compu-
tation. The fault persistence reflect the duration of a fault. For instance, for a
given attacked variable v, the fault persistence is said transient when a single
evaluation of v differs from its expected value. It is said permanent when v keeps
a wrong state for each remaining evaluations. An attack is the exploitation of a
vulnerability by a fault. In [5], authors refined this definition with the presence
of a goal for the attacker. However, we will confine to the basic definition.

2.2 CRT-RSA

We choose to analyze the well known asymmetrical CRT-RSA algorithm [4].
Let’s say that Alice wants to send the message m to Bob. She has to sign m
using her RSA private key (d, N) and then she computes the signature S = md

mod N . The idea behind the CRT algorithm is to replace the costly modular
exponentiation of RSA with two sub-exponentiations with half the size of the
original exponent. This roughly speeds up the computation by a factor of four.

Hence, the RSA private key d is split in two parts dp and dq. The inverse of
q modulo p is denoted iq. We obtain:

dp = d mod (p− 1)

dq = d mod (q − 1)

iq = q−1 mod p

The two modular sub-exponentiation are realized as following :

Sp = mdp mod p

Sq = mdq mod q

S = Sq + q · (iq · (Sp − Sq) mod p)

This last step recombines the two sub-signatures Sp and Sq in the final signa-
ture S. It can be performed using either Gauss or Garner’s formula. The latter
is the most used because as it provides better memory performances. This is the
one we presented in the algorithm.

2.3 BellCoRe attack on CRT-RSA

This attack has been discovered in 1997 by Boneh, DeMillo and Lipton [1] from
BellCoRe (Bell Communications Research). An attacker is able to retrieve a
prime factor p or q of N if he is able to inject a fault in the signature computation
in order to obtain a faulty signature Ŝ such as:

1. |Ŝ| 6= |S|
2. And |Ŝ mod p| = |S mod p| or |Ŝ mod q| = |S mod q|



The attacker is then able to retrieve either p or q by computing gcd(N,S−Ŝ).
In 1999, Joye, Lenstra and Quisquater [6] showed that this attack can use only

the faulty signature Ŝ and the message m and retrieve either p or q by computing
gcd(N,m− Ŝe) with an overwhelming probability.

2.4 Code Security Properties

Security metrics aim at defining quantitative and objective criteria in order to
gauge various aspect of security. It can be considered in multiple ways [7] and
takes several form [8,9]. In the context of smartcards implementation robustness
testing against fault injection and considering a manual security code review,
they are designed to facilitate decision-making and improve the code robust-
ness. Measuring how the targeted implementation deviates from its functional
specification under fault injection constitutes the correctness aspect of security.
It is the assurance that the targeted function carries out its task precisely to the
specification with the expected behavior. Another metric to assess the efficiency
of a simulation tool is needed in order to confront specific tools.

Measurement requires realistic assumptions and inputs to attain reliable re-
sults [10]. The qualitative and quantitative properties of a security objective
must be defined. In our case, the security objective is to preserve the correctness
of an ongoing RSA ciphering or signature under fault injections to avoid Bell-
CoRe attacks. The quantitative aspect of such an objective lies in the number of
deviation from the expected behavior. According to Section 2.1, it corresponds
to the number of security breaches. The qualitative aspect corresponds to the
nature of the attack (the fault model), and the way it deviates from the reference.

The classification of deviant cases permit to define the criticality level of
found attacks. Thereby, we can measure the code sensitivity or robustness of a
targeted code under fault attack, and determine potential vulnerabilities accord-
ing to a measurement system, a fault model and a simulation tool.

2.5 Existing Works

In [11,12], Christofi et al. propose a formal method to validate cryptographic
implementations against first order fault injections relying on theorem proving.
The fault targets a C variable and sets it to zero. Their studies lead them to
the implementation of a Frama-C plugin named TL-Face and using the Jessie
plugin in order to solve weakest precondition problems. A case study has been
made on the Vigilant implementation of CRT-RSA, revealing possible BellCoRe
attacks.

In [13], Rauzy et al. study the effects of a first order fault on several CRT-
RSA implementations. Their fault model consists in replacing any intermediate
value with either zero or a random value. No mathematical property such as
co-primality or equivalent modulo is considered. Their analyses lead to the im-
plementation of an OCaml tool testing exhaustively every possible faults. It has
been used to compare an unprotected implementation of CRT-RSA with the



Shamir [14] one and the Aumüller one [15]. In [16], they extend their approach
on Vigilant and Coron’s counter-measures and provide high-order attacks. Note
that their approach targets values that are used in mathematical operations only.

In [17], Kauffmann-Tourkestansky works on a first order fault model targeting
control flow in order to skip instructions (using NOP or JUMP instructions). He
uses a mutation analysis of C source codes and tries to fill the gap between
high-level and low-level implementations.

In [18], Heydemann et al. also focus on an instruction skip based fault model.
They propose a set of counter-measures applicable to every instruction of the
Thumbs2 instruction set of the ARM language [19]. They suppose that it is hard
for an attacker to reproduce twice the same fault in a few cycles delay and
give a way to duplicate each instruction. Finally, they prove that this mutated
program (with all its instruction duplicated) has the same behavior than the
original using the Vis model-checking tool [20].

In [21], Berthier et al. propose a brand new approach for evaluating smart-
cards security against first order fault injection. It consists in embedding the
fault simulator itself directly on the smartcard. This way, faults are tested on
the final product, which is more reliable than on a software model. Moreover,
it also enables the possibility to study the behavior of the card after injections
using side-channel analysis. Their fault model targets byte skipping of an arbi-
trary length. They put it into practice on an implementation of a DES cipher,
revealing for instance a fault that skip a function call, which compromised the
security of the implementation.

In [5], Potet et al. study the effects of a test inversion based fault model. The
analysis is objective guided, in term of reaching or not basic blocks. The fault
model is exhaustively explored by a mutation approach. Moreover, in order to
take into account higher order faults, that would cause path explosion (and in
their case, mutants number explosion), they only create one higher-level mutant.
It embeds on its own the possibility of injecting each possible fault or not. The
paths are then covered by the concolic execution tool Klee [22].

Those existing works emphasize the importance of considering both data
and control flow fault models in secure implementation robustness evaluation.
With our high-level fault simulation approach presented in the next section, we
consider both models while ensuring a very efficient detection and high perfor-
mances.

3 High-Level Simulation Approach

Section 3.1 defines two reachable fault models considered with fault simulator,
namely the data and the line-skip fault models. Section 3.2 defines the testing
protocol used to evaluate implementations.

3.1 Mechanisms

The fault simulator operates at the source code level, considered fault models
are defined with this granularity accordingly.



Granularity: : C variable
(Spatial | temporal)

: Complete | Limited
control
Persistence: : Permanent or transient
Multiplicity: : First order or higher
Type: : Set to 0 or 1

Fault model 1: Data

This model is a subset of the one proposed in [23,13]. Both of them allow
the attacker to perform permanent and transient faults on every variable and
intermediate values. On the opposite, our model only allow permanent faults on
variable and transient faults on intermediate values, which is more realistic. It
also assumes that an attacker can not modify the secret key, the message to sign
or the signature, which should pass integrity checks at any time.

The instruction-skip fault model is explored in previous works [21,24,25], but
almost exclusively at the assembly code level. To our knowledge, no experiment
targets CRT-RSA under such fault model in the literature. As there is no as-
sembly instruction notion at the C code level, we propose a high-level extension
of the instruction-skip fault model as follows:

Granularity : C code line
Skip Width : One C code line
(Spatial | temporal)

: Complete | Limited
control
Persistence : Transient
Multiplicity : First order or higher
Type : Skip of lines in C source code

Fault model 2: Line-skip

In practice, the fault simulator has been designed to permit arbitrary width
line skips. However, a C line of code is often represented by several lines of
assembly. Knowing that in the current state of the art, it remains difficult to
skip multiple assembly lines, an attacker will unlikely be able to skip multiple C
lines of code. Then, we will only consider faults with a width of one line.

Table 1 summarizes the differences of our fault models with state of the art,
on several general criteria in order to show the diversity of existing analysis
on this topic. HL denotes High-Level abstraction and LL denotes Low-Level
abstraction.

The simulator mostly relies on a testing approach in the sense that the tar-
geted implementation is not modified between simulations. However, a single
mutation might be needed to decompose computations and let the intermediate
values appear as one-time variables.

Faults are injected using the well known Gnu Project Debugger (GDB) [26]
that makes it possible to pause the execution via breakpoints, change any vari-
able’s value and then resume the execution. Moreover, we enhanced the control
and efficiency of our simulator by providing automation through Python scripts.



Reference
Abstraction Type of

Persistence
High

level fault model order

[11] [12] HL (C) Data-flow Permanent

[13] [16] HL (OCaml) Data-flow Transient X
[17] HL (C) / LL Control-flow Transient

[18] [24] LL Control-flow Transient

[21] LL Control-flow Transient

[5] Intermediate (LLVM) Control-flow Transient X

Our approach HL (C)
Data-flow Permanent

X
Control-flow Transient

Table 1. Comparison of our approach with state-of-the-art

3.2 Test Protocol

Our testing protocol currently targets any single function in an implementation.
Several parameters can be tuned to specify the fault model such as the fault
multiplicity or which variable to attack or not. If not specified, every global
variable of the file, local variable and parameter of the function will be faulted
at each line of the function.

GDB commands are controlled by Python scripts, which, for each combina-
tion of faults (aka targeted variables, injection lines and new values set), will
request GDB to:

1. Execute the target;

2. Set breakpoints where the fault shall be injected;

3. Inject the faults;

4. Get the system state post execution;

5. Repeat this sequence until the fault model is exhaustively explored.

This will spot possible attacks with respect to an oracle defined by the user.
As we will see, there might be many of them.

We choose to allow the simulator to change the value of a variable even if
this variable is not used at the targeted line. It means that every variable will be
forced to every possible value (zero or one) at each line. This possibility could
be realistic for example in a system where the values of the variables are stored
in memory and loaded each time they are read. In a system where this assertion
does not stand (basically all system with registers), only the realistic attacks will
be included in the total set of attacks found.

Instinctively, such flexibility will create a relation between some attacks in
a way that they can be regrouped as one generic attack and several ways to
reproduce it. Thus, in section 5, we will define precisely what we call redun-
dant attacks. Then we will detail classification criteria in order to regroup such
attacks.



4 Case Study

In this section we present a case study in order to show the validity of our tool.
We concentrate on the process of signature using CRT-RSA. The objective is to
ask a system to sign a random message m with its own key (p, q, dp, dq, iq, N)
and to obtain a prime factor p or q of N using a BellCoRe attack.

We will study the results of the simulator on an unprotected CRT-RSA im-
plementation and on one using the Aumüller et al. counter-measure [15]. Both
of them will be tested with the data fault model and the line-skip fault model
explained in Section 3.1.

4.1 Study of an unprotected implementation of CRT-RSA

1 int CRT RsaSign ( int M , int p , int q , int dp , int dq , int iq )

2 Sp = Mdp mod p /∗ Signature modulo p ∗/
3 Sq = Mdq mod q /∗ Signature modulo q ∗/
4 S = Sq + q · (iq · (Sp − Sq) mod p) /∗ Recombining ∗/
5 return S

Listing 1.1. Unprotected implementation of CRT-RSA

Simulation 1 targets the unprotected CRT-RSA given in Listing 1.1 with
first order attacks under the data fault model. For the rest of this paper, we will
describe each simulation experiment with the following structure:

Target function : Unprotected CRT RsaSign
Success oracle : Success of a BellCoRe attack on the signature
Fault model : Data
Fault multiplicity : 1 (first order)
Result : 11 attacks found

Simulation 1: Data model on unprotected CRT-RSA (first order faults)

By O(S, Ŝ,N) we denote the success oracle that returns true if a BellCoRe
attack succeed with the given parameters, false otherwise.

Data attack example 1 The unprotected implementation of CRT-RSA is
prone to numerous attacks. For instance, forcing the value of Sp to zero prior to
the execution of line 4 reveals the prime factor q of N . Indeed,

S−Ŝ = q·((iq · (Sp − Sq) mod p)− (iq · (−Sq) mod p)) and gcd(N,S−Ŝ) = q

Data attack example 2 An even clearer attack consists in zeroing the whole
intermediate value q · (iq · (Sp − Sq) mod p) prior to the execution of line 4 will

result in Ŝ = Sq, thus we have a BellCoRe attack:

|Ŝ| 6= |S| and |Ŝ mod q| = |S mod q|



Target function : Unprotected CRT RsaSign
Success oracle : Success of a BellCoRe attack on the signature
Fault model : Line-skip
Fault multiplicity : 1 (first order)
Result : 4 attacks found

Simulation 2: Line-skip model on unprotected CRT-RSA (first order faults)

Simulation 2 targets the same unprotected CRT-RSA with first order attacks
according to the line-skip fault model. Results are shown below:

Line attack example 1 Skipping the line computing iq · (Sp − Sq) mod p

(on line 4 of listing 1.1) led to Ŝ = Sq + q · (Sp − Sq) which allows a BellCoRe
attack.

The line-skip fault model detected four vulnerable lines. Listing 1.1 shows a
generic code of the naive RSA where several computations are gathered on few
lines. There is a strong dependency between the implementation and the attack
success rate with the line skip fault model. The latter can also recover several
attacks found by the data fault model and count them as a single one, which
explains the lower number of found attacks in Simulation 2.

For instance, if we consider a variable a that is used in an attacked exponenti-
ation, with the data fault model, we can set it either to 0 or 1. However, with the
line-skip fault model, the attack output will depend on the initialization value of
a. Therefore, if a was initialized to 0, we would recover a set-to-zero data fault
model. Moreover, if a was not initialized, we would recover a random data fault
model and finally, if a was initialized to a constant value, we would recover a
set-to-value data fault model. Even if the two latter data fault models are not
directly considered by our simulation, the line-skip fault model can detect them.

4.2 Study of the Shamir implementation of CRT-RSA

The counter-measure of Shamir [14] introduces a new factor r co-primed with p
and q, random and small (less than 64 bits). Computations are thus performed
modulo p · r (resp. modulo q · r), which allows to retrieve the result by reducing
modulo p (resp. modulo q). A verification is possible by reducing modulo r.

Our simulator shows that a first order fault is enough to break Shamir’s
implementation. For example, forcing the value of Sp to zero allows us to obtain
the exact same attack than in Simulation 1, as the integrity test only relies on
S

′

p and S
′

q.

4.3 Study of the Aumüller implementation of CRT-RSA

The counter-measure of Aumüller [15] has been developed in order to enhance the
version of Shamir against first order attacks. It stills introduce a new factor t co-
primed with p and q. However, the computation of dp and dq is performed outside



of the function which removes the use of d. Moreover, the ending verification
introduced by Shamir is now asymmetrical and intermediate verification are also
added. The Aumüller implementation of CRT-RSA is given in listing 1.2.

On the Aumüller implementation of CRT-RSA, our results matches the one
exposed in [13]. No first order attack is found by setting any variable or inter-
mediate data to zero.

1 int CRT RsaSign ( int M , int p , int q , int dp , int dq , int iq )
2 t = rand ( )
3

4 p
′

= p · t
5 d

′
p = dp + random1 · (p− 1)

6 S
′
p = Md

′
p mod p

′
/∗ Signature modulo p ’ ∗/

7

8 i f ( (p
′

mod p 6= 0) or (d
′
p 6≡ dp mod (p− 1)) ) {

takeCounterMeasure() }
9

10 q
′

= q · t
11 d

′
q = dq + random2 · (q − 1)

12 S
′
q = Md

′
q mod q

′
/∗ Signature modulo q ’ ∗/

13

14 i f ( ( q
′

mod q 6= 0) or (d
′
q 6≡ dq mod (q − 1)) ) {

takeCounterMeasure() }
15

16 Sp = S
′
p mod p

17 Sq = S
′
q mod q

18 S = Sq + q · (iq · (Sp − Sq) mod p) /∗ Recombining ∗/
19

20 i f ( (S − S
′
p 6≡ 0 mod p) or (S − S

′
q 6≡ 0 mod q ) ) {

takeCounterMeasure() }
21

22 Spt = S
′
p mod t

23 Sqt = S
′
q mod t

24 dpt = d
′
p mod (t− 1)

25 dpt = d
′
p mod (t− 1)

26

27 i f (S
dqt
pt 6≡ S

dpt
qt mod t) { takeCounterMeasure() }

28 else { return S }

Listing 1.2. Aumüller implementation of CRT-RSA

Simulation 3 targets the CRT-RSA implementation protected with the Aumüller
countermeasure shown in Listing 1.2 above. Second order attacks are performed
according to the data fault model, we obtain:

The Aumüller implementation is not robust against second order attacks
using this data fault model. The first fault is used to corrupt the computation
while the second avoids the counter-measure to be triggered.



Target function : Aumüller CRT RsaSign
Success oracle : Success of a BellCoRe attack on the signature
Fault model : Data
Fault multiplicity : 2 (second order)
Result : 802 attacks found

Simulation 3: Data model on Aumüller CRT-RSA (second order faults)

Data attack example 3 A Set-to-one fault on (p− 1) before the execution of
line 5 sets up a BellCoRe attack. Secondly, performing the same fault on (p− 1)
before the execution of line 8 avoids triggering the counter-measure.

Data attack example 4 The attack presented for unprotected and Shamir
implementations consisting in setting the whole intermediate value q·(iq ·(Sp−Sq)
mod p) to zero before the execution of line 18 stills enables a BellCoRe attack.
However, it will also trigger the counter-measure of line 20 (through the test
S − S

′

p 6≡ 0 mod p). A second fault will disable it by setting the intermediate
value S − Sp to zero.

Such a huge number of attacks (802 in Simulation 3) makes results impossible
to analyze by hand. Moreover it is obvious that most of these attacks found can
be regrouped into some generic attacks with different ways to reproduce them.
This example definitely shows the necessity of classification criteria and metrics.

Simulation 4 targets the same protected CRT-RSA with the Aumüller coun-
termeasure but second order attacks are performed according to the line-skip
fault model. Results are shown below:

Target function : Aumüller CRT RsaSign
Success oracle : Success of a BellCoRe attack on the signature
Fault model : Line-skip
Fault multiplicity : 2 (second order)
Result : 13 attacks found

Simulation 4: Line-skip model on Aumüller CRT-RSA (second order faults)

Line attack example 2 Skipping the line computing iq · (Sp − Sq) mod p (on

line 18 of listing 1.2) led to Ŝ = Sq +q ·(Sp−Sq) which allows a BellCoRe attack.
It also triggers the counter-measure on line 20 which can be easily skipped by
our fault model at the second order. This attack is very similar to the Data
attack example 4.

Thirteen attacks are spotted by the line-skip fault model. Interestingly, the
number of attacks found by the line-skip fault model in Simulation 4 is drastically
lower to the one found by the data fault model in simulation 3. This can be
explained knowing that it only depends on the lines while the data fault model
also depends on variables and values. We will present deeper analyses of the link
between these two models in section 5.

To the best of our knowledge, some studies showed that the Aumüller imple-
mentation of CRT-RSA is weak against multiple fault injection such as [27] but
none provides detailed experimental results.



5 Advanced Analysis

Criteria. We recall that a successful attack is the exploitation of a code vulner-
ability, which is induced by the fault injection. According to the transient value
modification fault model, we provide a variable-centric criteria Cval by which
we measure the code sensitivity. Cval only depends on the value taken by the
targeted variable regardless the attacked line of code. It is defined as:

Cval(targeted var, value) := #{line | O(S, Ŝ, n) = true}
For a given couple (targeted variable, value), Cval describes the number of

successful attacks obtained by setting targeted variable to value regardless of
the lines. We define as non-redundant, the successful attack that has the greatest
injection line number.

Unprotected Shamir Aumüller Aumüller
(order 1) (order 1) (order 1) (order 2)

Attacks found 11 15 0 802

Non-redundant attack 9 11 0 85

Table 2. Found Attacks with the Fault Simulation with Data Fault Model

Table 2 summarizes the experimental results obtained by the fault simulator
on CRT-RSA implementations with the data fault model on C variables. The first
line shows how many attacks the simulator has found on each implementation.
The second line displays how many non-redundant attacks are found. When the
same targeted variable is modified to the same value at several different lines of
the code, it describes the same attack. We call such groups of lines a vulnerability.
This is why the second line of Table 2 report a lower number of found attack.

Line Skip Fault Model. We now provide a line-centric criteria Cline that for
each line of the implementation under testing returns a boolean value depending
on the presence of an attack with an injection on this line. In the end, for a
given implementation, this criteria returns the set of lines where injecting a
fault results in an attack. It is defined as follows:

Cline(l,m) :=

{
true if ∃ A(l,m) | O(S, Ŝ,N) = true
false otherwise

For a given line l, Cline returns true if there exist a successful attack A on line
l according to the fault model m denoted as A(l,m). For each implementation
that we studied, we retrieve vulnerable lines filtered by Cline under the data fault
model. Then, we check how many of these lines are also vulnerable under the
line-skip fault model. For readability purpose, we define

V ulnerable linesmodel := {l | Cline(l,model) = true}

Thereby, we compute the following ratio:

Gain :=
#{V ulnerable linesdata − V ulnerable lineslskip}

#{V ulnerable lineslskip}



It happened that for each of our implementations, this gain ratio was 100%
even considering redundant attacks. This means that each vulnerable line found
with the data fault model is also vulnerable with the line-skip fault model.

Moreover, as we can see in table 3, the first (resp. second) line displays the
time taken by our tool for each implementation using the data (resp. line-skip)
fault model. The third line is the ratio of the first and second lines. We can
here conclude that simulations using the line-skip fault model are much quicker
than using the data fault model. This is especially true when dealing with higher
order faults.

Unprotected Shamir Aumüller Aumüller
(order 1) (order 1) (order 1) (order 2)

Data 3,53 s 38,75 s 143,93 s 1361,45 mn

Line Skip 2,18 s 2,39 s 14,31 s 7,41 mn

Gain ratio 162 % 1621 % 1006 % 18373 %

Table 3. Line-skip Fault Model And Fault Simulation Timing Performances

In our experiments, every attack found by the data fault model seems to be
reproducible using the line-skip fault model. As mentioned in section 4.1, the
general link between the two fault models is not straightforward. On one hand,
the general effects of a line skip on a variable is a Set-to-last-value. It differs
from Set-to-0/1. If we consider that an attacker has no control on intermediate
values, the line-skip fault model can be seen as a uncontrolled value fault model.
On the other hand, considering a single line of code, the data fault model targets
only one variable while the line-skip fault model targets every modified variables
of the line. Despite these differences, it still becomes really useful to run line-
skip based simulations prior to data based simulation at high-level as it produces
similar effects. Moreover, the large simulation performance improvement justifies
this choice.

Finally, high-level line-skip allows discover attacks completely invulnerable to
data fault models such as removing a break statement in a switch or adding/re-
moving loop iterations. As a matter of fact, the last has been put into practice
in [28] where the authors are able to increase the leakage of an AES key for side
channels analysis. Generally, these high-level faults models can be considered as
the consequence of low-level faults encompassing several of them.

Representativeness Discussion. Attacking the source code structure can
break the data or the control flow as the targeted source code could represent
one or several instructions, which can manipulate data or not. Post compilation,
a human readable C variable or loop counter will consist in a memory address
for the machine. An if-then-else expression, a switch or break statement or
an arithmetic operation will consist in a hardware encoded instruction for the
machine. A possible way to improve our approach could be the use of Abstract
Syntax Trees (AST) instead of C lines. This Intermediate Representation (IR)
would abstract the code structure but keep its semantic and therefore improve
our approach accuracy and representativeness.



6 Conclusion

We propose an approach to evaluate the robustness of secured implementations
against multiple fault injections. This approach works on high-level source codes
(such as C). We propose a first fault model relying on data modification with the
granularity of a C variable. This fault model has been automated in a Python
tool that is able to try it exhaustively on a given implementation and log out
the functions outputs. Helped by oracles, it can tell whether a combination of
faults results in a attack or not.

We demonstrate the validity of our tool on three examples of CRT-RSA
implementations and obtained results according to the current state-of-the-art.
Moreover, we proposed a second fault model relying on line skipping that is
faster. In our experiments, we found that it covers entirely the attacks found by
the data fault model with a huge speed gain.

Finally, we proposed a set of criteria and metrics in order to regroup attacks
found and quantify in term of security the robustness of an implementation.
Further work is to refine the link we found between our data and control-flow
fault models.
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