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Designing Secure Schemes is Difficult!
How can we be convinced that a protocol is a good one?
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Exponentiation Mix-Nets
El Gamal, pk; = gk
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Attack Exponentiation Mix-Nets: Pfitzmann 1994, Rakeei et al. 2022
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Attack against Re-encryption Mix-Nets Park et al. 1994 for voting
Candidates are public

Decryption by the vote authority
Ck = (g, mych')
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Contributions
Can we find automatically such “cryptographic” attacks? ﬁ il J |m
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ProVerif models for Mixnet:
» Exponentiation
» ElGamal
» Weak and Strong NIZKP
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Exponentiation and Signature Modeling

Exponentiation

(8°) = (&) exp(exp(g; x),y) = exp(exp(g, y), x)
((&*))* X)) exp(exp(exp(g, x),y), z) = exp(exp(exp(g, x),z),y)
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Signature
pk = g, o0 = sign(m, g, sk), checksign(c, pk) = m
getmess(sign(m, X, sk)
checksign(sign(m, X, sk), X, exp(X, sk)
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ElGamal Encryption Modeling

ElGamal
» Encryption and decryption

pk =g, c=(g",(g%) 'm)

> Re-Encryption with g"’
o = (gr’gr’ gr’gskm)
reenc(enc(m, X, exp(X,sk),r), r', X, exp(X, sk)) = enc(m, X, exp(X, sk),sum(r,r"))

= ((g")7 (g%)?m?)
EXP(enc(m, X, exp(X,x),r),a) = enc(exp(m, a), X, exp(X, x), mult(r, a))
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Non-Interactive ZKP (NIZKP)

Weak NIZKP
Public parameter: pk = g

» Construction with sk and a random
A=g? c=H(A), f =a+csk, m=(cf)

> Verification of m = (c, f) with pk, check H(g’ - pk—¢)
H(g" - pk=¢) = H(g?" - g=¢) = H(g?) = c

2
=cC

Fake a Weak NIZKP
» Construction with A’ and ' two randoms
¢’ = H(A’) and produce ' = (¢, ')
> Verification for pk’ = (g’ ~A’_1)C/_:l
H(g" - pk~<) = H(g" - (8" - A1) ")) = H(A) = ¢
Allows attack against Exponentiation Mix-Nets with Weak NIZKP
Strong NIZKP: ¢ = H(A, pk)
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Non-Interactive ZKP

Weak NIZPK attack: Link of pk with pk’ = pk=<"
A = gf'.pk and ¢ = H(A') then ' = (c/, ')

Verification of 7/ = (¢, f') with pk’, check H(g"" .pk'=<") e :,';
H(g" .pk'=<') = H(A".pk=1(pk=<"")=¢") = H(A'.pk~1.pk) = H(A) =

ProVerif Modelling
» Weak ZKP: ¢ = H(A)

check(wzkp(A, X, sk), X, exp(X, sk), H(A)) = true gj

—

» Strong ZKP: ¢ = H(A, pk)
check(szkp(A, g,sk), g, exp(g, sk), H(A, g, exp(g, sk))) = true

Weak modeling allows the intruder to choose the value of the public key !
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Results on Mixnets
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without X 2s
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without X ls
Re-encryption Mix-Nets weak X 2s
strong v ls
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Applications .
] Protocol H ZKP ‘ Property ‘ Result ‘ Time ‘
Remark! . Anonymous Marking X 3m16s
without Anonymous Examiner X 4m1l9s
= © weak Anonymous Marking X O9m35s
o Anonymous Examiner X 9m 23 s
T \ J;f. Anonymous Marking v 11s
i . s strong :
— Anonymous Examiner v 7s
%0 ["Haenni Voting || without X 4m35s
! weak Vote Privacy X 9m35s
strong v 14 s
o weak . X 4mb6s
B strong Anonymous Shuffling 7 s
] Estonian IVXV || without X 1s
’ weak Vote Privacy X 25 s
strong v 8s
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Conclusion
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Thanks for your attention!
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