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History of Cryptography

Transposition ciphers

• For block length t, let K be the set of permutations on
{1, . . . , t}. For each e ∈ K and m ∈M

Ee(m) = me(1)me(2) · · ·me(t) .

• The set of all such transformations is called a transposition
cipher.

• To decrypt c = c1c2 · · · ct compute
Dd(c) = cd(1)cd(2) · · · cd(t), where d is inverse permutation.

• Letters unchanged so frequency analysis can be used to reveal
if ciphertext is a transposition. Decrypt by exploiting
frequency analysis for diphthongs, tripthongs, words, etc.
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History of Cryptography

Mono-alphabetic substitution ciphers

• Simplest kind of cipher. Idea over 2,000 years old.

• Let K be the set of all permutations on the alphabet A.
Define for each e ∈ K an encryption transformation Ee on
strings m = m1m2 · · ·mn ∈M as

Ee(m) = e(m1)e(m2) · · · e(mn) = c1c2 · · · cn = c .

• To decrypt c , compute the inverse permutation d = e−1 and

Dd(c) = d(c1)d(c2) · · · d(cn) = m .

• Ee is a simple substitution cipher or a mono-alphabetic
substitution cipher.
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History of Cryptography

Substitution cipher examples

• KHOOR ZRUOG

= HELLO WORLD
Caesar cipher: each plaintext character is replaced by the
character three to the right modulo 26.

• Zl anzr vf Nqnz = My name is Adam
ROT13: shift each letter by 13 places.
Under Unix: tr a-zA-Z n-za-mN-ZA-M.

• 2-25-5 2-25-5 = BYE BYE
Alphanumeric: substitute numbers for letters.

How hard are these to cryptanalyze? Caesar? General?
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History of Cryptography

Is it secure?

Key spaces are typically huge. 26 letters ⇝ 26! possible keys.

Frequency analysis

Except for short, atypical texts
From Zanzibar to Zambia and Zaire, ozone zones make zebras run
zany zigzags.
⇒ More sophistication required to mask statistical regularities
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History of Cryptography

Homophonic substitution ciphers

• To each a ∈ A, associate a set H(a) of strings of t symbols,
where H(a), a ∈ A are pairwise disjoint. A homophonic
substitution cipher replaces each a with a randomly chosen
string from H(a). To decrypt a string c of t symbols, one
must determine an a ∈ A such that c ∈ H(a). The key for the
cipher is the sets H(a).

Example:

A = {a, b}, H(a) = {00, 10}, and H(b) = {01, 11}. The plaintext
ab encrypts to one of 0001, 0011, 1001, 1011.

Rational: makes frequency analysis more difficult.
Cost: data expansion and more work for decryption.
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History of Cryptography

Polyalphabetic substitution ciphers

• Leon Alberti: conceal distribution using family of mappings.

• A polyalphabetic substitution cipher is a block cipher with
block length t over alphabet A where:
• the key space K consists of all ordered sets of t permutations

over A, (p1, p2, . . . , pt).
• Encryption of m = m1 · · ·mt under key e = (p1, · · · , pt) is

Ee(m) = p1(m1) · · · pt(mt).
• Decryption key for e is d = (p−1

1 , · · · p−1
t ).

13 / 98
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History of Cryptography

Example: Vigenère ciphers 1553

• Key given by sequence of numbers e = e1, . . . , et , where

pi (a) = (a+ ei ) mod n

defining a permutation on an alphabet of size n.

• Example: English (n = 26), with k = 3,7,10

m = THI SCI PHE RIS CER TAI NLY NOT SEC URE

then

Ee(m) = WOS VJS SOO UPC FLB WHS QSI QVD VLM XYO

14 / 98
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History of Cryptography

One-time pads (Vernam cipher)

• A one-time pad is a cipher defined over {0, 1}. Message
m1 · · ·mn is encrypted by a binary key string k1 · · · kn.

Ek1···kn(m1 · · ·mn) = (m1 ⊕ k1) · · · (mn ⊕ kn)

Dk1···kn(c1 · · · cn) = (c1 ⊕ k1) · · · (cn ⊕ kn)

• Unconditional (information theoretic) security,
if key isn’t reused!
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History of Cryptography

One-Time Pad (Vernam 1917)

Example:

m = 010111
k = 110010

c = 100101

Problem?

Securely exchanging and synchronizing long keys.

16 / 98



SSI Lecture 2 Public Key Cryptography

History of Cryptography

One-Time Pad (Vernam 1917)

Example:

m = 010111
k = 110010

c = 100101

Problem? Securely exchanging and synchronizing long keys.

16 / 98



SSI Lecture 2 Public Key Cryptography

History of Cryptography

Kerchoff’s Principle

In 1883, a Dutch linguist Auguste Kerchoff von Nieuwenhof stated
in his book “La Cryptographie Militaire” that:

“the security of a crypto-system must be totally dependent on the
secrecy of the key, not the secrecy of the algorithm.”

Author’s name sometimes spelled Kerckhoff
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History of Cryptography

Chiffrement : Enigma (Seconde guerre mondiale)
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History of Cryptography

Shannon’s Principle 1949

Confusion

The purpose of confusion is to make the relation between the key
and the ciphertext as complex as possible.

Ciphers that do not offer much confusion (such as Vigenere cipher)
are susceptible to frequency analysis.

Diffusion

Diffusion spreads the influence of a single plaintext bit over many
ciphertext bits.

The best diffusing component is substitution (homophonic)

Principle

A good cipher design uses Confusion and Diffusion together
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History of Cryptography

Symmetric Encryption

Encryption Decryption

Clef symétrique Clef symétrique

Examples

• DES

• AES
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History of Cryptography

Cellphone Communications
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History of Cryptography

Public Key Encryption

Encryption Decryption

Clef publique

Clef privée

Examples

• RSA : c = me mod n

• ElGamal : c ≡ (g r , hr ·m)
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History of Cryptography

Comparison

• Size of the key

• Complexity of computation (time, hardware, cost ...)

• Number of different keys ?

• Key distribution

• Signature only possible with asymmetric scheme

23 / 98
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History of Cryptography

Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

DVD 4,7 G.B Blu-Ray 25 GB

Schemes encrypt decrypt encrypt decrypt

RSA 2048(1) 22 min 24 h 115 min 130 h
RSA 1024(1) 21 min 10 h 111 min 53 h

AES CTR(2) 20 sec 20 sec 105 sec 105 sec

24 / 98
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Classical Asymmetric Encryptions

One-way function and Trapdoor

Definition

A function is One-way, if :

• it is easy to compute

• its inverse is hard to compute :

Pr[m
r← {0, 1}∗; y := f (m) : f (A(y , f )) = y ]

is negligible.

Trapdoor:

• Inverse is easy to compute given an additional information (an
inverse key e.g. in RSA).
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Classical Asymmetric Encryptions

Integer Factoring

→ Use of algorithmically hard problems.

Factorization

• p, q 7→ n = p.q easy (quadratic)

• n = p.q 7→ p, q difficult
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Classical Asymmetric Encryptions

Rivest Shamir Adelmann (RSA 1978)

Let n = pq, p and q primes.

Public Key: (e, n)

Secret Key: d where d = e−1 mod ϕ(n)
and gcd(e, ϕ(n)) = 1

Encryption: c = me mod n

Decryption: m = cd

Soundness

cd = mde = m.mkϕ(n) mod n
According to the Fermat Little Theorem ∀x ∈ (Z/nZ )∗, xϕ(n) = 1

28 / 98
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Classical Asymmetric Encryptions

Example RSA

Example

• p = 61 (destroy this after computing E and D)

• q = 53 (destroy this after computing E and D)

• n = pq = 3233 modulus (give this to others)

• e = 17 public exponent (give this to others)

• d = 2753 private exponent (keep this secret!)

Your public key is (e, n) and your private key is d .
encrypt(T ) = (T e) mod n = (T 17) mod 3233
decrypt(C ) = (Cd) mod n(C 2753) mod 3233

• encrypt(123) = 12317 mod 3233
= 337587917446653715596592958817679803 mod 3233
= 855

• decrypt(855) = 8552753 mod 3233 29 / 98
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Classical Asymmetric Encryptions

Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000

Modulus Operations
(bits) (log2)

512 58

1024 80

2048 111

4096 149

8192 156

≈ 260 years

→ Can be used for RSA too.

30 / 98



SSI Lecture 2 Public Key Cryptography

Classical Asymmetric Encryptions

ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group
generator g of (Z/pZ)∗ and a ∈ (Z/(p − 1)Z)∗.

Public key: (p, g , h), where h = ga mod p.

Private key: a

Encryption: Bob chooses r ∈R (Z/(p − 1)Z)∗ and computes
(u, v) = (g r ,Mhr )

Decryption: Given (u, v), Alice computes M ≡p
v
ua

Justification: v
ua = Mhr

g ra ≡p M

Remarque: re-usage of the same random r leads to a security flaw:

M1h
r

M2hr
≡p

M1

M2

Practical Inconvenience: Cipher is twice as long as plain text.
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Classical Asymmetric Encryptions

Optimal Asymmetric Encryption Padding (OAEP)

The OAEP cryptosystem (K ,E ,D) obtained from a permutation
f , whose inverse is denoted by g . And two hash functions:

G : {0, 1}k0 → {0, 1}k−k0

H : {0, 1}k−k0 → {0, 1}k0

K (1k): specifies an instance of the function f , and of its inverse g .
The public key pk is therefore f and the private key sk is g .
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Classical Asymmetric Encryptions

OAEP: Encryption

Epk(m, r) = c = f (s, t) with m ∈ {0, 1}n, and r ← {0, 1}k0

s = (m||0k1)⊕ G (r), t = r ⊕ H(s)

m

n − k0 − k1

0 . . . 0

k1

r

k0

G

H

s

n − k0

t

k0
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Classical Asymmetric Encryptions

OAEP: Decryption

Dsk(c)

g(c) = (s, t)

r = t ⊕ H(s)

M = s ⊕ G (r)

If [M]k1 = 0k1 , the algorithm returns [M]n , otherwise it returns
“Reject”

• [M]k1 denotes the k1 least significant bits of M

• [M]n denotes the n most significant bits of M
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Classical Asymmetric Encryptions

Results and References

OAEP was first proved IND-CPA then IND-CCA1 and finally
IND-CCA2 secure under some assumptions.

1 M. Bellare, P. Rogaway. “Optimal Asymmetric Encryption –
How to encrypt with RSA”. Extended abstract in Advances in
Cryptology - Eurocrypt ’94 Proceedings, LNCS Vol. 950, A.
Springer-Verlag, 1995.

2 Victor Shoup. “OAEP Reconsidered”. IBM Zurich Research
Lab, September 18, 2001.

3 Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and
Jacques Stern. “RSA– OAEP is secure under the RSA
assumption”. In J. Kilian, ed., Advances in Cryptology –
CRYPTO 2001, vol. 2139 of LNCS, SpringerVerlag, 2001.

4 P. Paillier and J. Villar, “Trading One-Wayness against
Chosen-Ciphertext Security in Factoring-Based Encryption”,
Advances in Cryptology – Asiacrypt 2006.
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Classical Asymmetric Encryptions

Others Cryptosystems
• Bellare & Rogaway’93:

f (r)||x ⊕ G (r)||H(x ||r)
• Zheng & Seberry’93:

f (r)||G (r)⊕ (x ||H(x))

• OAEP’94 (Bellare & Rogaway):

f (s||r ⊕ H(s))

where s = x0k ⊕ G (r)
• OAEP+’02 (Shoup):

f (s||r ⊕ H(s))

where s = x ⊕ G (r)||H ′(r ||x).
• Fujisaki & Okamoto’99:

E((x ||r);H(x ||r))
where E is IND-CPA. 36 / 98
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Classical Asymmetric Encryptions

Cramer-Shoup Cryptosystem

• Proposed in 1998 by Ronald Cramer and Victor Shoup

• First efficient scheme proven to be IND-CCA2 in standard
model.

• Extension of Elgamal Cryptosystem.

• Use of a collision-resistant hash function

Ronald Cramer and Victor Shoup. ”A practical public key
cryptosystem provably secure against adaptive chosen ciphertext
attack.” in proceedings of Crypto 1998, LNCS 1462.

37 / 98



SSI Lecture 2 Public Key Cryptography

Classical Asymmetric Encryptions

Key Generation

• G a cyclic group of order q with two distinct, random
generators g1, g2
• Pick 5 random values (x1, x2, y1, y2, z) in {0, . . . , q − 1}
• c = g x1

1 g x2
2 , d = g y1

1 g y2
2 , h = g z

1

• Public key: (c , d , h), with G , q, g1, g2
• Secret key: (x1, x2, y1, y2, z)
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Classical Asymmetric Encryptions

Encryption of m ∈ G with (G , q, g1, g2, c , d , h)

• Pick a random k ∈ {0, . . . , q − 1}
• Calculate: u1 = gk

1 , u2 = gk
2

• e = hkm

• α = H(u1, u2, e)

• v = ckdkα

• Ciphertext: (u1, u2, e, v)

39 / 98
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Classical Asymmetric Encryptions

Decryption of (u1, u2, e, v) with (x1, x2, y1, y2, z)

• Compute α = H(u1, u2, e)
• Verify ux11 ux22 (uy11 uy22 )α = v
• m = e/(uz1)

It works because

uz1 = gkz
1 = hk

m = e/hk

And because

v = ckdkα = (g x1
1 g x2

2 )k(g y1
1 g y2

2 )kα

ux11 ux22 (uy11 uy22 )α = gkx1
1 gkx2

2 (gky1
1 gky2

2 )α
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Signature

Signature Primitives

• Key Generation

• Signature

• Verification
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Signature

RSA Signature

RSA Encryption

• Public key (n, e) and private key d s.t ed = 1 mod ϕ(n)

• Encryption: me mod n

• Decryption: cd mod n

RSA Signature

• Public key (n, e) and private key d s.t ed = 1 mod ϕ(n)

• Signature: σ = md mod n

• Verification: σe = m mod n
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Signature

Unforgeability Resistance

Existential forgery (existential unforgeability, EUF):

GOAL: Forge at leat one couple (m, σ) is difficult.

Selective forgery (selective unforgeability, SUF):

m is imposed by the challenger before the attack.
GOAL: Forge at leat one couple (m, σ) is difficult.

Universal forgery (universal unforgeability, UUF):

GOAL : For any message m, forge (m, σ) is difficult.
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Signature

Exercice RSA

Show that RSA signature is not EUF secure:

σ(m1) · σ(m2) = σ(m1 ·m2)

Hence m′ = m1 ·m2 where σ(m′) = σ(m1 ·m2)

To avoid that we need to hash the messages before signing them.
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Signature

Blind Signature

RSA Encryption

• Public key (n, e) and private key d s.t ed = 1 mod ϕ(n)

• Encryption: me mod n and Decryption: cd mod n

A→ S : {m}pk
A→ S : Sign({m}pk , skS)

Sign({m}pk , skS) = {Sign(m, skS)}pk

RSA Blind Signature

A→ S : {m}pk = me mod n
A→ S : Sign({m}pk , skS) = (me)d

(me)d = Sign({m}pk , skS) = {Sign(m, skS)}pk = (md)e
46 / 98
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Signature

Signature in Practice

Signature over large file is not so efficient : HASH-and-SIGN

Standards

• PKCS#1 v1.5: no security proof.

• PKCS#1 v2.1: PSS proposed in 1996 by Bellare et Rogaway
47 / 98
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Signature

Elgamal Signature

Key generation

• Randomly choose a secret key x with 1 < x < p − 1

• Compute y = g x mod p

• The public key is (p, g , y)

• The secret key is x
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Signature

Elgamal Signature

Signature generation

• Choose a random k st, 1 < k < p − 1 and gcd(k , p − 1) = 1

• Compute r ≡ gk (mod p)

• Compute s ≡ (H(m)− xr)k−1 (mod p − 1)

Then the pair (r , s) is the digital signature of m.
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Signature

Elgamal Signature

Verification of signature (r , s) of a message m

• 0 < r < p and 0 < s < p − 1.

• gH(m) ≡ y r r s (mod p)
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Signature

Elgamal Signature Correctness

H(m) ≡ xr + sk (mod p − 1)
Hence Fermat’s little theorem implies

gH(m) ≡ g xrgks

≡ (g x)r (gk)s

≡ (y)r (r)s (mod p).
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Signature

DSA : Digital Signature Algorithm

DSS (Digital Signature Standard by Kravitz) adopted in 1993
(FIPS 1186) by NIST.

Key Generation

• Choose random x , where 0 < x < q

• Choose g , a number whose multiplicative order modulo p is q.

• Calculate y = g x mod p

• Public key is (p, q, g , y)

• Private key is x

52 / 98



SSI Lecture 2 Public Key Cryptography

Signature

DSA :

Let H be the hashing function and m the message

Signature

• Generate a random value k where 0 < k < q

• Calculate r =
(
gk mod p

)
mod q

• Calculate s = k−1 (H (m) + xr) mod q

The signature is (r , s)
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Signature

DSA :

Verification of (r , s) with m

• Reject the signature if 0 < r < q or 0 < s < q is not satisfied.

• Calculate w = s−1 mod q

• Calculate u1 = H (m) · w mod q

• Calculate u2 = r · w mod q

• Calculate v = ((gu1yu2) mod p) mod q

The signature is valid if v = r
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Signature

DSA : Correctness

If g = h(p − 1)/q mod p it follows that gq = hp − 1 = 1 mod p
by Fermat’s little theorem. Since g > 1 and q is prime, g must
have order q. The signer computes s = k−1(H(m) + xr) mod q

k ≡ H(m)s−1 + xrs−1

≡ H(m)w + xrw (mod q)

Since g has order q (mod p) we have

gk ≡ gH(m)wg xrw

≡ gH(m)wy rw

≡ gu1yu2 (mod p)

r = (gk mod p) mod q

= (gu1yu2 mod p) mod q

= v 55 / 98
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Signature

Schnorr Signature

Key generation

• Choose a private signing key, x .

• The public verification key is y = g x .

Signing M

• Choose a random k

• Compute r = gk .

• Let e = H(r ∥ M), ∥ denotes concatenation.
• Let s = k − xe.

The signature is σ = (s, e)
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Signature

Verification of σ = (s, e)

• rv = g sy e = gk−xeg xe

• ev = H(rv ∥ M)

• If ev = e = H(gk ∥ M) then the signature is verified.
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Signature

Pairing

Pairing

Let G1,G2 be two additive cyclic groups of prime order q, and GT

another cyclic group of order q written multiplicatively. A pairing is
a map: e : G1 × G2 → GT , which satisfies the following properties:

Bilinearity : ∀a, b ∈ F ∗
q , ∀P ∈ G1,Q ∈ G2 : e (aP, bQ) =

e (P,Q)ab

Non-degeneracy e ̸= 1

Computability There exists an efficient algorithm to compute e
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Signature

Boneh-Lynn-Shacham 2004

• Key generation :

1 x ← [0, r − 1]
2 Private key is x
3 Public key, g x

• Signing : h = H(m), σ = hx

• Verification : e(σ, g) = e(H(m), g x)
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Elliptic Curves

Outline

1 History of Cryptography

2 Classical Asymmetric Encryptions

3 Signature

4 Elliptic Curves

5 Partial and Full Homomorphic Encryption

6 Identity Based Encryption IBE

7 Attribute Based Encryption ABE

8 Conclusion
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Elliptic Curves

Introduction
y2 = x3 + ax + b

x ∈ R

y ∈ R

y2 = x3 − 2x + 1 over R

y ∈ Z89
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y2 = x3 − 2x + 1 over Z89

E (K ) = {(x , y) such that y2 = x3 + ax + b} plus an extra point
“at infinite”
Weierstrass form if ∆ = −16(4a3 + 27b2) ̸= 0 (if K is not of
characteristic 2 or 3). 61 / 98
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Elliptic Curves

Laws

Theorem

• Addition law on E (K )
• Associativity: (P1 + P2) + P3 = P1 + (P2 + P3)
• Commutativity: P1 + P2 = P2 + P1

• Neutral element is ∞: P +∞ = P
• Inverse: Given P on E , there exists P ′ on E with P + P ′ =∞

(usually denoted −P)
• Three aligned points sum to neutral element often denoted
zero
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Elliptic Curves

Laws

•P

•
−P

Inverse element −P

•P
•Q •

•
P + Q

Addition P + Q
“Chord rule”

•P •

•
2P

Doubling P + P
“Tangent rule”

P + R + Q = 0⇒ R = −(P + Q)

R + S + 0 = 0⇒ R = −S
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Elliptic Curves

“Elliptic Discrete Logarithm”

Hard Problem

Finding k, given P and Q = kP. is computationally intractable for
large values of k.
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Elliptic Curves

Cryptosystem: ECDH

Alice’s key is (dA,QA) where QA = dAG .

DH like Protocol

1 Alice sends QA,G to Bob.

2 Bob computes k = dBQA.

3 Bob sends to Alice QB

4 Alice computes k = dAQB .

The shared key is xk (the x coordinate of the point).

The number calculated by both parties is equal, because
k = dAQB = dAdBG = dBdAG = dBQA = k .
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Elliptic Curves

ECDSA (Digital Signature Algorithm) I

Alice private key dA and a public key QA (where QA = dAG ).

Signature generation algorithm

1 Calculate e = HASH(m), where HASH is a cryptographic
hash function, such as SHA-1.

2 Select a random integer k from [1, n − 1].

3 Calculate r = x1( mod n), where (x1, y1) = kG .
If r = 0, go back to step 2.

4 Calculate s = k−1(e + rdA)( mod n).
If s = 0, go back to step 2.

5 The signature is the pair (r , s).
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Elliptic Curves

ECDSA (Digital Signature Algorithm) II

Signature verification algorithm

1 Verify that r and s are integers in [1, n − 1].
If not, the signature is invalid.

2 Calculate e = HASH(m), where HASH is the same function
used in the signature generation.

3 Calculate w = s−1( mod n).

4 Calculate u1 = ew( mod n) and u2 = rw( mod n).

5 Calculate (x1, y1) = u1G + u2QA.

6 The signature is valid if r = x1( mod n), invalid otherwise.
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Elliptic Curves

ECDSA (Digital Signature Algorithm)

s = k−1(e + rdA)( mod n)

Hence
k = s−1(e+ rdA)( mod n) = w(e+ rdA) = we+wrdA = u1+ u2dA
since w = s−1, u1 = we and u2 = wr

(x1, y1) = u1G + u2QA

Hence (x1, y1) = u1G + u2dAG = kG
because QA = dAG and k = u1 + u2dA
We conclude that r = x1( mod n) by construction.
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Partial and Full Homomorphic Encryption
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Partial and Full Homomorphic Encryption

Rivest Adleman Dertouzos 1978

“Going beyond the storage/retrieval of encrypted data by
permitting encrypted data to be operated on for interesting
operations, in a public fashion?”
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Partial and Full Homomorphic Encryption

Partial Homomorphic Encryption

Definition (additively homomorphic)

E (m1)⊗ E (m2) ≡ E (m1 ⊕m2).

Applications

• Electronic voting
• Secure Fonction Evaluation
• Private Multi-Party Trust Computation
• Private Information Retrieval
• Private Searching
• Outsourcing of Computations (e.g., Secure Cloud Computing)
• Private Smart Metering and Smart Billing
• Privacy-Preserving Face Recognition
• . . . 71 / 98
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Partial and Full Homomorphic Encryption

Brief history of partially homomorphic cryptosystems

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)
Year Name Security hypothesis Expansion
1977 RSA factorization

1982 Goldwasser - Micali quadratic residuosity log2(n)

1994 Benaloh higher residuosity > 2

1998 Naccache - Stern higher residuosity > 2

1998 Okamoto - Uchiyama p-subgroup 3

1999 Paillier composite residuosity 2

2001 Damgaard - Jurik composite residuosity d+1
d

2005 Boneh - Goh - Nissim ECC Log

2010 Aguilar-Gaborit-Herranz SIVP integer lattices

Expansion factor is the ration ciphertext over plaintext.
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Partial and Full Homomorphic Encryption

Scheme Unpadded RSA

If the RSA public key is modulus m and exponent e, then the
encryption of a message x is given by

E(x) = xe mod m

E(x1) · E(x2) = xe1 x
e
2 mod m

= (x1x2)
e mod m

= E(x1 · x2)
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Partial and Full Homomorphic Encryption

Scheme ElGamal

In the ElGamal cryptosystem, in a cyclic group G of order q with
generator g , if the public key is (G , q, g , h), where h = g x and x is
the secret key, then the encryption of a message m is
E(m) = (g r ,m · hr ), for some random r ∈ {0, . . . , q − 1}.

E(m1) · E(m2) = (g r1 ,m1 · hr1)(g r2 ,m2 · hr2)
= (g r1+r2 , (m1 ·m2)h

r1+r2)

= E(m1 ·m2)

74 / 98



SSI Lecture 2 Public Key Cryptography

Partial and Full Homomorphic Encryption

Fully Homomorphic Encryption

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)
Enc(a, k) + Enc(b, k) = Enc(a+ b, k)

f (Enc(a, k),Enc(b, k)) = Enc(f (a, b), k)

Fully Homomorphic encryption

• Craig Gentry (STOC 2009) using lattices

• Marten van Dijk; Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan using integer

• Craig Gentry; Shai Halevi. ”A Working Implementation of
Fully Homomorphic Encryption”

• · · ·
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Partial and Full Homomorphic Encryption

Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : x0 = q0 · p
Secret key sk = p

Encryption of m ∈ {0, 1}

c = q · p + 2 · r +m

where q is a large random and r a small random.

Decryption of c

m = (c mod p) mod 2
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Partial and Full Homomorphic Encryption

Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : x0 = q0 · p
Secret key sk = p

Encryption of m ∈ {0, 1}

c = q · p + 2 · r +m

where q is a large random and r a small random.

Decryption of c

m = (c mod p) mod 2
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Partial and Full Homomorphic Encryption

Limitations

• Efficiency: HEtest: A Homomorphic Encryption Testing
Framework (2015)
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Identity Based Encryption IBE
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Identity Based Encryption IBE

Boneh/Franklin

Using Weil pairing over elliptic curves and finte fields.

Phases

1 Setup

2 Extract

3 Encryption

4 Decryption
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Identity Based Encryption IBE

Setup

Private Key Generator

Let G1 (with generator P) and G2 two public groups with paring e.

• a random private master-key Km = s ∈ Z∗
q,

• a public key Kpub = sP,

• a public hash function H1 : {0, 1}∗ → G ∗
1 ,

• a public hash function H2 : G2 → {0, 1}n

• M = {0, 1}n and C = G ∗
1 × {0, 1}

n
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Identity Based Encryption IBE

Extract

How to create the public key for ID ∈ {0, 1}∗

• QID = H1 (ID)

• the private key dID = sQID which is given to the user.
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Identity Based Encryption IBE

Encryption

Let Kpub be the PKG’s public key

How to compute c the cipher of m ∈M

• QID = H1 (ID) ∈ G ∗
1 ,

• choose random r ∈ Z∗
q,

• compute gID = e (QID ,Kpub) ∈ G2

• set c = (rP,m ⊕ H2 (g
r
ID))

Kpub is independent of the recipient’s ID.
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Identity Based Encryption IBE

Decryption

Given c = (u, v) ∈ C,

m = v ⊕ H2 (e (dID , u))
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Identity Based Encryption IBE

Correctness

The encrypting entity uses H2 (g
r
ID), while for decryption,

H2 (e (dID , u)) is applied.

H2 (e (dID , u)) = H2 (e (sQID , rP))

= H2 (e (QID ,P)
rs)

= H2 (e (QID , sP)
r )

= H2 (e (QID ,Kpub)
r )

= H2 (g
r
ID)

The security is based on Bilinear Diffie-Hellman Problem (BDH).
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Identity Based Encryption IBE

Sakai-Kasahara: Key Generation

The PKG has

• master secret z where 1 < z < q,

• public key Z = [z ].P

Generation of the private key

KU , for the user with identity IDU as follows:

KU = [
1

z + H1(IDU)
].P

85 / 98



SSI Lecture 2 Public Key Cryptography

Identity Based Encryption IBE

Encryption

To encrypt a non-repeating message M with identity, IDU and Z .

Encryption

• Create: id = H1(IDU)

• The sender generates r using r = H1(M||id)
• Generate

R = [r ].([id ].P + Z )

• Create the masked message:

S = M⊕ H2(g
r )

• The encrypted output is: (R, S)
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Identity Based Encryption IBE

Decryption

To decrypt a message encrypted to IDU , the receiver requires the
private key, KU from the PKG and the public value Z .

Decryption of (R,S)

• Compute id = H1(IDU)

• Compute: w = e(R,KU)

• M = S ⊕ H2(w)

• Verification r = H1(M||id), and only accept the message if:
[r ].([id ].P + Z ) ≡ R
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Identity Based Encryption IBE

Correctness

w = e(R,KU)

= e([r ].([id ].P + Z ),KU)

= e([r ].([id ].P + [z ].P),KU)

= e([r(id + z)].P,KU)

= e([r(id + z)].P, [
1

(id + z)
].P)

= e(P,P)
r(id+z)
(id+z)

= g r

As a result:

S ⊕ H2(w) = (M⊕ H2(g
r ))⊕ H2(w) = M
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Attribute Based Encryption ABE

Setup

Attribute-Based Encryption for Fine-Grained Access Control of
Encrypted Data by Vipul Goyal, Omkant Pandey, Amit Sahai,
Brent Waters, 2006
Pick random numbers t1 . . . tn, y , n is the number of attributes.
Public Key (PK ) is T1 = g t1 , . . .Tn = g tn and Y = e(g , g)y

Master Key (MK ) is t1 . . . tn, y .
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Attribute Based Encryption ABE

Encryption

M a message, γ set of attributes, PK and a random s

E = (γ,MY s , {Ei = T s
i }i∈γ)
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Attribute Based Encryption ABE

Key Generation

For each node x of the tree of γ pick a poynomial qx of dergree
dx = kx − 1 where kx is the threshold value for x .
The root node r has qr (0) = y and for other
qx(0) = qparent(x)(index(x))

Dx = g
qx (0)
ti

where i = att(x)
D = {Dx}x∈gamma
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Attribute Based Encryption ABE

Decryption

With a Decryption key D and the root tree r
if i ∈ γ we have :

DecryptNode(E ,D, r) = e(Dx ,Ei ) = e(g
qx (0)
ti , g s·ti ) = e(g , g)s·qx (0)

DecryptNode(E ,D, r) = e(g , g)y s = Y s

with E = (γ,MY s , {Ei = T s
i }i∈γ)
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Next Time

1 Modern Security Notions
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Conclusion

Thank you for your attention.

Questions ?
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