P.Lafourcade, G.Marcadet

Session 3

Exercise 1 (Properties of secure hash function)

We recall the Merkle-Damgård construction in Figure 1.

- 1. For a cryptographic hash function, recall the definition of the preimage resistance, second preimage resistance, and of the collision resistance.
- 2. Let h be a hash function. Show that if h is collision-resistant then h is second-preimage resistant. In the same way, show that if h is second-preimage resistant, then h is preimage resistant.

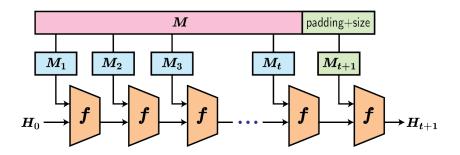


Figure 1: Merkle-Damgård construction.

Exercise 2 (Collisions in CBC Mode)

We consider the encryption of an *n*-block message $x = x_1 || x_2 || \dots || x_n$ by a block cipher E in CBC mode. We denote by $y = y_1 || y_2 || \dots || y_n$ the *n*-block ciphertext produced by the CBC encryption mode. Show how to extract information about the plaintext if we get a collision, i.e., if $y_i = y_j$ with $i \neq j$.

Exercise 3 (CBC ciphertext stealing)

This exercise presents an elegant technique to avoid increasing the length of the CBC encryption of a message whose length L is not a multiple of the block size n of the block cipher, as long as L > n.

Let $M = m_1 || \dots || m_\ell$ be a message of length $L = (\ell - 1) \cdot n + r$, where $r = |m_\ell| < n$. Recall that the CBC encryption of M with the block cipher \mathcal{E} and the key k is $C = c_0 || \dots || c_\ell$, where c_0 is a random initial value and $c_i = \mathcal{E}_k(m_i \oplus c_{i-1})$ for i > 0.

- 1. What is the bit length of C, assuming that m_{ℓ} is first padded to an n-bit block?
- 2. Write the decryption equation for one block (that is, explain how to compute m_i in function of c_i , k, and possibly additional quantities).

Let us now rewrite the penultimate ciphertext $c_{\ell-1} = \mathcal{E}_k(m_{\ell-1} \oplus c_{\ell-2})$ as $c'_{\ell}||P|$ where c'_{ℓ} is an r-bit long. We also introduce $m'_{\ell} = m_{\ell}||0^{n-r}|$ (that is padding with n-r zeros). Finally, let $c'_{\ell-1} = \mathcal{E}_k(m'_{\ell} \oplus (c'_{\ell}||p))$.

- 3. What is the bit length of $C' = c_0 || \dots || c_{\ell-2} || c'_{\ell-1} || c'_{\ell} ?$
- 4. Explain how to recover m_{ℓ} and P from the decryption of $c'_{\ell-1}$, and from there $m_{\ell-1}$ from the one of c'_{ℓ} .

Exercise 4 (Davies-Meyer fixed-points)

In this exercise, we will see one reason why *Merkle-Damgård strengthening* (adding the length of a message in its padding) is necessary in some practical hash function constructions.

We recall that a compression function $f:\{0,1\}^n\times\{0,1\}^b\to\{0,1\}^n$ can be built from a block cipher $\mathcal{E}:\{0,1\}^b\times\{0,1\}^n\to\{0,1\}^n$ using the "Davies-Meyer" construction as $f(h,m)=\mathcal{E}(m,h)\oplus h$.

- 1. Considering the feed-forward structure of Davies-Meyer, under what conditions would you obtain a fixed-point for such a compression function? (i.e., a pair (h, m) such that f(h, m) = h)
- 2. Show how to compute the (unique) fixed-point of f(.,m) for a fixed m. Given h, is it easy to find m such that it is a fixed-point, if \mathcal{E} is an ideal block cipher (i.e., random permutations)?
- 3. A semi-freestart collision attack for a Merkle-Damgård hash function H is a triple (h, m, m') s.t. $H_h(m) = H_h(m')$, where H_h denotes the function H with its original IV replaced by h. Show how to use a fixed-point to efficiently mount such an attack for Davies-Meyer + Merkle-Damgård, when strengthening is not used.

Note: Fixed-points of the compression function can be useful to create the expandable messages used in second preimage attacks on Merkle-Damgård.

Exercise 5 (DES)

Let E be the encryption algorithm of the DES cryptosystem. Prove that we have:

$$E_K(P) = C \Leftrightarrow E_{\bar{K}}(\bar{P}) = \bar{C}$$
,

where P is a plaintext, K is a secret key, C a ciphertext, and \bar{X} denotes the binary complementary of X.

Exercise 6 (LFSR)

- 1. We consider the LFSR of length $\ell = 3$ with $(c_1, c_2, c_3) = (1, 0, 1)$, initialized to $(z_0, z_1, z_2) = (1, 0, 0)$. Represent the LFSR state for $1 \le 0 \le 7$. Give the output of this LFSR and its period.
- 2. Why are outputs of LFSR periodic? What is the biggest period made by an LFSR of length ℓ ?