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Exercise 1 (Properties of secure hash function)
We recall the Merkle-Damg̊ard construction in Figure 1.

1. For a cryptographic hash function, recall the definition of the preimage resistance, second preim-
age resistance, and of the collision resistance.

2. Let h be a hash function. Show that if h is collision-resistant then h is second-preimage resistant.
In the same way, show that if h is second-preimage resistant, then h is preimage resistant.

Figure 1: Merkle-Damg̊ard construction.

Exercise 2 (Collisions in CBC Mode)
We consider the encryption of an n-block message x = x1∥x2∥ . . . ∥xn by a block cipher E in CBC
mode. We denote by y = y1∥y2∥ . . . ∥yn the n-block ciphertext produced by the CBC encryption mode.
Show how to extract information about the plaintext if we get a collision, i.e., if yi = yj with i ̸= j.

Exercise 3 (CBC ciphertext stealing)
This exercise presents an elegant technique to avoid increasing the length of the CBC encryption of a
message whose length L is not a multiple of the block size n of the block cipher, as long as L > n.

Let M = m1|| . . . ||mℓ be a message of length L = (ℓ − 1).n + r, where r = |mℓ| < n. Recall that
the CBC encryption of M with the block cipher E and the key k is C = c0|| . . . ||cℓ, where c0 is a
random initial value and ci = Ek(mi ⊕ ci−1) for i > 0.

1. What is the bit length of C, assuming that mℓ is first padded to an n-bit block?

2. Write the decryption equation for one block (that is, explain how to compute mi in function of
ci, k, and possibly additional quantities).

Let us now rewrite the penultimate ciphertext cℓ−1 = Ek(mℓ−1 ⊕ cℓ−2) as c′ℓ||P where c′ℓ is an
r-bit long. We also introduce m′

ℓ = mℓ||0n−r (that is padding with n − r zeros). Finally, let
c′ℓ−1 = Ek(m′

ℓ ⊕ (c′ℓ||p)).
3. What is the bit length of C ′ = c0|| . . . ||cℓ−2||c′ℓ−1||c′ℓ ?
4. Explain how to recover mℓ and P from the decryption of c′ℓ−1, and from there mℓ−1 from the

one of c′ℓ.

Exercise 4 (Davies-Meyer fixed-points)
In this exercise, we will see one reason why Merkle-Damg̊ard strengthening (adding the length of a
message in its padding) is necessary in some practical hash function constructions.

We recall that a compression function f : {0, 1}n × {0, 1}b → {0, 1}n can be built from a block
cipher E : {0, 1}b×{0, 1}n → {0, 1}n using the “Davies-Meyer” construction as f(h,m) = E(m,h)⊕h.
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1. Considering the feed-forward structure of Davies-Meyer, under what conditions would you obtain
a fixed-point for such a compression function? (i.e., a pair (h,m) such that f(h,m) = h)

2. Show how to compute the (unique) fixed-point of f(.,m) for a fixed m. Given h, is it easy to
find m such that it is a fixed-point, if E is an ideal block cipher (i.e., random permutations)?

3. A semi-freestart collision attack for a Merkle-Damg̊ard hash function H is a triple (h,m,m′) s.t.
Hh(m) = Hh(m

′), whereHh denotes the functionH with its original IV replaced by h. Show how
to use a fixed-point to efficiently mount such an attack for Davies-Meyer + Merkle-Damg̊ard,
when strengthening is not used.

Note: Fixed-points of the compression function can be useful to create the expandable messages used
in second preimage attacks on Merkle-Damg̊ard.

Exercise 5 (DES)
Let E be the encryption algorithm of the DES cryptosystem. Prove that we have:

EK(P ) = C ⇔ EK̄(P̄ ) = C̄ ,

where P is a plaintext, K is a secret key, C a ciphertext, and X̄ denotes the binary complementary
of X.

Exercise 6 (LFSR)
1. We consider the LFSR of length ℓ = 3 with (c1, c2, c3) = (1, 0, 1), initialized to (z0, z1, z2) =

(1, 0, 0). Represent the LFSR state for 1 ≤ 0 ≤ 7. Give the output of this LFSR and its period.

2. Why are outputs of LFSR periodic? What is the biggest period made by an LFSR of length ℓ?
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