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Data Encryption Standard, (call in 1973)

Lucifer designed in 1971 by Horst Feistel at IBM.

▶ Block cipher, encrypting 64-bit blocks
Uses 56 bit keys, expressed as 64 bit numbers (8 bits parity
checking)

DESP

K

C
64

56

▶ First cryptographic standard.
▶ 1977 US federal standard (US Bureau of Standards)
▶ 1981 ANSI private sector standard
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DES — overall form

▶ 16 rounds Feistel cipher + key-scheduler.

▶ Key scheduling algorithm derives subkeys Ki

from original key K .

▶ Initial permutation at start, and inverse
permutation at end.

▶ f consists of two permutations and an
s-box substitution.

Li+1 = Ri and Ri+1 = Li ⊕ f (Ri ,Ki )
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DES — overall form
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DES — Subkey generation

First, produce two subkeys K1 and K2:

K1 = P8(LS1(P10(key)))

K2 = P8(LS2(LS1(P10(key))))

where P8, P10, LS1 and LS2 are bit substitution operators.

▶ P10 : 10 bits to 10 bits
3 5 2 7 4 10 1 9 8 6

▶ P8 : 10 bits to 8 bits
6 3 7 4 8 5 10 9

▶ LS1 (”left shift 1 bit” on 5 bit words) : 10 bits to 10 bits
2 3 4 5 1 7 8 9 10 6

▶ LS2 (”left shift 2 bit” on 5 bit words) : 10 bits to 10 bits
3 4 5 1 2 8 9 10 6 7
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DES — Before round subkey

Each half of the key schedule state is rotated left by a number of
places.
# Rds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Left 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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DES — 1 round

L i−1 R i−1

P−Box Permutation

Left Shift Left Shift

S−Box Substitution

Compression Permutation

Expansion Permutation

RL i i

32 48

28

i−1K

K i

(b1b6, b2b3b4b5), Cj represents the binary value in the row b1b6
and column b2b3b4b5 of the Sj box.
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S-Boxes: S1, S2, S3, S4

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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S-Boxes: S5, S6, S7 and S8

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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Decryption DES

Use inverse sequence key.

▶ IP(C ) = IP(IP−1(R16||L16)
▶ L′0 = R16 and R ′

0 = L16

L′1 = R ′
0 = L16 = R15

R ′
1 = L′0 ⊕ f (R ′

0,K
′
0)

R ′
1 = R16 ⊕ f (L16,K15)

R ′
1 = R16 ⊕ f (R15,K15)

R ′
1 = L15

Recall Li+1 = Ri and Ri+1 = Li ⊕ f (Ri ,Ki )
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Property of DES

DES exhibits the complementation property, namely that

EK (P) = C ⇔ EK (P) = C

where x is the bitwise complement of x . EK denotes encryption
with key K . Then P and C denote plaintext and ciphertext blocks
respectively.
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Anomalies of DES

▶ Existence of 6 pairs of semi-weak keys: Ek1(Ek2(x)) = x .
▶ 0x011F011F010E010E and 0x1F011F010E010E01
▶ 0x01E001E001F101F1 and 0xE001E001F101F101
▶ 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
▶ 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
▶ 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
▶ 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1
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Security of DES

▶ No security proofs or reductions known
▶ Main attack: exhaustive search

▶ 7 hours with 1 million dollar computer (in 1993).
▶ 7 days with $10,000 FPGA-based machine (in 2006).

▶ Mathematical attacks
▶ Not know yet.
▶ But it is possible to reduce key space from 256 to 243 using

(linear) cryptanalysis.
▶ To break the full 16 rounds, differential cryptanalysis requires

247 chosen plaintexts (Eli Biham and Adi Shamir).
▶ Linear cryptanalysis needs 243 known plaintexts (Matsui, 1993)
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Triple DES

▶ Use three stages of encryption instead of two.

▶ Compatibility is maintained with standard DES (K2 = K1).

▶ No known practical attack
⇒ brute-force search with 2112 operations.
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Advanced Encryption Standard

▶ Block cipher, approved for use by US Government in 2002.
Very popular standard, designed by two Belgian
cryptographers. Joan Daemen et Vincent Rijmen

▶ Block-size = 128 bits, Key size = 128, 192, or 256 bits.

▶ Uses various substitutions and transpositions + key
scheduling, in different rounds.

▶ Algorithm believed secure. Only attacks are based on side
channel analysis, i.e., attacking implementations that
inadvertently leak information about the key.

Key Size Round Number

128 10

192 12

256 14
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AES: High-level cipher algorithm

▶ KeyExpansion using Rijndael’s key schedule

▶ Initial Round: AddRoundKey
▶ Rounds:

1. SubBytes: a non-linear substitution step where each byte is
replaced with another according to a lookup table.

2. ShiftRows: a transposition step where each row of the state is
shifted cyclically a certain number of steps.

3. MixColumns: a mixing operation which operates on the
columns of the state, combining the four bytes in each column

4. AddRoundKey: each byte of the state is combined with the
round key; each round key is derived from the cipher key using
a key schedule.

▶ Final Round (no MixColumns)

1. SubBytes
2. ShiftRows
3. AddRoundKey
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AES: SubBytes

SubBytes: a non-linear substitution step where each byte is
replaced with another according to a lookup table.
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AES: ShiftRows

ShiftRows: a transposition step where each row of the state is
shifted cyclically a certain number of steps.
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AES: MixColumns

MixColumns: a mixing operation which operates on the columns of
the state, combining the four bytes in each column
C (x) = 3x3 + x2 + x + 2Modulo : x4 + 1
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AES: AddRoundKey

AddRoundKey: each byte of the state is combined with the round
key; each round key is derived from the cipher key using a key
schedule.
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AES: Attacks
Not yet efficient Cryptanalysis on complete version, but Niels
Ferguson proposed in 2000 an attack on a version with 7 rounds
and 128 bits key.
But
Marine Minier, Raphael C.-W. Phan, Benjamin Pousse:
Distinguishers for Ciphers and Known Key Attack against Rijndael
with Large Blocks. AFRICACRYPT 2009: 60-76
Samuel Galice, Marine Minier: Improving Integral Attacks Against
Rijndael-256 Up to 9 Rounds. AFRICACRYPT 2008: 1-15
Side channel attacks using on optimized version (2005)

▶ Timing.

▶ Cache Default.

▶ Electric Consumptions.

▶ ..

There exists algebraic attacks ...
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IDEA: International Data Encryption Algorithm 1991

Designed by Xuejia Lai and James Massey of ETH Zurich, used in
Pretty Good Privacy (PGP) v2.0
8.5 rounds
IDEA uses a message of 64-bit blocks and a 128-bit key,

Key schedule

▶ K1 to K6 for the first round are taken directly as the first 6
consecutive blocks of 16 bits.

▶ This means that only 96 of the 128 bits are used in each
round.

▶ 128 bit key undergoes a 25 bit rotation to the left, i.e. the
LSB becomes the 25th LSB.
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IDEA

Notation
▶ Bitwise eXclusive OR (denoted with a blue ⊕).

▶ Addition modulo 216 (denoted with a green ⊞).

▶ Multiplication modulo 216+1, where the all-zero word
(0x0000) is interpreted as 216 (denoted by a red ⊙).
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IDEA
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IDEA

After the eight rounds comes a final ”half round”.

The best attack which applies to all keys can break IDEA reduced
to 6 rounds (the full IDEA cipher uses 8.5 rounds) Biham, E. and
Dunkelman, O. and Keller, N. ”A New Attack on 6-Round IDEA”.

• Blowfish, invented by Schneier to be fast, compact, easy to
implement, and to have variable key length (up to 448 bits),
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SIMON

Proposed by NSA in June 2013.

Block size (bits) Key size (bits) Rounds

32 64 32

48
72 36
96 36

64
96 42
128 44

96
96 52
144 54

128
128 68
192 69
256 72
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One round of SIMON

xi yi

S8

S1

S2

ki

xi+1 yi+1

S8 = shift left by 8 bits
S2 = shift left by 2 bits
S1 = shift left by 1 bits
Using AND bitwise ⊙ and XOR ⊕.
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SIMON key schedule, c = 2n − 4

ki+m =


c ⊕ (zj)i ⊕ ki ⊕

(
I ⊕ S−1

) (
S−3ki+1

)
, m = 2

c ⊕ (zj)i ⊕ ki ⊕
(
I ⊕ S−1

) (
S−3ki+2

)
, m = 3

c ⊕ (zj)i ⊕ ki ⊕
(
I ⊕ S−1

) (
S−3ki+3 ⊕ ki+1

)
, m = 4

(zj)i is defined by sequence of bits for each parameters.
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Others Symmetric Encryption Schemes

Blowfish, Serpent, Twofish, 3-Way, ABC, Akelarre, Anubis, ARIA,
BaseKing, BassOmatic, BATON, BEAR and LION, C2, Camellia,
CAST-128, CAST-256, CIKS-1, CIPHERUNICORN-A,
CIPHERUNICORN-E, CLEFIA, CMEA, Cobra, COCONUT98,
Crab, CRYPTON, CS-Cipher, DEAL, DES-X, DFC, E2, FEAL,
FEA-M, FROG, G-DES, GOST, Grand Cru, Hasty Pudding Cipher,
Hierocrypt, ICE, IDEA, IDEA NXT, Intel Cascade Cipher, Iraqi,
KASUMI, KeeLoq, KHAZAD, Khufu and Khafre, KN-Cipher,
Ladder-DES, Libelle, LOKI97, LOKI89/91, Lucifer, M6, M8,
MacGuffin, Madryga, MAGENTA, MARS, Mercy, MESH,
MISTY1, MMB, MULTI2, MultiSwap, New Data Seal, NewDES,
Nimbus, NOEKEON, NUSH, Q, RC2, RC5, RC6, REDOC, Red
Pike, S-1, SAFER, SAVILLE, SC2000, SEED, SHACAL, SHARK,
Skipjack, SMS4, Spectr-H64, Square, SXAL/MBAL, TEA, Treyfer,
UES, Xenon, xmx, XTEA, XXTEA, Zodiac.
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Meet-in-the-middle Attack

Double DES with k1 and k2
C = ENCk2(ENCk1(P))
P = DECk1(DECk2(C ))
Brute force attaque : 2k1 ∗ 2k2 = 2k1+k2

One Observation
DECk2(C ) = DECk2(ENCk2 [ENCk1(P)])

= ENCk1(P)

MITM Attack
▶ ENCk1(P) for all values of k1
▶ DECk2(C ) for all possible values of k2,

for a total of 2|k1| + 2|k2|
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Electronic Book Code (ECB)

Each block of the same length is encrypted separately using the
same key K . In this mode, only the block in which the flipped bit
is contained is changed. Other blocks are not affected.
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ECB Encryption Algorithm

algorithm EK (M)
if (|M| mod n ̸= 0 or |M| = 0) then return FAIL
Break M into n-bit blocks M[1] . . .M[m]
for i = 1 to m do C [i ] = EK (M[i ])
C = C [1] . . .C [m]
return C
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ECB Encryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

· · · · · · Enc

Pn

k

Cn
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ECB Decryption Algorithm

algorithm DK (C )
if (|C | mod n ̸= 0 or |C | = 0) then return FAIL
Break C into n-bit blocks C [1] . . .C [m]
for i = 1 to m do M[i ] = DK (C [i ])
M = M[1] . . .M[m]
return M
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ECB Decryption

Dec

C0

k

P0

Dec

C1

k

P1

Dec

C2

k

P2

· · · · · · Dec

Cn

k

Pn
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ECB vs Others
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Cipher-block chaining (CBC)

If the first block has index 1, the mathematical formula for CBC
encryption is

Ci = EK (Pi ⊕ Ci−1),C0 = IV

while the mathematical formula for CBC decryption is

Pi = DK (Ci )⊕ Ci−1,C0 = IV

CBC has been the most commonly used mode of operation.
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CBC Encryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

IV

· · · · · · Enc

Pn

k

Cn

· · · · · · Enc

Pn

k

Cn
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CBC Decryption

Dec

P0

k

C0

Dec

P1

k

C1

Dec

P2

k

C2

IV

· · · · · · Dec

Pn

k

Cn

· · · · · · Dec

Pn

k

Cn
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The cipher feedback (CFB)

A close relative of CBC:

Ci = EK (Ci−1)⊕ Pi

Pi = EK (Ci−1)⊕ Ci

C0 = IV

44 / 118



CFB Encryption

Enc

C0

k

P0

Enc

C1

k

P1

Enc

C2

k

P2

IV

· · · · · · Enc

Cn

k

Pn

45 / 118



CFB Decryption

Enc
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k
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Output feedback (OFB)

Because of the symmetry of the XOR operation, encryption and
decryption are exactly the same:

Ci = Pi ⊕ Oi

Pi = Ci ⊕ Oi

Oi = EK (Oi−1)

O0 = IV

47 / 118



OFB encryption

Enc
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OFB Decryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

IV

· · · · · · Enc

Pn

k

Cn
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Counter Mode (CTR)

C0 = IV

Ci = Pi ⊕ Ek(IV + i − 1)

Pi = Ci ⊕ Ek(IV + i − 1)
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GCM Galois/Counter Mode by D. McGrew and J. Viega
Counter0

Enck

Counter1

Enck

Counter2

Enck

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C )
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GCM
GF (2128) est défini par x128 + x7 + x2 + x + 1

Si =



Ai for i = 1, . . . ,m − 1

A∗
m ∥ 0128−v for i = m

Ci−m for i = m + 1, . . . ,m + n − 1

C ∗
n ∥ 0128−u for i = m + n

len(A) ∥ len(C ) for i = m + n + 1

where len(A) and len(C ) are the 64-bit representations of the bit
lengths of A and C , respectively, v = len(A) mod 128 is the bit
length of the final block of A, u = len(C ) mod 128 is the bit
length of the final block of C.

Xi =
i∑

j=1

Sj ·H i−j+1 =

{
0 for i = 0

(Xi−1 ⊕ Si ) · H for i = 1, . . . ,m + n + 1
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“Classifications” of Hash Functions

Unkeyed Hash function

▶ Modification Code Detection (MDC)

▶ Data integrity

▶ Fingerprints of messages

▶ Other applications

Keyed Hash function

▶ Message Authentication Code (MAC)

▶ Password Verification in uncrypted password-image files.

▶ Key confirmation or establishment

▶ Time-stamping

▶ Others applications
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Hash Functions

A hash function H takes as input a bit-string of any finite length
and returns a corresponding ’digest’ of fixed length.

h : {0, 1}∗ → {0, 1}n

H(Alice) =

Definition (Pre-image resistance (One-way) OWHF)

Given an output y , it is computationally infeasible to compute x
such that

h(x) = y
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Properties of hash functions

2nd Pre-image resistance (weak-collision resistant) CRHF

Given an input x , it is computationally infeasible to compute x ′

such that
h(x ′) = h(x)

Collision resistance (strong-collision resistant)

It is computationally infeasible to compute x and x ′ such that

h(x) = h(x ′)
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Basic construction of hash functions
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Basic construction of hash functions
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Basic construction of hash functions (Merkle-Damg̊ard)

f : {0, 1}m → {0, 1}n

1. Break the message x to hash in blocks of size m − n:

x = x1x2 . . . xt

2. Pad xt with zeros as necessary.

3. Define xt+1 as the binary representation of the bit length of x .

4. Iterate over the blocks:

H0 = 0n

Hi = f (Hi−1||xi )
h(x) = Ht+1
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Basic construction of hash functions

Theorem
If the compression function f is collision resistant, then the
obtained hash function h is collision resistant.
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Hash functions based on (MDC) block ciphers
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MD5 by Ron Rivest in 1991
For each 512-bit block of plaintext

Ai Bi Ci Di

≪ s

Fi

Ai+1 Bi+1 Ci+1 Di+1

Mi

Ki

Ki denotes a 32-bit constant, different for each operation Addition
denotes addition modulo 232.
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MD5 by Ron Rivest in 1991

There are 4 possible functions F
A different one is used in each round:

▶ F (B,C ,D) = (B ∧ C ) ∨ (¬B ∧ D)

▶ G (B,C ,D) = (B ∧ D) ∨ (C ∧ ¬D)

▶ H(B,C ,D) = B ⊕ C ⊕ D

▶ I (B,C ,D) = C ⊕ (B ∨ ¬D)
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MD5 Cryptanalysis
▶ In 1993, Den Boer and Bosselaers gave a ”pseudo-collision” two

different initialization vectors of compression function which
produce an identical digest.

▶ In 1996, Dobbertin announced a collision of the compression
function of MD5.

▶ 17 August 2004, collisions for the full MD5 by Xiaoyun Wang,
Dengguo Feng, Xuejia Lai, and Hongbo Yu.

▶ On 1 March 2005, Arjen Lenstra, Xiaoyun Wang, and Benne de
Weger demonstrated construction of two X.509 certificates with
different public keys and the same MD5 hash value.

▶ A few days later, Vlastimil Klima able to construct MD5 collisions
in a few hours on a single notebook computer.

▶ On 18 March 2006, Klima published an algorithm that can find a
collision within one minute on a single notebook computer, using a
method he calls tunneling.

▶ On 24 December 2010, Tao Xie and Dengguo Feng announced the
first published single-block (512 bit) MD5 collision.
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SHA-1

Ai Bi Ci Di Ei

≪ 5

≪
30

Fi

Ei+1Di+1Ci+1Bi+1Ai+1

Wi

Ki
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Collision for PDF

O R D E M P R O G R E S S
O

E

SHA1(TP/SHA1/a.pdf)=
a5a678701d8b2ab07c96d101b3331fb4992f0980

SHA1(TP/SHA1/b.pdf)=
a5a678701d8b2ab07c96d101b3331fb4992f0980
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List of Hash Functions

Algorithm Output size Internal state size Block size Length size Word size Collision
HAVAL 256/.../128 256 1024 64 32 Yes
MD2 128 384 128 No 8 Almost
MD4 128 128 512 64 32 Yes
MD5 128 128 512 64 32 Yes

PANAMA 256 8736 256 No 32 Yes
RadioGatún Arbitrarily long 58 words 3 words No 1-64 No
RIPEMD 128 128 512 64 32 Yes
RIPEMD 128/256 128/256 512 64 32 No
RIPEMD 160/320 160/320 512 64 32 No
SHA-0 160 160 512 64 32 Yes
SHA-1 160 160 512 64 32 With flaws

SHA-256/224 256/224 256 512 64 32 No
SHA-512/384 512/384 512 1024 128 64 No

Tiger(2) 192/160/128 192 512 64 64 No
WHIRLPOOL 512 512 512 256 8 No
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SHA-3 Zoo
64 Submissions, 54 selected,

1. * BLAKE Jean-Philippe Aumasson

2. Blue Midnight Wish Svein Johan Knapskog

3. CubeHash Daniel J. Bernstein preimage

4. ECHO Henri Gilbert

5. Fugue Charanjit S. Jutla

6. * Grøstl Lars R. Knudsen

7. Hamsi Özgül Küçk̈

8. * JH Hongjun Wu preimage

9. * Keccak The Keccak Team

10. Luffa Dai Watanabe

11. Shabal Jean-François Misarsky

12. SHAvite-3 Orr Dunkelman

13. SIMD Gaëtan Leurent

14. * Skein Bruce Schneier
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SHA-3 = Keccak (sponge + compression)

Authors
▶ Guido Bertoni (Italy) of STMicroelectronics,

▶ Joan Daemen (Belgium) of STMicroelectronics,

▶ Michaël Peeters (Belgium) of NXP Semiconductors, and

▶ Gilles Van Assche (Belgium) of STMicroelectronics.
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SHA-3 = Keccak

h : {1, 0}∗ → {1, 0}n

▶ MD5: n = 128 (Ron Rivest, 1992)

▶ SHA-1: n = 160 (NSA, NIST, 1995)

▶ SHA-2: n ∈ {224, 256, 384, 512} (NSA, NIST, 2001)

▶ SHA-3: n is arbitrary (NSA, NIST, 2012)
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SHA-3 = Keccak is a sponge based hash

H(P0|P1| . . . |Pi ) = Z0|Z1| . . . |Zl

b = r + c

▶ r bits of rate

▶ c bits of capacity (security parameter)
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Inside Keccak

▶ 7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
▶ ... from toy over lightweight to high-speed ...
▶ SHA-3 instance: r = 1088 and c = 512

▶ permutation width: 1600
▶ security strength 256: post-quantum sufficient

▶ Lightweight instance: r = 40 and c = 160
▶ permutation width: 200
▶ security strength 80: same as (initially expected from) SHA-1
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SHA-3 = Keccak f Setting
Defined for word of size, w = 2l bits (if l = 6 64-bit words )
State is 5× 5× w array of bits (a[i][j][k])

▶ state = 5× 5 lanes, each containing 2l bits

▶ ( 5× 5)-bit slices, 2l of them
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SHA-3 = Keccak

The basic block permutation function consists of 12 + 2× l
iterations of following sub-rounds.

1. step Θ

2. step ρ

3. step π

4. step χ

5. step ι
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Keccak Θ

1. Compute the parity of each of the 5-bit columns

2. ⊕ the sum of a[x-1][][z] and of a[x+1][][z-1] into a[x][y][z].

a[i ][j ][k]⊕ = parity(a[0..4][j − 1][k])⊕ parity(a[0..4][j + 1][k − 1])
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Keccak ρ

Bitwise rotate each of the 25 words by a different rotation.

a[0][0] is not rotated, and for all 0 ≤ t < 24
a[i ][j ][k] = a[i ][j ][k − (t + 1)(t + 2)/2], where(
i
j

)
=

(
3 2
1 0

)t (
0
1

)
.
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Keccak π
Permute the 25 words in a fixed pattern.

a[i ][j ] = a[j ][2i + 3j ]
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Keccak χ

Bitwise combine along rows, using a = a⊕ (¬b&c).

a[i ][j ][k]⊕ = ¬a[i ][j + 1][k]&a[i ][j + 2][k]

This is the only non-linear operation in SHA-3.
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Keccak ι

Exclusive-or a round constant into one word of the state.

▶ In round n, for 0 ≤ m ≤ l , a[0][0][2m − 1] is exclusive-ORed
with bit m + 7n of a degree-8 LFSR (Linear Feedback Shift
Register) sequence.

This breaks the symmetry that is preserved by the other
sub-rounds.
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Why Keccak

Kangouroo 12, a fast version of Keccak
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Birthday Paradox : Hash Function
Let an Hash function H : D → 2k

Näıve Collision

With 2k + 1 try there is a collision

P(at least 1 collision) = 1− P(no collision)

Probability of no collision
▶ Try 1 : 1− 0

▶ Try 2 : 1− 1/2k

▶ Try 3 : 1− 2/2k

▶
...

▶ Try q : 1− (q − 1)/2k

P(no collision) =

i=q∏
i=1

(1− i/2k)
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Näıve Collision
With 2k + 1 try there is a collision

P(at least 1 collision) = 1− P(no collision)

Probability of no collision
▶ Try 1 : 1− 0

▶ Try 2 : 1− 1/2k

▶ Try 3 : 1− 2/2k

▶
...

▶ Try q : 1− (q − 1)/2k

P(no collision) =

i=q∏
i=1

(1− i/2k)

81 / 118



Birthday Paradox : Hash Function
Let an Hash function H : D → 2k
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Birthday Paradox : Hash Function

P(at least 1 collision) = 1− P(no collision)
Using 1− x ≈ e−x we have

1− e−
∑i=q

i=1(1−i/2k ) = 1− e−q(q−1)/2k+1
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If you want a probability of ϵ to have a collision
Need ot solve

ϵ = 1− e−q(q−1)/2k+1

q(q − 1) = 2k+1ln(1/(1− ϵ)

k ≈
√
2k+1ln(1/(1− ϵ)

Examples

▶ ϵ = 1
2 ⇒ k ≈ 1.177

√
2k+1

▶ ϵ = 3
4 ⇒ k ≈ 1.665

√
2k+1

▶ ϵ = 0.9 ⇒ k ≈ 2.146
√
2k+1

Remark: if 2k+1 is 365 among 1.77
√
365 ≈ 23

So should be at least > 64 or even 80. > 128 or 160 to resist
birthday attack.
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MAC based on block ciphers
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DMAC (CBC-MAC variant)

Example

c1 := m1;
for i = 2 to n do:

zi := ci−1 ⊕mi

ci := E(zi );
tag := E′(cn);

86 / 118



HMAC

Example

z1 := k∥m1;
c1 := H(z1);
for i = 2 to n do:;

zi := ci−1∥mi

ci := H(zi )
z ′ := k ′||cn;
tag := H(z ′);
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Symetric Encryption

Two kinds of symetric encryption:

▶ block cipher (fixed plaintext size) DES AES

▶ stream cipher (unlimited plaintext size) RC4, E0, Crypto-1

To encrypt and to decrypt the same secrete key K is used !
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Linear Feedback Shift Register

S
(t)
ℓ−1 S

(t)
ℓ−2 S

(t)
1 S

(t)
0

c1 c2 . . .

. . .

. . .

. . .

. . .

. . .

cℓ−1 cℓ

▶ Length of the register is ℓ, s(0) is the seed

▶ ∀ci ∈ {0, 1}

∀t ≥ 0, s
(t+1)
ℓ−1 =

ℓ∑
i=1

ci s
(t)
ℓ−i

Shift : s
(t+1)
i = s

(t)
i+1,∀i , 0 ≤ i ≤ ℓ− 2
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Example

Seed s(0) = 0010 and c1 = 1 c2 = 0 c3 = 1 and c4 = 0

0 0 1 0

1 0 1 01

s
(1)
3 = (s

(0)
3 · c1)⊕ (s

(0)
2 · c2)⊕ (s

(0)
1 · c3)⊕ (s

(0)
0 · c4)

= (0 · 1)⊕ (0 · 0)⊕ (1 · 1)⊕ (0 · 0)
= 1
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Example first output bit

c1 = 1 c2 = 0 c3 = 1 and c4 = 0

s
(1)
2 = s

(0)
3 , s

(1)
1 = s

(0)
2 , and s

(1)
0 = s

(0)
1

1 0 0 1 0

1 0 1 0
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Definitions

Period
A serie (sn)n∈N is periodic of perido p if sn+p = s + n, ∀n.

Retroaction polynomial

p(X ) ∈ F2[X ]:

p(X ) = 1 +
ℓ∑

i=1

ciX
i
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A5/1 used for GSM in Europe 1994
Red bits are used to determine the majority amont 3 values.
Winner registers are shift.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Output

x19 + x18 + x17 + x14 + 1

x22 + x21 + 1

x23 + x22 + x21 + x8 + 1
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Attack on A5/1
▶ 1997, Golic attack in 240.16

▶ 2000, Alex Biryukov, Adi Shamir and David Wagner : few
minutes with 2 minutes of plain communication (using in total
300 Go data, in 248 steps).

▶ 2000 Eli Biham et Orr Dunkelman attack in 239.91 with 220.8

bits fo data.
▶ Improvement by Maximov et al for one minute of computation

and few clear secands of plain communication.
Maximov, Alexander; Thomas Johansson; Steve Babbage
(2004). ”An Improved Correlation Attack on A5/1”. Selected
Areas in Cryptography 2004: 1–18.
Barkan, Elad; Eli Biham (2005). ”Conditional Estimators: An
Effective Attack on A5/1”. Selected Areas in Cryptography
2005: 1–19.

▶ 13 December 2013, with Snowden affirmations, NSA can
listen GSM communications
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RC4 by Ron Rivest in 1987

”Rivest Cipher 4” or ”Ron’s Code” is a stream cipher used in TLS
(Transport Layer Security) and WEP (Wired Equivalent Privacy).

▶ The key-scheduling algorithm (KSA)

▶ The pseudo-random generation algorithm (PRGA)
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KSA use a key of length between 40 – 128 bits

▶ Array ”S” is initialized to the identity permutation.

▶ 256 iterations with mixes of bytes of the key at the same time.

j := 0

for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256

swap values of S[i] and S[j]

endfor
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Pseudo-Random Generation Algorithm (PRGA)

i := 0; j := 0;

while GeneratingOutput:

i := (i + 1) mod 256

j := (j + S[i]) mod 256

swap values of S[i] and S[j]

K := S[(S[i] + S[j]) mod 256]

output K
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Recent attacks on RC4
▶ Fluhrer, Mantin and Shamir attack 2001

▶ Klein’s attack 2005

▶ John Leyden (2013-09-06). ”That earth-shattering NSA
crypto-cracking: Have spooks smashed RC4?”

▶ “Fresh revelations from whistleblower Edward Snowden suggest that
the NSA can crack TLS/SSL connections, the widespread
technology securing HTTPS websites and virtual private networks
(VPNs).”

▶ “ Attack relies on statistical flaws in the keystream generated by the
RC4 algorithm. It relies on getting a victim to open a web page
containing malicious JavaScript code that repeatedly tries to log
into Google’s Gmail, for example. This allows an attacker to get
hold of a bulk of traffic needed to perform cryptanalysis.”

Nadhem AlFardan, Dan Bernstein, Kenny Paterson, Bertram
Poettering and Jacob Schuldt. ”On the Security of RC4 in TLS”.
Royal Holloway University of London. Retrieved March 13, 2013.
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RC4 bad
int main (int argc , char * argv []) {

unsigned char S [256] , c;

unsigned char key [] = KEY;

int klen = strlen ( key );

int i,j,k;

/* Init S[] */

for (i =0; i <256; i++)

S[i] = i;

/* Scramble S[] with the key */

j = 0;

for (i =0; i <256; i++) {

j = (j+S[i]+ key [i% klen ]) % 256;

S[i] ^= S[j];

S[j] ^= S[i];

S[i] ^= S[j];

}

/* Generate the keystream and cipher the input stream */

i = j = 0;

while ( read (0, &c, 1) > 0) {

i = (i +1) % 256;

j = (j+S[i]) % 256;

S[i] ^= S[j];

S[j] ^= S[i];

S[i] ^= S[j];

c ^= S[(S[i]+S[j]) % 256];

write (1, &c, 1);

}}
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RC4 Good
int main (int argc , char * argv []) {

unsigned char S [256] , c;

unsigned char key [] = KEY;

int klen = strlen ( key );

int i,j,k;

/* Init S[] */

for (i =0; i <256; i++)

S[i] = i;

/* Scramble S[] with the key */

j = 0;

for (i =0; i <256; i++) {

j = (j+S[i]+ key [i% klen ]) % 256;

k = S[i];

S[i] = S[j];

S[j] = k;

}

/* Generate the keystream and cipher the input stream */

i = j = 0;

while ( read (0, &c, 1) > 0) {

i = (i +1) % 256;

j = (j+S[i]) % 256;

k = S[i];

S[i] = S[j];

S[j] = k;

c ^= S[(S[i]+S[j]) % 256];

write (1, &c, 1);

}}
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Swap

Classical way (using temporary variable)
tmp = a

a = b

b = tmp

Without but with + or XOR
a = a+b

b = a-b

a = a-b

a = a^b

b = a^b

a = a^b
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Swap
The buggy adaptation

S[i] = S[i]^S[j]

S[j] = S[i]^S[j]

S[i] = S[i]^S[j]

because when i = j , we have

S[i] = S[i]^S[i]

S[i] = S[i]^S[i]

S[i] = S[i]^S[i]

▶ instead of exchanging a value with itself, we set it to 0

▶ the RC4 state fills up with 0

▶ the bitstream quickly degrades to a sequence of 0

▶ encryption does not happen anymore
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Linear Cryptanalysis

Eurocrypt ’93, Mitsuru Matsui, Linear Cryptonalysis Method for
DES Cipher
S-Box are non linear by construction

Xi → Yi

Goal find such relations in order to approximate S-Boxes:

X1 ⊕ X2 ⊕ X3 ⊕ . . .⊕ XN = Y1 ⊕ Y2 ⊕ Y3 ⊕ . . .⊕ YN

with a high probability to happen.
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Piling-up Lemma (Matsui)

For n independent, random binary variables X1, . . . ,Xn of
probability ϵi .

Pr [X1 ⊕ . . .⊕ Xn = 0] =
1

2
+ 2n−1

n∏
i=1

ϵi
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Differential Cryptanalysis

X
⊕

X ′ = ∆1

E E

Y
⊕

Y ′ = ∆2

1. Look for X and X ′ such that X ⊕ X ′ = ∆1

2. Compute Y = E (X ) and Y ′ = E (X ′)

3. Guess the last piece of the key and for all values such that
Y ⊕Y ′ = ∆2 have an high probability then increase a counter.
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Boomerang

X1 X2

f f

g g

Y1 Y2

X3 X4

f f

g g

Y3 Y4

∆

∆

∇ ∇

∆∗

∆∗

∇∗ ∇∗

F

f

g
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Lamport one-time-signature
▶ A digital signature scheme consists of three algorithms (Gen,

Sig, Ver)

▶ h is a secure hash function.

Gen: private key, sk = ((a0, · · · , a255), (b0, · · · , b255)) for n = 256.

a0

h

c0

a1

h

c1

· · ·

a255

h

c255

b0

h

d0

b1

h

d1

· · ·

b255

h

d255

256-bits 256-bits 256-bits 256-bits 256-bits 256-bits

public-key: pk = ((c0, · · · , c255), (d0, · · · , d255))
sk size = pk size = 2n2 = 2× 2562 bits
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Lamport one-time signature (cont.)

Sig: signing algorithm
The process to sign message m:

m

h

ti

Sig ai , bi

si =

{
ai , if ti = 0

bi , otherwise

sigsk(m) = (s0, s1, · · · , sn−1)

▶ Computation: n comparisons,
efficient

▶ The signature size = n2 = 2562,
very large

Ver: verifying algorithm
m

h

ti

Ver si ,Pki = (ci , di )

h(si)
?
=

{
ci , if ti = 0

di , otherwise

Computing complexity: n hash
evaluations
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Lamport one-time signature (cont.)
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Winternitz (variants) one-time signature (OTS)
Goal: Reducing both key size and signature size. Let w be a factor of n, e.g.,
n = 256, w = 8.
Gen: (sk, pk)

256-bits

a0

h

...

h

c0

h

8 times

256-bits

a1

h

...

h

c1

h

· · ·

· · ·

· · ·

· · ·

· · ·

256-bits

a31

h

...

h

c31

h pk

▶ Computation cost: the same as Lamport OTS, sk size =
n/w × n = 256/8× 256.

▶ pk size = n = 256 bits, through a hashing chain, shown above, or a
Merkle tree.
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Winternitz (variants) OTS (cont.)

Sig: signing algorithm
The process to sign message m:

a0

h

...

h

s0

w − t0

a1

h

...

h

s1

a31

h

...

h

s31

w − t31

▶ Computation: ave. n hash eval.,
much more cost than Lamport
OTS

▶ The signature size
= n

w
n = 32× 256, still large

Ver: verifying algorithm
s0

h

...

h

v0

h

t0

s1

h

...

h

v1

h

· · ·

· · ·

· · ·

· · ·

· · ·

s31

h

...

h

v31

h

t31

v

▶ Computing complexity: ave.
n/2 + n/w (hash chain) hash
evaluations or n/2 + log(n/w)
(Merkle tree) hash evaluations.
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Winternitz (variants) OTS (cont.)

Sig: signing algorithm
The process to sign message m:

a0

h

...

h

s0

w − t0

a1

h

...

h

s1

a31

h

...

h

s31

w − t31

▶ Computation: ave. n hash eval.,
much more cost than Lamport
OTS

▶ The signature size
= n

w
n = 32× 256, still large

Ver: verifying algorithm
s0

h

...

h

v0

h

t0

s1

h

...

h

v1

h

· · ·

· · ·

· · ·

· · ·

· · ·

s31

h

...

h

v31

h

t31

v

▶ Computing complexity: ave.
n/2 + n/w (hash chain) hash
evaluations or n/2 + log(n/w)
(Merkle tree) hash evaluations.
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U-EPS (Gen, Sig, Ver) Algorithms

Underline cryptographic algorithms

▶ H: a family of collision resistant hash functions from {0, 1}∗ to Zn
2.

▶ F : a family of symmetric encryption algorithms c = Enck(m) and
m = Deck(c), which is secure under chosen plaintext attack (CPA).

▶ G: a family of sequential memory-hard symmetric encryption algorithms
g(k,m), denoted as c = MemEnck(m), and m = MemDeck(c).

▶ Sequential memory-hard means that parallel algorithms cannot
asymptotically achieve efficiency advantage than non-parallel ones.

▶ This method is introduced for design of the password-based key
derivation function scrypt in order to thwart parallel brute-force attacks
using GPUs, FPGAs or ASIC chips on passwords.

▶ The design has been widely used by cryptocurrencies, e.g., Litecoin,
Dogecoin and Mastercoin.
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U-EPS(Gen, Sig, Ver)
Gen: generate private and public key pair (sk , pk)

▶ Uniformly generate a, b, each as an n-bit stream, and set the private key
sk = (a, b).

▶ Compute pk = h(a||b), n bits.

Sig: signing algorithm
Our Sig is a similar Lamport Sig
together with an encryption of the sum
of the two components in the private
key.

m

h

ti

Sig ai , bi , bits

si =

{
ai , if ti = 0

bi , otherwise

s = (s0, s1, · · · , sn−1)

c = Encr (a ⊕ b), r = h(t||u), u rand

Sigsk(m) = (s, c)

Ver: signature verification
algorithm.

▶ Using the delayed release u and t,
the hash value of message, to
decrypt c to get a⊕ b.

m

h

ti

Ver si , ai ⊕ bi

Ver outputs a, b

σ
?
= pk = h(a||b)
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U-EPS(Gen, Sig, Ver)
Gen: generate private and public key pair (sk , pk)
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Thank you for your attention.

Questions ?
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