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Abstract—1 In the domain of smart cards, secured devices must
be protected against high level attack potential [1]. According
to norms such as the Common Criteria [2], the vulnerability
analysis must cover the current state-of-the-art in term of attacks.
Nowadays, a very classical type of attack is fault injection,
conducted by means of laser based techniques. We propose
a global approach, called Lazart, to evaluate code robustness
against fault injections targeting control flow modifications.
The originality of Lazart is twofolds. First, we encompass the
evaluation process as a whole: starting from a fault model,
we produce (or establish the absence of) attacks, taking into
consideration software countermeasures. Furthermore, according
to the near state-of-the-art, our methodology takes into account
multiple transient fault injections and their combinatory. The
proposed approach is supported by an effective tool suite based
on the LLVM format [3] and the KLEE symbolic test generator
[4].

Keywords-symbolic test generation, fault injection by mutation,
smart card vulnerability analysis

I. INTRODUCTION

A. Context

Secured devices such as smart cards, security tokens, and

in a near future mobile phones, are submitted to drastic secure

requirements and certification process. In the domain of smart

card, secured devices must be protected against high level

attack potential as described in [1] (such as multiple attackers

with a high level of expertise, using sophisticated equipments,

etc.). Then, according to norms such as the Common Criteria

[2], the vulnerability analysis must cover the current state-

of-the-art in term of attacks2. Nowadays, a very classical

type of attack is fault injection, that can be conducted by

techniques such as laser attacks [5]. These attacks consist in

modifying some hardware components (memory or buses) in

order to influence the current execution to force, or avoid,

some sensitive operations (such as a pin verification or the

generation of a new random number). In complement with

classical hardware countermeasures, codes are hardened by

software countermeasures (managing integrity counter, re-

dundant conditions, etc.). Vulnerability analysis requires to

1This work has been partially supported by the LabExPERSYVAL-
Lab(ANR-11-LABX-0025)

2We aim here the AVA class, dedicated to vulnerability assessment

take into account faults that can be injected, their logical

impacts, and corresponding countermeasures embedded in the

application code.

B. Fault model and robustness evaluation

A classical approach for fault injection consists in defining

an appropriate fault model and in evaluating the robustness of

the code relatively to this fault model.

1) Binary level fault model: According to the state-of-the-

art, fault models have been proposed for laser attacks [5], [6].

The more realistic model consists in changing a value from

0x00 to 0xFF, or from 0xFF to 0x00 or by a random value

(for encrypted memory). These modifications can apply either

at the level of one bit, or one byte or a group of bytes. In

general a laser attack impacts the code of applications stored

in EEPROM or the data passing through the buses. As pointed

out in [1] laser attack effects consist in modifying a value read

from memory or modifying the execution flow in various ways

(inverting a test, generating a new jump or a calculation error,

etc.). Complementary with brute force approaches simulating

laser attacks at the binary level, some works ([7], [8]) propose

high level attack models (generally at the source code level),

modelling the possible impacts of attacks. For instance [8]

targets variable modification attacks, whereas in [7] the authors

model attacks replacing an instruction by a NOP opcode or

changing the destination address of a branch instruction.

2) Permanent versus volatile fault injection: Depending

where the code is stored, and how laser attacks are conducted,

two different consequences must be considered. A permanent
error corresponds to an effective modification of the program

code. A volatile (or transient) fault corresponds to a fault

injection during a run [9]. Permanent errors do not appear

to be a very realistic model: current smart card platforms

generally contain some system countermeasures to detect the

loading of modified programs (for instance with a checksum

verification). In practice, attacks are conducted during code

execution by introducing volatile faults. Furthermore, whereas

until recently the techniques in term of laser attack reduced

to a single shot per run, several spatial or temporal attacks

must now be considered as plausible. Spatial multiple attacks

consist in modifying two independent binary values, temporal
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multiple attacks consist in modifying the same value several

times during a run. Thus, a leading-edge approach in term of

fault injection analysis must encompass volatile and multiple

fault injections.
3) Robustness evaluation: Evaluating the robustness of an

application against fault injection can be seen as the production

and execution of a set of mutants, corresponding to all faulty

behaviours [10]. These mutants can be produced dynamically

or statically. When a dynamic approach is chosen, an execution

is launched and faults are injected during a run, according

to a given fault model. Dynamic mutation approach faces

with the classical incompleteness problem: depending on how

inputs are selected, it is difficult to quantify the robustness

of the considered application. When mutants are statically

produced, they have to be classified using criteria as proposed

in [11]: their dangerousness (in term of elevation of privilege

for instance) and the presence of countermeasures detecting

the corresponding attack. In both cases, if multiple fault

injections must be taken into consideration, we are faced with

the problem of a combinatorial explosion.
4) Development and Certification processes: Assisting the

robustness evaluation process against attacks could be helpful

both during the development phase (handled by the card man-

ufacturer) or during the certification phase (handled by well-

identified third-party security labs3). In both cases, developers

or evaluators must acquire a fine-grained understanding of

code in particular to evaluate the relevance of software and

hardware countermeasures. Source or assembly codes appear

to be a well-adapted level to do that. Finding attacks at the

source code can help vulnerability analysis in complement to

a low level brute-force approach [7] consisting in dynamically

mutating bits, bytes or groups of bytes, in particular when

some well-identified dangerous scenarii must be examined.

C. The Lazart approach
The approach we proposed, called Lazart, targets code

robustness evaluation against multiple and volatile fault in-

jections. We start with a high level fault model, combined

with the identification of sensitive statements, allowing us to

produce (or establish the absence of) attacks. We address fault

injections directly impacting the control flow and then modi-

fying the logic of the applications, in particular attacks by test

inversion (changing the result of a conditional jump). This fault

model is a realistic one due to the fact its encompasses several

data or control flow low level attacks [12] (introducing a NOP

to delete a jump or the assignment of a carry flag, modifying

values impacting the condition, etc.). Furthermore we do not

focus on cryptographic algorithms, generally mainly sensitive

to data mutation, but we target any secured applications such

as authentication and identification processes, digital rights

management codes or banking exchange transactions. Security

weaknesses of these applications can result on control flow

modifications implying for instance verifications of identifica-

tion values, current state variables or the structure of inputs

data.

3Such as Cesti in France.

The Lazart approach is based on the following steps, as

illustrated on Fig. 1:

1) Starting from identified sensitive statements (attack ob-

jective) we compute structural information on the control

flow graph (cfg), corresponding to some reachability

properties.

2) Using previous information we determine which pro-

gram locations are candidate for fault injection and we

produce a unique corresponding mutant.

3) Using a symbolic test case generator and a path-coverage

criterion we evaluate the robustness of the application

producing either some attacks, or establishing the ab-

sence of attacks, or an inconclusive response.

CFG

coloring

inconclusiveattack paths

robustness "proof"

appli.ll

attack objectives

mutation strategy mutant
generation

appli.ll

mutant.ll

symbolic
test case
generation

Fig. 1. The Lazart approach

The main innovative part of Lazart is to encompass the

entire process from a fault model, to the production (or proof

of absence) of attacks. We also take into consideration the

dangerousness of attacks, i.e. fault injections producing an

execution not stopped by some embedded software coun-

termeasures and reaching a sensitive objective. The second

contribution is to address multiple volatile fault injections,

without producing a combinatorial number of mutants. Finally

Lazart implementation works on a (well-known) intermediate

representation, the LLVM format [3] and uses KLEE [4], [13],

a concolic test generator engine taking as input LLVM codes

(files appli.ll). Contrary to source code as C ([7], [8]), an

intermediate format offers a fine enough granularity level for

expressing mutants. Furthermore, it makes easier the relation

between high level and binary level fault models (this later

one corresponding to the real laser attack process).

Section II describes the cfg coloring algorithm computing

reachability properties. Section III explains how the colored

cfg is exploited to determine mutations and gives the algo-

rithms producing LLVM mutants. Section IV explains how

symbolic test generation can be used to evaluate the robustness

of an application and the instanciation of this method using

KLEE. Section V proposes a way to classify attacks, presents

the Lazart tool suite and some experimental results. Finally,

section VI compares the Lazart approach with other works and

gives some perspectives on this topic.
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II. CONTROL FLOW GRAPH REACHABILITY ANALYSIS

The first step of the Lazart approach is based on a reach-

ability analysis performed on the cfg of the application. We

introduce a simple example to illustrate this analysis.

A. A simple example

The example we consider consists in a pin verification algo-

rithm presented in [14]. Starting from a naive code (sensitive

to channel and laser attacks), we will see in section V a

more robust implementation. Listing 1 is the C code of the

naive version (function Verify) and Fig 2(a) presents the

corresponding control flow graph produced by LLVM [3].

Basic blocks are identified in Listing 1 by means of comments

and Table I gives the mapping between LLVM block names

and C code lines.

1 # d e f i n e SIZE OF PIN 4
2 # d e f i n e maxTr ies 3
3 t y p e d e f unsigned char BYTE;
4BYTE t r i e s L e f t = maxTr ies ;
5BYTE a u t h e n t i c a t e d = 0 ;
6BYTE p i n [ 4 ] = {( char ) 1 , ( char ) 2 , ( char ) 3 , ( char ) 4} ;
7
8BYTE V e r i f y ( char b u f f e r [ 4 ] ) {
9 BYTE i ;

10 / / BLOCK e n t r y
11 / / No compar i son i f PIN i s b l o c k e d
12 i f ( t r i e s L e f t <= 0) goto FAILURE ;
13 / / BLOCKS bb ( i n i t i a l i s a t i o n ) , bb4 ( loop c o n d i t i o n )
14 / / Main Comparison
15 f o r ( i = 0 ; i < 4 ; i ++) / / BLOCK bb3 ( i ++)
16 / / BLOCK bb1
17 i f ( b u f f e r [ i ] != p i n [ i ] ) {
18 / / BLOCK bb2
19 t r i e s L e f t −−;
20 a u t h e n t i c a t e d = 0 ;
21 goto FAILURE ;
22 }
23 / / BLOCK bb5
24 / / Comparison i s s u c c e s s f u l
25 t r i e s L e f t = maxTr ies ;
26 a u t h e n t i c a t e d = 1 ;
27 re turn EXIT SUCCESS ;
28 / / BLOCK FAILURE
29 FAILURE : re turn EXIT FAILURE ;
30 / / BLOCKS bb6 , r e t u r n : e x i t w i t h t h e r e t u r n v a l u e
31}

Listing 1. A naive implementation of Verify

entry bb bb1 bb2 bb3 bb4 bb5 bb6 FAILURE

10 13 16 18 15 13 23 30 28

TABLE I
MAPPING BETWEEN BLOCK NAMES AND C CODE

B. Basic blocks coloring

The inputs of the coloring algorithm are a cfg and a set

of basic blocks identified as “sensitive”, either because we

want to trigger their execution (block “to be reached”), or to

circumvent it (block “not to be reached”), from the attacker

point of view. For instance, on Listing 1, we may want to

trigger the execution of assignment authenticated = 1

���������	
���
�����������	�

��
��
� �

��������

���

����

����
� �

����
� �

�� �

��!� ��"�


��
��

������������	
��
���������������	���

�����
� �

��������

���

����

����
� �

����
� �

����

��!� ��"�

��#���

�������������	
�	���������������������������

������
� �

�������

���

����

����
� �

����
� �

�� �

��!� ��"�

���#���

Fig. 2. Initial cfg of Verify, and two colored graphs

(in block bb5), or to circumvent a failure detection (i.e. not

executing the FAILURE block). Generally speaking, we want

to trigger the execution of instructions allowing us to gain priv-

ileges and we want to circumvent executions corresponding to

countermeasures.

We denote a cfg as a graph (N , E), where N is a set of

nodes4 and E the set of edges. Sons(n) is the set of direct

sons of a node n with respect to E, and Leaf is the set of leaf

nodes. An attack objective O is an element G of N , with the

indication “to be reached” or “not to be reached”. Definitions

2.1 and 2.2 give the coloring algorithm of N depending on

O.

4each node corresponding to a basic block
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Definition 2.1: cfg coloring for O =(G, “to be reached”).

• Green is the set of nodes that will eventually reach node

G. It is defined as the smallest set verifying:

Green = {G} ∪ ({n : Sons(n) ⊆ Green}\Leaf)
• Red is the set of nodes that can not reach G. It is defined

as the greatest set verifying:

Red = {n : Sons(n) ⊆ Red)}\{G}
• Yellow is the set of nodes that can or cannot reach G,

depending of the execution flow:

Y ellow = N\(Green ∪Red)

Definition 2.2: cfg coloring for O =(G, “not to be

reached”). When unreachability is targeted, sets Green and

Red in Def. 2.1 are inverted.

Definition 2.3: Orange node. We define a subset of Yellow

as yellow nodes with a red son:

Orange = {n : n ∈ Y ellow ∧ (Sons(n) ∩Red �= ∅)}

The Lazart tool suite implements the block coloring algo-

rithm according to the previous definitions. Figure 2 illustrates

the results obtained from this algorithm for two objectives:

forcing the execution of bb5 (Fig. 2(b)) and circumventing

the execution of FAILURE (Fig. 2(c)). Consider the following

mapping if colors are not available: green=white, red=black,

yellow=light grey and orange=dark grey.

III. MULTIPLE FAULT INJECTIONS AND MUTANTS

Based on the colored control flow graph, we define a

strategy, called Comp, introducing all possibilities of fault

injections by test inversion targeting the attack objective. Then,

we explain how it can be enforced through mutants.

A. A Fault injection strategy for test inversion

Table II describes how faults are injected, depending on the

current block color. Intuitively, when we are executing a green

block B, the attack objective is satisfied (all paths issued from

B reach a node “to be reached” or circumvent a node “not

to be reached”). Conversely, if B belongs to Red, the attack

objective always fails (all paths issued from B do not reach the

expected block or always reach the unexpected block). Thus,

faults (i.e., test inversion) need to be injected only on yellow

or orange nodes: we avoid red nodes (orange node case of

table II), we favour green node (second to last case of table

II) and otherwise we explore the two consequences of fault

injection (last case of table II). As a consequence, strategy

Node (with two sons) Action

Green do nothing

Red unreachable

Orange force the test inversion to circumvent the red son

Yellow possibly invert the test
with a green son to reach the green son

Yellow possibly invert the test from one son
with two yellow nodes to the other one and vice-versa

TABLE II
COMP: A FAULT INJECTION STRATEGY

Comp always ensures that all red blocks will be circumvented.

Then, if the code execution with faults injection terminates, a

green block will eventually be reached5. We call mandatory
mutation when we force a test inversion (on an orange node),

and optional mutation when the test inversion could take place

or not (on a yellow node).
Example 3.1: Comp Strategy effect on the function

Verify. If we consider the control flow graph of Fig. 2(b) we
obtain the following mutation points (the same result would
be obtained for Fig. 2(c)):
File Verifybb5Comp:

Mandatory mutations:
entry: FAILURE/bb, bb1: bb2/bb3

Optional mutations:
bb4: bb1/bb5

Notation bb: bb1/bb2 means that the block called bb must

be muted to hijack the control flow from block called bb1 to

block called bb2.

B. Mutants and multiple fault injections

Existing approaches consisting in building mutants for laser

attacks generally consider a single fault injection [15], [7].

Then, fault injection is encoded into mutants by explicitly

modifying the control flow, without taking into account the

flow induced by the current inputs. Fig 3 describes such

a transformation (colors are lost by mutation). Our objec-
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Fig. 3. Encoding Mutation independently of the current inputs

tive being to take into account multiple fault injections, we

could not reasonably produce one mutant per each possible

combination of fault injections. Thus, we produce a single

mutant encoding all possible fault injections (sometimes called

Higher Order Mutant [16]). To do so, we introduce a particular

variable, called fault, which is incremented each time an

attack effectively takes place. Furthermore, we use a lazy

approach in which faults are not necessarily injected if the

current flow follows a winning path. With this solution, we

exploit at the best the interaction between possible inputs and

fault injections, in order to minimize the number of laser shots.

C. Mandatory mutation operator

Mandatory mutation operator enforces the hijack of the

control flow just before a red node is going to be reached,

as described on Fig. 4. Contrary to Fig. 3, a fault is injected

only if the current flow does not follow a possibly winning

path. The new block bbTI is introduced to count the number

of fault injection (see Listing 2).

The mandatory mutation is implemented in LLVM as

described on Listing 2. In LLVM, a conditional branch is

of the form br i1 %Cond, label %bbTRUE, label

5Supposing the objective is connected to the entry point.
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Fig. 4. Mutation operator when forcing a test inversion

%bbFALSE, where %Cond represents a 1-bit value. If this

value is evaluated to true (resp. false), control flows to the

%bbTRUE label argument (resp. %bbFALSE). The original br
instruction of the block we want to mutate (line 4) is replaced

by the one hijacking the control flow toward the bbTI block

(line 5) (semicolon introduces LLVM comments).

1 bb :
2 . . . ; Block t o m u t a t e
3
4 ; b r i 1 %Cond , l a b e l %bb1 , l a b e l %bb2 ; O r i g i n a l c o n d i t i o n
5 br i 1 %Cond , l a b e l %bb1 , l a b e l %bbTI ; Muta ted c o n d i t i o n
6
7 bbTI :
8 %mut 1 = l o a d i 3 2∗ @faul t , a l i g n 1 ; I n c r e m e n t s t h e
9 %mut 2 = add i 3 2 %mut 1 , 1 ; g l o b a l v a r i a b l e

10 s t o r e i 3 2 %mut 2 , i 3 2∗ @faul t , a l i g n 1 ; @fau l t
11 b r l a b e l %bb1 ;

Listing 2. LLVM mandatory mutation pattern

D. Optional mutation operator

In order to control the optional mutations (i.e. faults intro-

duced on a yellow node, see Table II), we add an extra boolean

variable (named activX) which must be valuated to 1 to

inject a fault. Fig. 5 explains how this mutation operates, trans-

forming Fig. 5(a) into Fig. 5(c). The two new blocks T1bb1
and T1bb2 control the introduction of faults, depending on

the value of variables activbb1 and activbb2 and the

two blocks T2bb1 and T2bb2 increment the fault number.

If bb2 is a green node the transformation 5(b) applies

(symmetrically if bb1 is green and bb2 yellow). In Listing

3 we give the LLVM code associated to blocks T1bb1 and

T2bb1.

1 T1bb1 :
2 %mut 1 = l o a d i 3 2∗ @activbb2 , a l i g n 1 ; t e s t on t h e
3 %mut 2 = icmp eq i 3 2 %mut 1 , 1 ; v a l u e o f
4 b r i 1 %mut 2 , l a b e l %T2bb1 , l a b e l %bb1 ; @act ivbb2
5
6 T2bb1 :
7 %mut 3 = l o a d i 3 2∗ @faul t , a l i g n 1 ; I n c r e m e n t s @fau l t
8 %mut 4 = add i 3 2 %mut 3 , 1
9 s t o r e i 3 2 %mut 4 , i 3 2∗ @faul t , a l i g n 1

10 br l a b e l %bb2

Listing 3. Optional mutation pattern

E. Mutant generation

Starting from an LLVM application code, a file name.ll,

and a file describing which nodes must be muted and

how (see example 3.1), we produce a mutant, named
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Fig. 5. Mutation operator when possibly inverting a test

NameMutComp.ll. Mutant generation is implemented into

a tool called Wolwerine (see Section V-B).

The mutant VerifyMutComp.ll, expressed as a C code

to be more readable, is given on Listing 4. According to

example 3.1, two mandatory mutations are introduced to avoid

the two red blocks bb2 and FAILURE (code corresponding

to these two blocks has been deleted). The local variable

activbb5 guards the activation of the fault consisting in

forcing the loop exit (optional mutation bb4: b1/bb5).

Function klee_make_symbolic (line 8) can be seen here

as a function assigning any value to the variable activbb5
(see Section IV-A for more explanations).

1BYTE V e r i f y (BYTE b u f f e r [ 4 ] ) {
2 i n t i =0 ; f a u l t =0 ;
3 / / Mandatory m u t a t i o n on e n t r y : FAILURE / bb
4 i f ( t r i e s L e f t <= 0) f a u l t ++;
5 / / O p t i o n a l m u t a t i o n on bb4 : bb1 / bb5
6 whi le ( i < 4) {
7 i n t a c t i v b b 5 ;
8 k lee make symbol i c (& a c t i v b b 5 , s i z e o f ( i n t ) , ” a c t i v b b 5 ” ) ;
9 i f ( a c t i v b b 5 ==1) { f a u l t ++; break ;}

10 / / body e x e c u t i o n
11 / / Mandatory m u t a t i o n on bb1 : bb2 / bb3
12 i f ( b u f f e r [ i ] != p i n [ i ] ) f a u l t ++;
13 i ++ ;
14 }
15 / / Comparison i s s u c c e s s f u l : t h i s b l o c k i s a lways reached .
16 t r i e s L e f t = maxTr ies ;
17 a u t h e n t i c a t e d = 1 ;
18 re turn EXIT SUCCESS ;
19}

Listing 4. Mutant VerifyMutComp.ll stated in C
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IV. FAULT INJECTIONS AND ROBUSTNESS EVALUATION

Starting from a mutant we want to determine if some attacks

exist, with how many fault injections and where. Due to the

chosen approach, where a single mutant is produced including

all possible fault injections, robustness can be evaluated using

a test generation process targeting a path coverage criterion.

Subsection IV-A explains how the test campaign is conducted

and Subsection IV-B how this result is exploited to evaluate

the robustness against fault injections.

A. Symbolic test generation

In order to combine at best inputs and fault injections, we

use a symbolic (or concolic) test case generation approach.

Our choice is bearing on KLEE [13], [4], a free symbolic test

generation tool for LLVM6. In KLEE, by default, variables

are considered as concrete ones. They can be declared as

symbolic (using the function klee_make_symbolic). Fur-

thermore, we can state assertions using the predefined function

klee_assume(pred), pred being a C condition. First we

build drivers for test generation in the following way:

1) add assertions characterising the inputs we want to take

into account ;

2) put an assertion to successively compute paths satisfy-

ing the following conditions: fault==0, fault==1,

fault==2 and fault>=3.

The case fault==0 corresponds to the case when the goal

can be reached without any attack using chosen inputs. In this

case there is a problem somewhere (either in the goal, or in the

chosen inputs, or in the application itself). Cases fault==1
and fault==2 give attack scenarios, according to the current

state of the art. In absence of such attacks, the last case

gives a measure of robustness: the minimal value of required

fault injections for the fault model under consideration. We

give in Listing 5 a KLEE driver associated to the function

Verify, where triesleft remains concrete (equals to 3)

and buffer is declared as symbolic (line 9) with each byte

constrained to be different from the expected pin value (line

13). Furthermore, paths with two fault injections are targeted

(line 15).

1 # d e f i n e SIZE OF PIN 4
2 # d e f i n e maxTr ies 3
3 t y p e d e f unsigned char BYTE;
4BYTE t r i e s L e f t = maxTr ies ;
5BYTE a u t h e n t i c a t e d = 0 ;
6BYTE p i n [ 4 ] = {( char ) 1 , ( char ) 2 , ( char ) 3 , ( char ) 4} ;
7 i n t f a u l t = 0 ;
8 i n t main ( void ) {
9 k lee make symbol i c ( b u f f e r , s i z e o f (BYTE)∗SIZE OF PIN ,

10 ” b u f f e r ” ) ;
11 / / C o n d i t i o n s on t h e i n p u t b u f f e r
12 f o r ( i =0 ; i<SIZE OF PIN ; i ++)
13 {k lee a s sume ( b u f f e r [ i ] != p i n [ i ] ) ; }
14 V e r i f y ( b u f f e r ) ;
15 k l ee a s sume ( f a u l t == 2) ;
16}

Listing 5. A KLEE driver for function Verify

6Previous experiments have been made at the C code level using the
Pathcrawler tool [17], [18]

From this driver addressing the mutation of the function

Verify (Listing 4), KLEE produces inputs for all feasible

paths, according to the stated assertions. In particular all paths

introduced by our mutation scheme are explored (variables

activX being successively assigned with 0 and 1).

B. Robustness evaluation
Symbolic test generation tools may face two forms of

incompleteness: unbounded paths enumeration and undecid-

ability of constraints solving. Termination is then enforced

using timeouts. For a given driver, containing an assertion A1

on inputs and an assertion A2 stating a fault limit, robustness

evaluation is established according to table III.

Attack at least one executable paths ensuring A1 ∧ A2

Inconclusive a timeout detection and no attack produced
Robust no timeout and no attack

TABLE III
POSSIBLE VERDICTS ATTACHED TO A GIVEN DRIVER

These verdicts have been implemented using KLEE. This

tool produces one test case for each enumerated path re-

specting the assertions and a single test case violating each

assertion. It interacts with the solver STP [19]. By default,

KLEE can loop when paths (or number of paths) are infinite.

We developed a script adjusting KLEE parameters in order to

detect a timeout either during paths enumeration, or due to

STP limits.
For each produced test case, KLEE builds a file named

testX.ktest (X being the test case number) containing the

chosen values for symbolic variables activing a given path.

Symbolic inputs can be displayed using the KLEE’s ktest-tool
command. Additionally, KLEE produces a file .early when

a timeout is raised and a file called testX.user.err for

each test case X violating an assertion. Thus, we can conclude

on the robustness of an application depending on the presence

or the absence of these files, as shown Table IV.

Attack .ktest files
without a .user.err associated file

Inconclusive a .early file without attack
Robust no .early file and every .ktest file

associated with a .user.err file

TABLE IV
KLEE VERDICTS ATTACHED TO A GIVEN DRIVER

As pointed out in section III-A, the mutation strategy

Comp succeeds (i.e., reaches a block or not), only if the

execution terminates normally. Then, some executions can

diverge (looping forever or with an unpredictable behaviour

due to an execution error). Effect of execution errors, due

to an erroneous program or provoked by a fault injection, is

not addressed here. Nevertheless, thanks to KLEE, we can

identify attacks raising an execution error: KLEE produces a

particular error file depending on the error type, for instance

a testX.ptr.err file for a pointer error. Such attacks are

met in the example of section V-C.
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Number of without with conditioned
fault injections any constraints on inputs inputs

fault ==0 1 0

fault ==1 x 1
fault ==2 x 1
fault >= 3 x 3

TABLE V
NUMBER OF POSSIBLE ATTACKS FOR VERIFY

C. Robustness evaluation for the function Verify

We make two experiments using the mutant

VerifyMutComp.ll. Results are presented Table V.

In the first experiment (column 2 of Table V) we use a driver

targeting 0 fault without any constraints on inputs, in order to

verify for which inputs the implementation is unsecure (here

when the attacker knows the right pin).

During the second experiment (column 3 of Table V) we

produce 4 drivers, instantiating the klee_assume with the

expected values of fault (0, 1, 2 and ≥ 3) and conditioned

inputs as stated on Listing 5. KLEE obviously supplies an

exhaustive coverage of all paths in a very negligible time.

This naive implementation of Verify presents one obvious

1-shot weakness (see Example 4.1). The 2-shots attack consists

in forcing the internal condition buffer[1]!=pin[1] and

then exiting the loop. Attacks with fault >=3 correspond

to forcing 2 or 3 times the internal condition and then the loop

exit, or to forcing 4 times the internal condition (example 4.2).

Example 4.1: A 1-shot attack scenario.

The attack column 3 line 3 consists in circumventing the

loop execution by the following sequence of fault injection:

<bb4:bb1/bb5>.

Example 4.2: A 4-shots attack scenario.

One possible 4-shots attack consists in the sequence

of fault injections <bb1:bb2/bb3, bb1:bb2/bb3,
bb1:bb2/bb3, bb1:bb2/bb3>, meaning that a fault is

injected four times on node bb1 to hijack the flow from bb2
to bb3. Input value produced by KLEE for buffer is 0000.

V. EXPERIMENTS

A. Filtering Attacks

When dealing with non trivial examples, the number of

attacks found may combinatorially increase with the number

of injected faults, in particular due to the fact that we consider

volatile fault injections that can occur several times or at dif-

ferent locations of the execution. An obvious strategy consists

in first examining attacks with the smaller number of fault

injections. We propose here another complementary criterion,

taking into account program locations where faults should be

injected (physical realization of a given fault injection could

be more or less practicable). For a given attack a, seen as

an execution trace, we denote as Faults (a) the multi-set of

program locations where faults have been effectively injected.

Definition 5.1 defines a preorder relation between attacks.

Definition 5.1: A preorder relation 
 between attacks.

a1 
 a2 ≡ Faults (a1) ⊆ Faults (a2) (multi-set inclusion)

Number of All detected attacks With preorder filtering

fault ==0 0 0

fault ==1 1 1
fault ==2 1 0

fault >= 3 3 1

TABLE VI
ATTACKS FOR VERIFY AFTER SELECTION

Due to the fact that some attacks could diverge, we apply

this order only on attacks terminating normally. In this case we

first select the minimal elements with respect to the relation


. We give in Table VI the subset of attacks that fulfils our

selection criterion for the function Verify. Only attacks of

examples 4.1 and 4.2 are selected. Unselected attacks consist

in mutating the internal condition one, two or three times and

then forcing the loop exit: they are redundant with attack 4.1

in which the loop exit is directly forced. They include the set

of fault injection locations of attack 4.1, plus some other ones.

The proposed filtering criterion should be easely adapted to

take into account the difficulty of fault injection, depending

on the program location where it takes place. In practice,

one difficulty is to control physical fault injection in time,

i.e, when a given instruction is in progress (ongoing). To

do that, execution traces are analyzed, using observable side

channels such as power traces (for instance a peak due to a

cryptographic calculus) [9]. Therefore, injecting a fault at a

given instruction also depends on the preceding instruction.

Definition 5.1 should be refined in order to take into account

observable execution locations.

B. The Lazart Tool Suite

The cfg coloring process is implemented in a Java stan-

dalone tool, according to section II, and is no more detailed

here. The mutation production and robustness evaluation pro-

cesses consist in the following steps:

1) LLVM compilation (using llvm-gcc or clang)

2) Mutation generation (the Wolverine tool)

3) Symbolic analysis (using KLEE)

4) Attack filtering (an home-made script)

The structure of this tool suite is described Fig. 6. The main
and the target modules are LLVM bytecode files respectively

containing the main and the function targeted by the fault

injection. The fault model and the mutation strategy precise

which faults should be injected and where (the name of the

targeted function and the set of mutations to apply on each

block). Optionally a faults number limit l specifies a stopping

criterion for the symbolic analysis. We now describe the tasks

flow of the Lazart tool suite.

1) Mutant generation: Wolverine takes a mutation strategy

as input and automatically modifies the LLVM bytecode in

order to apply the corresponding mutation patterns. It also

produces a KLEE compatible driver. Wolverine was built to

be extensible to some other types of fault, through its strategy

parameter.
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Fig. 6. The tool structure

2) Robustness evaluation: Then we use LLVM-LD, a linker,

which allows to combine several LLVM modules in a single

application. The resulting file is given to KLEE which pro-

duces test cases as described section IV.

3) Running tests: Test cases obtained from KLEE can

be executed using the native code supplied by LLVM-LD,

a testX.kest file and the libkleeRuntest library,

linking symbolic variables with their effective values.

4) Attack filter criterion: Attack execution traces are used

to implement the preorder relation between attacks (see section

V-A). Wolverine puts a printf call in the code each time a

fault is injected in order to log the source and the target blocks

of the control flow hijack. Then, after their execution, attacks

can be compared and classified.

C. Taking into account countermeasures

We now apply the Lazart approach on a more secured

implementation of the function Verify (inspired from [14]

and given Listing 6) in order to evaluate how countermeasures

are taken into account. Countermeasures introduced here are

the following ones:

• a backup of triesLeft is introduced

(triesLeftBackup) and compared with a copy

of triesLeft (the local variable t1 that will be stored

in RAM). If this copy and the backup value differ an

attack is detected (lines 11, 16 and 28)

• a step counter ensuring that the loop is really executed 4

times (incremented into the loop and tested at the end of

block bb12, line 31)

• a redundant test on the value of equal after the loop, in

order to detect a test inversion (blocks bb9 and bb10,

lines 23 and 25).

We now combine two attack objectives: in Fig. 7(a) we want

to reach bb12 (forcing the execution of authenticated=1
as before) and in Fig. 7(b) we want not to reach the block CM
(corresponding to the detection of an attack by a countermea-

sure). We obtain the following mutation directives:

Mandatory mutations:
entry: CM/bb, bb: bb1/bb2,
bb2: CM/bb3, <bb9: bb15/bb10,
bb10: CM/bb11, bb11: CM/bb12,
bb12: bb14/bb13

Optional mutations:
bb8: bb4/bb9, bb8: bb9/bb4,
bb4: bb5/bb6, bb4: bb6/bb5

�����������������������	�����
��
���



�����
� �

���

���
� �

�����

����

��	�
� �

����

�
�����

����
� �

����
� �

����
� �

�� � ����

����

�����
� �

��� �
� �

�����
� �

�����

���	�
� �

�����

�����

���������
�����������������������	�


������
 �

���

���
 �

�����

����

����
 �

����

�������

����
 �

����
 �

����
 �

�� � ����

����

�����
 �

��� �
 �

�����
 �

�����

�����
 �

�����

�����

Fig. 7. Colored CFGs with goals bb12 and CM

Considering conditioned inputs as before (see Listing 5),

Table VII shows that we obtain a path leading to an error

when we force the execution of the loop after 4 steps (an

out of bound error is detected by KLEE). This path is

denoted by 1∗ in Table VII and requires to be examined

as a potential attack, depending on the execution platform.

We now have two 2-shots attacks (line 4 of Table VII). The

first one corresponds to the injection of faults successively

on the two conditions equal==BOOL_TRUE (bb9) and

equal!=BOOL_TRUE (bb10). The second one corresponds

to the the 1-shot attack of example 4.1 that now requires two

shots: one to circumvent the loop execution and another one

to hijack the countermeasure relative to the the step counter

value (line 31).

Number of All detected attacks With preorder filtering
fault ==0 0 0
fault ==1 1∗ 1∗
fault ==2 2 2
fault ==3 5 0
fault ==4 11 1
fault >=5 13 0

TABLE VII
RESULTS FOR SECURED VERIFY

This example also shows that we can relate countermea-

sures and fault injections. Countermeasures can be seen as

blocks directly leading to a state detecting an attack (here the

block CM). For instance the orange nodes of Fig. 7(b), i.e.
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1 s i g n e d char t r i e s L e f t = maxTr ies ;
2 s i g n e d char t r i e s L e f t B a c k u p = −maxTr ies ;
3BYTE e q u a l = BOOL TRUE;
4BYTE a u t h e n t i c a t e d = 0 ;
5BYTE p i n [ 4 ] ={ ( char ) 0 , ( char ) 1 , char ( 2 ) , char ( 3 ) } ;
6BYTE V e r i f y ( char b u f f e r [ 4 ] ) {
7 i n t i ;
8 / / BLOCK e n t r y
9 i n t s t e p C o u n t e r = INITIAL VALUE ;

10 s h o r t char t 1 = t r i e s L e f t ;
11 i f ( t 1 != −t r i e s L e f t B a c k u p ) goto CM ;
12 / / BLOCK bb
13 i f ( t r i e s L e f t <= 0) re turn EXIT FAILURE ;
14 / / BLOCK bb2
15 t1−−; t r i e s L e f t = t 1 ; t r i e s L e f t B a c k u p ++;
16 i f ( t r i e s L e f t != −t r i e s L e f t B a c k u p ) goto CM ;
17 / / BLOCK bb3
18 e q u a l = BOOL TRUE;
19 f o r ( i = 0 ; i < 4 ; i ++)
20 { e q u a l = e q u a l &(( b u f f e r [ i ] ! = p i n [ i ] ) ?BOOL FALSE :

BOOL TRUE) ;
21 s t e p C o u n t e r ++; } ;
22 / / BLOCK bb9
23 i f ( e q u a l == BOOL TRUE) {
24 / / BLOCK 10
25 i f ( e q u a l != BOOL TRUE) goto CM ;
26 / / BLOCK bb11
27 t r i e s L e f t = maxTr ies ; t r i e s L e f t B a c k u p = −maxTr ies ;
28 i f ( t r i e s L e f t != −t r i e s L e f t B a c k u p ) goto CM ;
29 / / BLOCK bb12
30 a u t h e n t i c a t e d = 1 ;
31 i f ( s t e p C o u n t e r == INITIAL VALUE + 4)
32 / / BLOCK bb13
33 re turn EXIT SUCCESS ; }
34 / / BLOCK bb14 : e l s e p a r t o f b l o c k bb12
35 / / f o l l o w e d by b l o c k CM
36 e l s e { / / Comparison f a i l e d
37 a u t h e n t i c a t e d = 0 ;
38 i f ( s t e p C o u n t e r == INITIAL VALUE + 4)
39 / / BLOCK bb16
40 re turn EXIT FAILURE ; }
41 / / BLOCK CM
42 CM : p r i n t f ( ” Card b l o c k e d .\ n ” ) ;
43 re turn EXIT FAILURE ;
44}

Listing 6
A SECURED IMPLEMENTATION OF VERIFY

entry, bb2, bb10, bb11, bb12, reaching block CM
can be identified as containing countermeasures. Generated

attacks only imply nodes bb10 and bb12. We can conclude

that countermeasures in entry, bb2 and bb11 are not

related to fault injections by test inversion for the considered

inputs (TryLeft being set to 3) . Thus, using reachability or

unreachability objectives, we are able to determine if a given

countermeasure can be raised and for which inputs.

VI. CONCLUSION

A. Our Contribution

In the context of smart card application certification, we

propose an innovative approach allowing us to establish com-

mensurable verdicts (existence or absence of attacks relatively

to a set of possible inputs), unlike other approaches using

an empirical testing phase to check if some mutants can be

exercised by some inputs, and if such executions are really

dangerous ones (i.e. not detected by countermeasures). Fur-

thermore, as shown in section V-C, we are able to evaluate how

embedded countermeasures are related to attack detections. To

the best of our knowledge, we are the first to built mutant

taking into consideration multiple shots fault injection during

a run, according to the next state-of-the art in term of laser

attacks.

The proposed approach is supported by an effective tool

suite, as described section V-B4. It is based on a robust and

efficient symbolic test generator, used in industrial contexts

[20], [21]. LLVM appears to be a suitable code level both to

produce mutants and to take into account optimisations, thanks

to the analysis and transform passes offered by the LLVM

platform [22]. Thus, several level of optimised codes can be

considered, bridging the gap between high level attacks and

effective attacks, made at the binary level.

Regarding mutation, as pointed out in [23], [24], combin-

ing mutation production and symbolic test generation offers

several advantages. Firstly, we conjointly address the problem

of building mutants and how they can be activated. Secondly,

thanks to the efficiency of the KLEE path-coverage strategy,

we are able to master the combinatorial explosion inherent

to multiple and volatile fault injections, in combining at best

inputs and faults injection and in pruning as soon as possi-

ble paths violating stated assertions relative to the expected

number of faults.

To complete the evaluation of the Lazart approach, we

experimented it on a cryptographic detector for ssh, execut-

ing some checks allowing to verify the integrity of pack-

ets (see [25] for attacks on ssh packets). We tested the

detect_attack function provided in OpenSSH 6.2 [26]

(70 lines of C code and a cfg with 32 basic blocks). Our

objective was to hijack the function verdict (i.e, to report as

correct a corrupted packet). The cfg coloring step produced

15 mutations. We ran Klee looking for possible attacks in

less than 3 fault injections, with a symbolic 1024 size buffer.

We found a 1-shot attack (inverting a check about the packet

length), and a 3-shots attack (redundant with the previous

one, according to definition 5.1). Although the code structure

is similar to the one of the Verify example, this example

involves more complex arithmetic computations, a large sym-

bolic buffer and much larger iteration depths. However, the

results were produced in a few minutes.

B. Related work

Fault injection by laser attacks is a hot topic in the domain

of smartcard vulnerability analysis (and generally mobile

devices). Thus, several recent works are related to this subject.

For instance Lanet et al. [15], [11] produce mutants for

smart card fault injection for Java card applications. Based

on a fault model at the byte level [5], they produce a set of

mutants by mutating one byte code operation per mutant. This

way, they encompass a large set of fault injection impacts,

for one shot laser attacks. For dangerousness detection, they

propose a set of syntactic heuristics to conduct a risk anal-

ysis for each mutant. Furthermore, they use the annotation

facility offered by Java Card 3.0 to annote applications with

declared countermeasures. Their impacts are then measured by

a symbolic execution interpreting annotations. This approach

mainly targets Java Card developers in offering a framework to

evaluate countermeasures accuracy, according to a given fault

221



model. It differs from Lazart in several points: only single

permanent fault injections are considered and countermeasures

must be explicitly declared. On the contrary they consider a

more general fault model.

In [7] Berthomé et al. produce C mutants corresponding to

a single permanent fault injection, also targeting control flow

hijacking. There are some similarities with our approach, in

the sense they try to bridge the gap between the assembly code

and the source code by modelling and simulating the effect of

physical attacks directly at high level. One interesting aspect

of [7], [12] is the systematic study of attacks targeting control

flow shifting and how mutant for NOP and JUMP attacks can

be systematically produced. Mutants are to be used against a

low level attack platform and predefined test scenarii in order

to verify that abstract mutants are covered by concrete fault

injections. In contrast, Lazart approach aims to exploit abstract

models to produce a robustness verdict and existing attacks.

In a very recent work [8], [27], the author focus on fault

injection consisting in modifying memory values (a classical

attack for cryptographic algorithms), aiming to formally prove

the robustness of a given application. Starting from a C

code, the author produce mutants for a single fault injection,

adding an extra parameter similar to the one introduced in our

optional mutation operator. This parameter is used to logically

express a robustness property stating that if a fault has been

introduced, the program stops in error (a countermeasure state

for instance). Robustness property is established using the

weakest precondition plugin Jessy of the Frama-C platform

[28], [29]. The use of a symbolic test case generator in Lazart,

contrary to a theorem-proving approach, allows us either to

establish the robustness or to produce attacks. Furthermore,

mixing concrete and symbolic computation steps allows us

to automatically treat applications with complex arithmetic

computation (such as shift and hash function), as met in the

ssh experimentation. It is not sure that such applications can

be easely treated by a theorem-proving approach.

C. Perspectives

In parallel with experimentations, we are currently develop-

ing this work following two main axes.

First we are studying how to extend our approach to

other forms of attacks on control flow hijacking such as

circumventing or forcing some calls, or forcing some block

execution depending on the code layout. This attack objective

can be realized, for instance, in injecting NOP instruction or

in changing the destination address of JUMP, as proposed in

[7]. For these attack objectives, the Lazart approach appears

to be extensible in adding or modifying some edges in the

control flow graphs. We are currently extending the coloring

algorithm to take into account inter-procedural analysis.

Secondly we are studying how to combine some aspects of

the Lazart approach (in particular graph coloring and mutation

strategies) with a (brute force) dynamic testing approach at

the byte level, in order to guide fault injections at execution

time. Nevertheless, static analysis and cfg production are more

challenging when low level codes are concerned [30].
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