Shaken, not Stirred: Automated Discovery of Subtle Attacks on Protocols using Mix-Nets

Jannik Dreier Pascal Lafourcade Dhekra Mahmoud

How can we be **convinced** that a **protocol** is a **good** one?

How can we be convinced that a protocol is a good one?

Publish the protocol and wait until someone finds an attack.

How can we be convinced that a protocol is a good one?

Publish the protocol and wait until someone finds an attack.

Prove that there is no attack.

How can we be convinced that a protocol is a good one?

Publish the protocol and wait until someone finds an attack.

Prove that there is no attack.

Usual problems with proofs:

- proving is a difficult task,
- pencil-and-paper proofs are error-prone.

How can we be convinced that a proof is a good one?

How can we be convinced that a protocol is a good one?

Publish the protocol and wait until someone finds an attack.

Prove that there is no attack.

Usual problems with proofs:

proving is a difficult task,

pencil-and-paper proofs are error-prone.

How can we be **convinced** that a **proof** is a **good** one?

Publish the proof and wait until someone finds a mistake.

How can we be convinced that a protocol is a good one?

Publish the protocol and wait until someone finds an attack.

Prove that there is no attack.

Usual problems with proofs:

- proving is a difficult task,
- pencil-and-paper proofs are error-prone.

How can we be **convinced** that a **proof** is a **good** one?

Computer-Aided Security: ProVerif

Shaken, not Stirred

Automated Discovery of Subtle Attacks on Protocols using Mix-Nets

Shaken

Stirred

Exponentiation Mix-Nets

Haenni *et al.* USENIX'11

El Gamal, $pk_i = g^{sk_i}$

Attack Exponentiation Mix-Nets: Pfitzmann 1994, Rakeei et al. 2022

Attack against Re-encryption Mix-Nets Park et al. 1994 for voting Candidates are public Decryption by the vote authority $C_k = (g^{r_k}, m_k h^{r_k})$ $\begin{array}{c} \mathcal{A}, a \longrightarrow \widehat{C_k} \\ V_1, m_1 \longrightarrow C_1 \end{array}$ C'_2 m_2 1234 C'_k $m_k \rightarrow (m_k)^a$ C'_2 $V_2, m_2 \rightarrow C_2$ m_2 $- M_m$ M_0 M_1 ٠

 $V_k, m_k \rightarrow$

 $V_n, m_n -$

 C_k

$$\widehat{C_k} = (C_k)^a = (g^{r_k a}, (m_k h^{r_k})^a)) = (g^{r_k a}, m_k^a h^{r_k a}))$$

 C'_n

 $\frac{1}{\widehat{C}}$

 m_n

т

Contributions

Can we find automatically such "cryptographic" attacks?

Contributions

Can we find automatically such "cryptographic" attacks?

ProVerif models for Mixnet:

- Exponentiation
- ElGamal
- Weak and Strong NIZKP

Applications:

e-voting

Crypto Santa

Exponentiation and Signature Modeling

Exponentiation

$$(g^{x})^{y} = (g^{y})^{x}$$

 $((g^{x})^{y})^{z} = ((g^{x})^{z})^{y}$
 $= ((g^{z})^{x})^{y}$
 $= ((g^{z})^{y})^{x}$
 $= ((g^{y})^{z})^{x}$
 $= ((g^{y})^{x})^{z}$

Signature

$$pk = g^{sk}$$
, $\sigma = sign(m, g, sk)$, $checksign(\sigma, pk) = m$

getmess(sign(m, X, sk)) = mchecksign(sign(m, X, sk), X, exp(X, sk)) = m

exp(exp(g, x), y) = exp(exp(g, y), x)

exp(exp(exp(g, x), y), z) = exp(exp(exp(g, x), z), y)

ElGamal Encryption Modeling

ElGamal

- Encryption and decryption
 - $pk = g^{sk}, c = (g^r, (g^{sk})^r m)$

$$dec(enc(m, X, exp(X, sk), r), X, sk) = m$$

• Re-Encryption with $g^{r'}$ $c' = (g^{r'}g^r, g^{r'}g^{sk}m)$

reenc(enc(m, X, exp(X, sk), r), r', X, exp(X, sk)) = enc(m, X, exp(X, sk), sum(r, r'))

 $\begin{aligned} c^{a} &= ((g^{r})^{a}, (g^{sk})^{a}m^{a}) \\ & EXP(enc(m, X, exp(X, x), r), a) = enc(exp(m, a), X, exp(X, x), mult(r, a)) \end{aligned}$

Non-Interactive ZKP (NIZKP)

Weak NIZKP

Public parameter: $pk = g^{sk}$

- Construction with *sk* and *a* random $A = g^a$, c = H(A), f = a + c.sk, $\pi = (c, f)$
- ► Verification of $\pi = (c, f)$ with pk, check $H(g^f \cdot pk^{-c}) \stackrel{?}{=} c$ $H(g^f \cdot pk^{-c}) = H(g^{a+c\cdot sk} \cdot g^{-sk\cdot c}) = H(g^a) = c$

Fake a Weak NIZKP

- Construction with A' and f' two randoms c' = H(A') and produce $\pi' = (c', f')$
- Verification for $pk' = (g^{f'} \cdot A'^{-1})^{c'^{-1}}$ $H(g^{f'} \cdot pk'^{-c'}) = H(g^{f'} \cdot ((g^{f'} \cdot A'^{-1})^{c'^{-1}})^{-c'}) = H(A') = c'$

Allows attack against Exponentiation Mix-Nets with Weak NIZKP Strong NIZKP: c = H(A, pk)

Non-Interactive ZKP

Weak NIZPK attack: Link of pk with $pk' = pk^{-c'^{-1}}$ $A' = g^{f'}.pk$ and c' = H(A') then $\pi' = (c', f')$ Verification of $\pi' = (c', f')$ with pk', check $H(g^{f'}.pk'^{-c'}) \stackrel{?}{=} c'$: $H(g^{f'}.pk'^{-c'}) = H(A'.pk^{-1}(pk^{-c'^{-1}})^{-c'}) = H(A'.pk^{-1}.pk) = H(A')$

ProVerif Modelling

• Weak ZKP:
$$c = H(A)$$

 $check(wzkp(A, X, sk), X, exp(X, sk), H(A)) = true$

Weak modeling allows the intruder to choose the value of the public key !

Results on Mixnets

Protocol	ZKP	Result	Time
	without	×	2 s
Exponentiation Mix-Nets	weak	×	1 m 6 s
	strong	\checkmark	3 s
	without	×	1 s
Re-encryption Mix-Nets	weak	×	2 s
	strong	\checkmark	1 s

Applications

1234

	Protocol	ZKP	Property	Result	Time
	Remark!	without	Anonymous Marking	×	3 m 16 s
			Anonymous Examiner	×	4 m 19 s
		weak	Anonymous Marking	×	9 m 35 s
			Anonymous Examiner	×	9 m 23 s
		strong	Anonymous Marking	\checkmark	11 s
			Anonymous Examiner	\checkmark	7 s
	Haenni Voting	without		×	4 m 35 s
		weak	Vote Privacy	×	9 m 35 s
		strong		\checkmark	14 s
	weak strong	weak	Anonymous Shuffling	×	4 m 6 s
		strong		\checkmark	9 s
	Estonian IVXV with wea stro	without		×	1 s
		weak	Vote Privacy	×	25 s
		strong		\checkmark	8 s

Conclusion

New ProVerif models for:

- Exponentiation Mixnets
- ► Re-Encryption Mixnets
- ► Weak ZKP
- Strong ZKP
- ElGamal
- Signature

Applications

Crypto Santa

Thanks for your attention!