LOCAL SEARCH WITH WEIGHTING SCHEMES (CG:SHOP 2022 COMPETITION)

Florian Fontan, Pascal Lafourcade, <u>Luc Libralesso</u>, and Benjamin Momège libralesso.l@gmail.com>

CP 2021 October 2020

Vertex coloring problem

Only solving the vertex coloring problem

Local search for the vertex coloring problem

- Popular approach
- In many SoTA approaches

Outline

- 1. Find a starting solution (greedy)
- 2. Remove a color (become infeasible)
- 3. Perturbations to restore feasibility
- 4. Repeat

Local search schemes

Conflict-based

- Every vertex is colored
- Conflicting edges allowed

min. nb of conflicting edges

Partial-coloring-based

- No conflicting edges
- Some vertices uncolored

min. nb of uncolored vertices

Weighting schemes

Local search can loop over some states. How to avoid this?

Rationale

- Penalize often seen conflicts / uncolored vertices.
- Minimize sum of weights instead of the number.

Conflict-based

- Weights on edges
- ► +1 each time its endpoints conflict

Partial-coloring-based

- Weights on vertices
- ► +1 each time it is uncolored

Partial-coloring based wins...

But not always

source code: https://github.com/librallu/dogs-color

LOCAL SEARCH WITH WEIGHTING SCHEMES (CG:SHOP 2022 COMPETITION)

Florian Fontan, Pascal Lafourcade, <u>Luc Libralesso</u>, and Benjamin Momège libralesso.l@gmail.com>

CP 2021 October 2020

Results (ARPD)

Instance class	conflict	partial-coloring	DSATUR	orientation greedy
reecn	1.04	0.0	24.31	16.41
rsqrp	0.51	0.11	24.03	5.89
rsqrpecn	0.0	0.0	24.86	18.08
rvisp	0.06	0.99	25.06	26.94
rvispecn	0.0	0.14	30.9	49.93
sqrp	1.06	0.0	31.22	4.9
sqrpecn	0.88	0.03	22.74	14.11
visp	0.19	1.77	29.23	27.6
vispecn	0.49	0.08	34.75	54.66

Table 1: Average relative percentage deviation to the best solutions we obtained