Shaken, not Stirred: Automated Discovery of Subtle Attacks

on Protocols using Mix-Nets

Jannik Dreier Pascal Lafourcade Dhekra Mahmoud

.,l
A 000 10
UNIVERSITE
Clermont

Auvergne
ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
usenix susenix usenix

ASSOCIATION ASSOCIATION P Fssocmion

AVAILABLE REPRODUCED

€y

S August 2024

1/15

Designing Secure Schemes is Difficult!
How can we be convinced that a protocol is a good one?

2/15

Designing Secure Schemes is Difficult!
How can we be convinced that a protocol is a good one?

V Publish the protocol and wait until someone finds an attack.

2/15

Designing Secure Schemes is Difficult!
How can we be convinced that a protocol is a good one?

3(Publish the protocol and wait until someone finds an attack.

V Prove that there is no attack.

2/15

Designing Secure Schemes is Difficult!
How can we be convinced that a protocol is a good one?

3(Publish the protocol and wait until someone finds an attack.

V Prove that there is no attack.

Usual problems with proofs:
» proving is a difficult task,

» pencil-and-paper proofs are error-prone.

How can we be convinced that a proof is a good one?

2/15

Designing Secure Schemes is Difficult!
How can we be convinced that a protocol is a good one?

3(Publish the protocol and wait until someone finds an attack.

V Prove that there is no attack.
Usual problems with proofs:

» proving is a difficult task,

» pencil-and-paper proofs are error-prone.

How can we be convinced that a proof is a good one?

\/ Publish the proof and wait until someone finds a mistake.

2/15

Designing Secure Schemes is Difficult!
How can we be convinced that a protocol is a good one?

3(Publish the protocol and wait until someone finds an attack.

V Prove that there is no attack.
Usual problems with proofs:

» proving is a difficult task,

» pencil-and-paper proofs are error-prone.

How can we be convinced that a proof is a good one?

3(Publish the proof and wait until someone finds a mistake. Py
v e b S
Computer-Aided Security: ProVerif .‘

2/15

Shaken, not Stirred
Automated Discovery of Subtle Attacks on Protocols using Mix-Nets

Shaken Stirred

3/15

Exponentiation Mix-Nets
El Gamal, pk; = gk

S — phi | phs'
2T PR My ik
Sn — pkn T pky'

Haenni et al. USENIX'11 —

Pk
_______ T] phh |
m L
mm pkli |8
U
I~
i=1

with sk;, everyone can check (g")%ki = pk
For anonymity and unlinkability of voters

Shaken

o

Stirred

4/15

Attack Exponentiation Mix-Nets: Pfitzmann 1994, Rakeei et al. 2022

A H Pk
51— pki
ﬁg SQ%kaHMO_’Ml -
i'j S —+ pks
SHAKEN
NOT
STIRRED

5/15

Attack against Re-encryption Mix-Nets Park et al. 1994 for voting
Candidates are public

Decryption by the vote authority
Ck = (g, mych')

Aa—+G !

e

e ez P2

Vi,m — G - G

' Vo,my —+ G G
L Mo | My S M|

ﬁy Vi, i — Cyc LG
Q!‘ men‘i’cn E : a/.

G = (G = (8™, (meh™))) = (877, mi* ™))

6/15

Contributions
Can we find automatically such “cryptographic” attacks? ﬁ il J |m

7/15

Contributions

Can we find automatically such “cryptographic” attacks?

2,
B

ammn, {
0

I

ProVerif models for Mixnet:
» Exponentiation
» ElGamal
» Weak and Strong NIZKP

g
=

Applications:
! 7= O
7 -
T
. <
e-voting e-exam Crypto Santa

7/15

Exponentiation and Signature Modeling

Exponentiation

(8°) = (&) exp(exp(g; x),y) = exp(exp(g, y), x)
((&*))* X)) exp(exp(exp(g, x),y), z) = exp(exp(exp(g, x),z),y)

z

= (7))
((&*))
((g*))
((e”")?)
((e"))

X

<

X

X

Y\z
Y

X

N

Signature
pk = g, o0 = sign(m, g, sk), checksign(c, pk) = m
getmess(sign(m, X, sk)
checksign(sign(m, X, sk), X, exp(X, sk)

~— —

8/ 15

ElGamal Encryption Modeling

ElGamal
» Encryption and decryption

pk =g, c=(g",(g%) 'm)

> Re-Encryption with g"’
o = (gr’gr’ gr’gskm)
reenc(enc(m, X, exp(X,sk),r), r', X, exp(X, sk)) = enc(m, X, exp(X, sk),sum(r,r"))

= ((g")7 (g%)?m?)
EXP(enc(m, X, exp(X,x),r),a) = enc(exp(m, a), X, exp(X, x), mult(r, a))

9/15

Non-Interactive ZKP (NIZKP)

Weak NIZKP
Public parameter: pk = g

» Construction with sk and a random
A=g? c=H(A), f =a+csk, m=(cf)

> Verification of m = (c, f) with pk, check H(g’ - pk—¢)
H(g" - pk=¢) = H(g?" - g=¢) = H(g?) = c

2
=cC

Fake a Weak NIZKP
» Construction with A’ and ' two randoms
¢’ = H(A’) and produce ' = (¢, ')
> Verification for pk’ = (g’ ~A’_1)C/_:l
H(g" - pk~<) = H(g" - (8" - A1) ")) = H(A) = ¢
Allows attack against Exponentiation Mix-Nets with Weak NIZKP
Strong NIZKP: ¢ = H(A, pk)

SHAKEN
NOT
STIRRED

10/ 15

Non-Interactive ZKP

Weak NIZPK attack: Link of pk with pk’ = pk=<"
A = gf'.pk and ¢ = H(A') then ' = (c/, ')

Verification of 7/ = (¢, f') with pk’, check H(g"" .pk'=<") e :,';
H(g" .pk'=<') = H(A".pk=1(pk=<"")=¢") = H(A'.pk~1.pk) = H(A) =

ProVerif Modelling
» Weak ZKP: ¢ = H(A)

check(wzkp(A, X, sk), X, exp(X, sk), H(A)) = true gj

—

» Strong ZKP: ¢ = H(A, pk)
check(szkp(A, g,sk), g, exp(g, sk), H(A, g, exp(g, sk))) = true

Weak modeling allows the intruder to choose the value of the public key !

11/ 15

Results on Mixnets

s

N

Protocol H ZKP ‘ Result ‘ Time ‘
without X 2s
Exponentiation Mix-Nets weak X Imb6s
strong v 3s
without X ls
Re-encryption Mix-Nets weak X 2s
strong v ls

12 /15

o g
Applications .
] Protocol H ZKP ‘ Property ‘ Result ‘ Time ‘
Remark! . Anonymous Marking X 3m16s
without Anonymous Examiner X 4m1l9s
= © weak Anonymous Marking X O9m35s
o Anonymous Examiner X 9m 23 s
T \ J;f. Anonymous Marking v 11s
i . s strong :
— Anonymous Examiner v 7s
%0 ["Haenni Voting || without X 4m35s
! weak Vote Privacy X 9m35s
strong v 14 s
o weak . X 4mb6s
B strong Anonymous Shuffling 7 s
] Estonian IVXV || without X 1s
’ weak Vote Privacy X 25 s
strong v 8s

13/ 15

Conclusion

T N§
New ProVerif models for: . w
» Exponentiation Mixnets T 1234 "
» Re-Encryption Mixnets o
> Weak ZKP ')
» Strong ZKP .
» ElGamal F’
» Signature ’j
Applications

\=
&)

P Y

e-votin e-exam rypto Santa
ting Crypto Sant)
14 15

SHAKEN
NOT
STIRRLED

Thanks for your attention!

15 / 15

