Security Analysis of Electronic Exams

Rosario Giustolisi⁴, Ali Kassem¹, Gabriele Lenzini⁴, Peter Y. A. Ryan⁴, Jannik Dreier³, Yliès Falcone² and **Pascal Lafourcade**⁵

¹Univ. Grenoble Alpes, VERIMAG, Grenoble, France ²Univ. Grenoble Alpes, Inria, LIG, Grenoble ³Loria, Equipe Cassis, Inria, Nancy ⁴SnT/University of Luxembourg ⁵University Clermont Auvergne, LIMOS

Eurecom, 25th February 2016

Filippo Galanti (Sora in Caserta 1852 - Buenos Aires 1953)

Traditional Exam

Information technology for the assessment of knowledge and skills.

Reality

- Candidate cheating
- Bribed, corrupted or unfair examiners
- Outside attackers
- ▶ ...

... and their Mitigation

Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

Exam centers

▶ Software solutions, e.g. ProctorU

... and their Mitigation

Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

Exam centers

▶ Software solutions, e.g. ProctorU

Yet also the **other threats** are real:

- Atlanta Public Schools cheating scandal (2009)
- Turkish Public Personnel Selection Exam (2010)
- UK student visa tests fraud (2014)

... and their Mitigation

Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

Exam centers

▶ Software solutions, e.g. ProctorU

Yet also the other threats are real:

- Atlanta Public Schools cheating scandal (2009)
- Turkish Public Personnel Selection Exam (2010)
- UK student visa tests fraud (2014)

So what about security of e-exams?

Our Results

Secrypt'14 Authentication Properties: Mark Authenticity, Answer Origin Authentication, Form Authorship, Form Authenticity. Privacy Properties: Anonymous Marking, Question Indistinguishability, Anonymous Examiner, Mark Privacy, Mark Anonymity ISPEC'15 Individual Verifiability: Question Validity, Marking Correctness, Exam-Test Integrity, Exam-Test Markedness, Marking Integrity, Marking Notification Integrity Universal Verifiability: Eligibility (Registration), Marking Correctness Exam-Test Integrity, Exam-Test Markedness, Marking Integrity. RV'15 How can we use previous results on real e-exam?

Monitoring of reals e-exams.

Plan

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exam Conclusion

Plan

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exar Conclusion

E-exam: Players and Organization

Three Roles:

E-exam: Players and Organization

Four Phases:

1. Registration 2. Examination 3. Marking 4. Notification

- Processes in the applied π-calculus [AF01]
- Annotated using events
- Authentication properties as correspondence between events
- Privacy properties as observational equivalence between instances
- Automatic verification using ProVerif [Bla01]

1. Registration

Plan

Introduction

Security

Authentication Properties

Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exan Conclusion

Answer Origin Authentication

All collected answers originate from registered candidates, and only one answer per candidate is accepted.

Form Authorship

Answers are collected as submitted, i.e. without modification.

Form Authenticity

Answers are marked as collected.

Mark Authenticity

The candidate is notified with the mark associated to his answer.

Plan

Introduction

Security

Authentication Properties

Privacy Properties

Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exam Conclusion

Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Exam 2

Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Can be considered with or without dishonest candidates.

Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

Can be considered with or without dishonest examiners and authorities.
Anonymous Examiner

A candidate cannot know which examiner graded his copy. **Definition:**

Can be considered with or without dishonest candidates.

Marks are private.

Definition:

Can be considered with or without dishonest candidates, examiners and authorities.

Mark Anonymity

Marks can be published, but may not be linked to candidates.

Definition:

Can be considered with or without dishonest candidates, examiners and authorities. Implied by Mark Privacy.

Introduction

Security

Huszti & Pethő's Protocol

Conclusion

Application: Huszti & Pethő's Protocol

"A Secure Electronic Exam System" [HP10] using

- ElGamal Encryption
- a Reusable Anonymous Return Channel (RARC) [GJ03] for anonymous communication
- a network of servers providing a timed-release service using Shamir's Secret Sharing:
 - A subset of servers can combine their shares to de-anonymize
 - a candidate after the exam

Goal: ensure

- authentication and privacy
- in presence of **dishonest**
 - candidates
 - examiners
 - exam authorities

Results

Formal Verification with ProVerif [Bla01]:

Property	Result	Time
Answer Origin Authentication	×	< 1 s
Form Authorship	×	< 1 s
Form Authenticity	×	< 1 s
Mark Authenticity	×	< 1 s
Question Indistinguishability	×	< 1 s
Anonymous Marking	×	8 m 46 s
Anonymous Examiner	×	9 m 8 s
Mark Privacy	×	39 m 8 s
Mark Anonymity	×	1h 15 m 58 s

Given its security definition, the $\ensuremath{\mathsf{RARC}}$

- provides anonymity, but not necessarily secrecy
- does not necessarily provide integrity or authentication
- is only secure against passive attackers

Corrupted parties or active attackers can **break secrecy and anonymity**, as the following attack shows.

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exam Conclusion

Application: Remark! Protocol

A recent protocol [GLR14] using

- ElGamal encryption
- an exponentiation mixnet [HS11] to create pseudonyms based on the parties' public keys
 - \Rightarrow allows to encrypt and sign anonymously
- a public append-only bulletin board
- Goal: ensure
 - authentication and integrity
 - privacy
 - verifiability
- in presence of dishonest
 - candidates
 - examiners
 - exam authorities

Results

Formal Verification with ProVerif:

Property	Result	Time
Answer Origin Authentication	\checkmark	< 1 s
Form Authorship	\checkmark	< 1 s
Form Authenticity	\checkmark^1	< 1 s
Mark Authenticity	\checkmark	< 1 s
Question Indistinguishability	\checkmark	< 1 s
Anonymous Marking	\checkmark	2 s
Anonymous Examiner	\checkmark	1 s
Mark Privacy	\checkmark	3 m 32 s
Mark Anonymity	\checkmark	_2

¹after fix ²implied by Mark Privacy

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exam Conclusion

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model

Grenoble Exam Remark! Protocol

Monitoring

Model

Properties

Case Study: UJF E-exam

Conclusion

Exam model

Very abstract model:

- ► Four sets:
 - $\{\mathscr{K}\}$: candidate identities, subset $\{\mathscr{K}\}_r$ registered candidates
 - { \bigcirc }: questions, subset { \bigcirc }_g correct questions
 - ► { **!**}: answers
 - ► {\ A }: marks
- Three relations:
 - ▶ Accepted $\subseteq \{ \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}} \} \times (\{ \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}} \} \times \{ \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}} \})$
 - Marked $\subseteq \{ \overset{\frown}{\mathbb{K}} \} \times (\{ \textcircled{O} \} \times \{ \overset{\frown}{\mathbb{U}} \}) \times \{ \overset{\frown}{\mathbb{A}} \}$
- ► A function Correct : $({ ? } \times { }) \rightarrow { ↓ }$
- An exam protocol is X-verifiable, if we have a sound and complete test for X.

Defining Individual Verifiability

Each candidate knows

- her identity K⁶,
- ► question ②,
- ► answer ♀,
- ► mark 🕂,
- ► and a log 🔤.

Properties:

The candidate can verify that...

 Question Validity: ...she received questions generated by the question committee

$$\mathtt{QV}_{\mathtt{IV}}(\mathscr{C}, \mathcal{O}, \bigcup, \overset{}{ullet}, \overset{}{ullet}, \overset{}{ullet}) \Leftrightarrow (\mathcal{O} \in \{\mathcal{O}\}_g)$$

Defining Individual Verifiability

Each candidate knows

- her identity K⁶,
- ▶ question ?,
- ► answer ♀,
- ► mark 🕂,
- ► and a log 🔤.

Properties:

The candidate can verify that...

 Question Validity: ...she received questions generated by the question committee

$$\mathbb{QV}_{\mathrm{IV}}(\mathscr{E}, \mathcal{O}, \mathbb{Q}, \mathcal{A}, \mathbb{B}) \Leftrightarrow (\mathcal{O} \in \{\mathcal{O}\}_g)$$

Defining Individual Verifiability Cont'd

The candidate can verify that...

 Marking Correctness: ...the mark attributed to her answer is correct.

$$ext{MC}_{ ext{IV}}(extsf{k}, oldsymbol{O}, oldsymbol{O}, oldsymbol{A}, oldsymbol{B}) \Leftrightarrow (ext{Correct}(oldsymbol{O}, oldsymbol{O}) = oldsymbol{A})$$

Exam-Test Integrity: ...her answer was accepted and marked as submitted.

$$\texttt{ETI}_{\texttt{IV}}(\cancel{\&}, \textcircled{O}, \textcircled{O}, \cancel{A}, \textcircled{B}) \Leftrightarrow ((\cancel{\&}, (\textcircled{O}, \textcircled{O})) \in \texttt{Accepted} \land \exists m' : (\cancel{\&}, (\textcircled{O}, \textcircled{O}), m') \in \texttt{Marked})$$

► Exam-Test Markedness: ...her answer was marked. $ETM_{IV}(\overset{\textcircled{\colored}}{=}, \textcircled{\colored}, \overset{\textcircled{\colored}}{=}, \overset{\r{\colored}}{=}, \overset{\r{\colored}$

Defining Individual Verifiability Cont'd

The candidate can verify that...

Marking Integrity: ...her registered mark is the one assigned by the examiner

$$\texttt{MI}_{\texttt{IV}}(\measuredangle, \heartsuit, \bigcup, \measuredangle, \bigstar, \textcircled{m}) \Leftrightarrow \exists m' : ((\bigstar, (\heartsuit, \bigcup), m') \in \texttt{Marked} \land (\bigstar, m') \in \texttt{Assigned})$$

 Marking Notification Integrity: ...she received the assigned mark

$$\texttt{MNI}_{\texttt{IV}}(\cancel{\&}, \textcircled{2}, \textcircled{0}, \cancel{\&}, \cancel{\textcircled{k}}, \textcircled{e}) \Leftrightarrow (\cancel{\&}, \cancel{\bigstar}) \in \texttt{Assigned}$$

An outside auditor only has access to some evidence 🖻.

The auditor can verify that...

Properties:

 Registration: ...all the accepted answers were submitted by registered candidates.

$$\mathbb{R}_{\mathrm{UV}}(\mathbf{E}) \Leftrightarrow \{\mathbf{K}\}_r \supseteq \langle i: (i,x) \in \mathtt{Accepted}
angle$$

► Marking Correctness: ...all the marks were calculated correctly.

$$ext{MC}_{ ext{UV}}(\ oxed{lem}) \Leftrightarrow orall (i,x,m) \in ext{Marked}, ext{Correct}(x) = m$$

Universal Verifiability Cont'd

The auditor can verify that...

Exam-Test Integrity: ...all and only accepted test answers were marked.

 $\texttt{ETI}_{\texttt{UV}}(\textcircled{\texttt{EG}}) \Leftrightarrow \texttt{Accepted} = \langle (i, x) : (i, x, m) \in \texttt{Marked} \rangle$

Exam-Test Markedness: ...all accepted test answers were marked.

$$\texttt{ETM}_{\texttt{UV}}(\textcircled{\textcircled{\texttt{ETM}}}) \Leftrightarrow \texttt{Accepted} \subseteq \langle (i,x) : (i,x,m) \in \texttt{Marked} \rangle$$

Marking Integrity: ...all and only the marks assigned to test answers were registered.

$$\mathtt{MI}_{\mathtt{UV}}(\ \textcircled{\ })\Leftrightarrow \mathtt{Assigned} = \langle (i,m): (i,x,m)\in \mathtt{Marked}
angle$$

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model

Grenoble Exam

Remark! Protocol

Monitoring

Model

Properties

Case Study: UJF E-exam

Conclusion

Case Study I: Grenoble Exam

- Paper-based exam system at the University Joseph Fourier
- Goal: Privacy (Anonymous Marking)
- **Special exam paper** with corner that is folded and glued:

UNIVERSITE LOSEPH FOUDIED	Salle d'examens :	
JUSEPH FOUKIER SCIENCES, TECHNOLOGIE, SANTÉ	N° Place :	
		Man
Session d'examen :		the second se
Date :		Non date
Diplôme :		S. Cathy Call
Epreuve :		All AND AND AND
Appréciation :		
	Note sur 20 :	
"Il est rappelé que l'étudiant pris en flagrant délit	de fraude en examen est passible	de la Section disciplinaire qui peut prononcer les sanctions

Case Study I: Grenoble Exam

- Paper-based exam system at the University Joseph Fourier
- Goal: Privacy (Anonymous Marking)
- **Special exam paper** with corner that is folded and glued:

JOSEPH FOURIER	Salle d'examens :		
SCIENCES. TECHNOLOGIE. SANTÉ	<u>N° Place :</u>	-	
Session d'examen :			
Date :			
Epreuve :			
Appréciation :	Note sur 20 ;		
	-		

Grenoble Exam: Results

Individual Verifiability:

- Input: the candidate's values
- Assumptions: Correct is published after the exam, and candidates can consult their copies
- Verification using ProVerif:

Property	Sound	Complete
Question Validity	× (EA)	\checkmark
Test Answer Integrity	× (EA, E)	\checkmark
Test Answer Markedness	× (E)	\checkmark
Marking Correctness	\checkmark	\checkmark
Mark Integrity	× (EA, E)	\checkmark
Mark Notification Integrity	× (EA)	\checkmark

• No guarantee that the records are correct.

Grenoble Exam: Results Cont'd

Universal Verifiability:

- Assumption: the auditor gets access to the EA's and Es' records and the function Correct.
- Verification using ProVerif:

Property	Sound	Complete
Registration	× (EA)	\checkmark
Exam-Test Integrity	× (EA, E)	\checkmark
Exam-Test Markedness	× (EA, E)	\checkmark
Marking Correctness	× (E)	\checkmark
Mark Integrity	× (EA, E)	\checkmark

No guarantee that the records are correct, EA and E can make up fake records as long as they are coherent.

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exam Conclusion

Individual Verifiability:

- Input: the candidate's values and the messages on the bulletin board
- Assumption: Correct is published after the exam
- Verification using ProVerif:

Property	Sound	Complete
Question Validity	× (EA)	\checkmark
Test Answer Integrity	\checkmark	\checkmark
Test Answer Markedness	\checkmark	\checkmark
Marking Correctness	× (EA)	\checkmark
Mark Integrity	\checkmark	\checkmark
Mark Notification Integrity	\checkmark	\checkmark

Universal Verifiability:

- Input: the messages on the bulletin board, the function Correct, as well as additional data from the EA
- Verification using ProVerif:

Property	Sound	Complete
Registration	\checkmark	\checkmark
Exam-Test Integrity	\checkmark	\checkmark
Exam-Test Markedness	\checkmark	\checkmark
Marking Correctness	\times (EA)	\checkmark
Mark Integrity	\checkmark	\checkmark

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties Case Study: UJF E-exam Conclusion

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model

Properties Case Study: UJF E-exam Conclusion

1. Registration

3. Marking

3. Marking

4. Notification

4. Notification

Plan

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model

Properties

Case Study: UJF E-exam Conclusion

Quantified Event Automata (QEAs)

- Properties expressed as QEAs: event automaton with quantified variables.
- An event automaton is a finite-state machine with transitions labeled by parametric events.
- Transitions may include **guards** and **assignments**.
- We extend the initial definition of QEAs by:
 - 1. variable declaration and initialization before reading the trace
 - 2. global variable shared among all event automaton instances.

Candidate Eligibility

No answer is accepted from an unregistered candidate

 $\Sigma = \{ register(i), accept(i, q, a) \}$

Candidate Eligibility

No answer is accepted from an unregistered candidate

 $\Sigma = \{ register(i), accept(i, q, a) \}$

Candidate Eligibility with Auditing

All candidates that violates the requirement are collected in a set F.

Candidate Registration: an unregistered candidate tried to take the exam.

Candidate Registration: an unregistered candidate tried to take the exam.

Answer Authentication:

- an unsubmitted answer was considered as accepted; or
- more than one answer were accepted from a candidate.

Candidate Registration: an unregistered candidate tried to take the exam.

Answer Authentication:

- an unsubmitted answer was considered as accepted; or
- more than one answer were accepted from a candidate.

Questions Ordering:

a candidate got a question before validating the previous ones.

Properties (continued)

Exam Availability: an answer was accepted outside exam time.

Exam Availability: an answer was accepted outside exam time.

Exam Availability with Flexibility:

 supports different duration and starting time between candidates. Exam Availability: an answer was accepted outside exam time.

Exam Availability with Flexibility:

 supports different duration and starting time between candidates.

Marking Correctness: an answer was marked in a wrong way.

Exam Availability: an answer was accepted outside exam time.

Exam Availability with Flexibility:

 supports different duration and starting time between candidates.

Marking Correctness: an answer was marked in a wrong way.

Mark Integrity:

- an accepted answer was not marked; or
- a candidate was not assigned the corresponding mark.

Plan

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model Properties

Case Study: UJF E-exam

Conclusion

E-exam at Université Joseph Fourier (UJF)

Registration:

- 2 weeks before the exam.
- Using login/password.

E-exam at Université Joseph Fourier (UJF)

Examination in a supervised room

Authentication and answers questions as follows:

- In a fixed order.
- Once validates the current question, he gets the next one.
- He can change the answer unlimited times before validating.
- Once he validates, then he cannot go back and change any of the validated answers.

E-exam at Université Joseph Fourier (UJF)

Marking:

- ► For each question, the professor specifies the correct answer(s).
- For each question, all the answers provided by the candidates are collected.
- Each answer is evaluated by an examiner to 0 or 1.
- The mark for each candidate is calculated as the summation of all the scores attributed to his answers.

Notification:

- The marks are notified to the candidates.
- A candidate can consult his submission and check the marking.

Verification of two real e-exam executions using MarQ tool [RCR15].

```
From the logs: register(i), change(i, q, a), submit(i, q, a), accept(i, q, a).
```

- 4 Properties
 - Candidate Registration
 - Candidate Eligibility
 - Answer Authentication
 - Exam Availability

5 new properties

- Answer Authentication *:
 - All accepted answers are submitted by candidates.
 - Allow the acceptance of the same answer again.
 - But, still forbids the acceptance of a different answer.

- Answer Authentication *:
 - All accepted answers are submitted by candidates.
 - Allow the acceptance of the same answer again.
 - But, still forbids the acceptance of a different answer.
- ► Answer Authentication Reporting: Collects in a set *F* every candidate from which more than one answer are accepted.

- Answer Authentication *:
 - All accepted answers are submitted by candidates.
 - Allow the acceptance of the same answer again.
 - **•** But, still forbids the acceptance of a different answer.
- ► Answer Authentication Reporting: Collects in a set *F* every candidate from which more than one answer are accepted.
- Answer Editing: A candidate cannot change an answer after validation it.

- Answer Authentication *:
 - All accepted answers are submitted by candidates.
 - Allow the acceptance of the same answer again.
 - **•** But, still forbids the acceptance of a different answer.
- ► Answer Authentication Reporting: Collects in a set *F* every candidate from which more than one answer are accepted.
- Answer Editing: A candidate cannot change an answer after validation it.
- Question Ordering *: A candidate cannot changes the answer to a future question before validating the current question.

- Answer Authentication *:
 - All accepted answers are submitted by candidates.
 - Allow the acceptance of the same answer again.
 - **•** But, still forbids the acceptance of a different answer.
- ► Answer Authentication Reporting: Collects in a set *F* every candidate from which more than one answer are accepted.
- Answer Editing: A candidate cannot change an answer after validation it.
- Question Ordering *: A candidate cannot changes the answer to a future question before validating the current question.
- Acceptance Order: A candidate has to validate the questions in order, but he can skip some questions.

Results: Exam 1

233 students, 40875 events

Property	Result	Time (ms)
Candidate Registration	\checkmark	538
Candidate Eligibility	\checkmark	517
Answer Authentication	×	310
Exam Availability	\checkmark	518
Answer Authentication *	\checkmark	742
Answer Authentication Reporting	×[1]	654
Answer Editing	\checkmark	641
Question Ordering *	×	757
Acceptance Order	\checkmark	697

Results: Exam 2

90 students, 4641 events

Property	Result	Time (ms)
Candidate Registration	\checkmark	230
Candidate Eligibility	\checkmark	214
Answer Authentication	\checkmark	275
Exam Availability	×[1]	237
Answer Authentication *	\checkmark	223
Answer Authentication Reporting	\checkmark	265
Answer Editing	×	218
Question Ordering *	×	389
Acceptance Order	\checkmark	294

Plan

Introduction

Security

Authentication Properties Privacy Properties Huszti & Pethő's Protocol Remark! Protocol

Verifiability

Model Grenoble Exam Remark! Protocol

Monitoring

Model

Properties

Case Study: UJF E-exam

Conclusion

Conclusion

- Formal model for security and verifiability
- Security Analysis of 2 e-exams and one "real" exam
- Trust parties are required for verifiability
- Monitoring analysis of 2 real e-exams at UJF using MarQ tool
- Discovering some misbehaviours and flaws

Conclusion

- Formal model for security and verifiability
- Security Analysis of 2 e-exams and one "real" exam
- Trust parties are required for verifiability
- Monitoring analysis of 2 real e-exams at UJF using MarQ tool
- Discovering some misbehaviours and flaws

Designing secure protocols is difficult

Conclusion

- Formal model for security and verifiability
- Security Analysis of 2 e-exams and one "real" exam
- Trust parties are required for verifiability
- Monitoring analysis of 2 real e-exams at UJF using MarQ tool
- Discovering some misbehaviours and flaws

Designing secure protocols is difficult

Use formal methods !

- Analyze more existing e-exams from other universities.
- Perform on-line verification with our monitors during live e-exams.
- Study more expressive and quantitative properties that can detect colluded students through similar answer patterns.
- Automatic transformation from verifiability to monitors.
Thank you for your attention!

Questions?

pascal.lafourcade@udamail.fr

Mobile values, new names, and secure communication. In *POPL*, pages 104–115. ACM, 2001.

Bruno Blanchet.

An efficient cryptographic protocol verifier based on prolog rules.

In CSFW, pages 82–96. IEEE Computer Society, 2001.

P. Golle and M. Jakobsson.

Reusable anonymous return channels.

In *Proc. of the 2003 ACM workshop on Privacy in the electronic society*, WPES '03, pages 94–100, New York, NY, USA, 2003. ACM.

R. Giustolisi, G. Lenzini, and P.Y.A. Ryan.
 Remark!: A secure protocol for remote exams.
 In Security Protocols XXII, LNCS. Springer, 2014.

to appear. Draft
http://apsia.uni.lu/stast/codes/exams/preSPW14.pdf.

A. Huszti and A. Pethő.

A secure electronic exam system.

Publicationes Mathematicae Debrecen, 77:299–312, 2010.

R. Haenni and O. Spycher.

Secure internet voting on limited devices with anonymized dsa public keys.

In Proc. of the 2011 Conference on Electronic Voting Technology/Workshop on Trustworthy Elections, EVT/WOTE'11. USENIX, 2011.

Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at runtime with QEA.

In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS, London, UK, pages 596–610, 2015.