$\begin{array}{c} \mbox{Motivation}\\ \mbox{Extended Dolev Yao Model with} \oplus \mbox{and Homomorphism}\\ \mbox{Notion of Locality}\\ \mbox{One-step Deductibility}\\ \mbox{One-step Deductibility}\\ \mbox{S-Locality}\\ \mbox{Extension (C) = (F)}\\ \mbox{Conclusion} \end{array}$

Intruder Deduction for *AC*-like Equational Theories with Homomorphism

Pascal Lafourcade (joint work with Denis Lugiez & Ralf Treinen)

LSV E.N.S. Cachan & LIF University of Provence Marseille

RTA'05 : 20 April 2005

Motivation

Extended Dolev Yao Model with \oplus and Homomorphism Notion of Locality One-step Deductibility S-Locality Extension (C) = (F) Conclusion

Intruder Deduction State of the Art & Our Goal

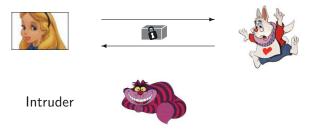
Alice communicates with The Whiterabbit via a network.

Motivation

Extended Dolev Yao Model with \oplus and Homomorphism Notion of Locality One-step Deductibility S-Locality Extension (C) = (F) Conclusion

Intruder Deduction State of the Art & Our Goal

Alice communicates with The Whiterabbit via a network.



- Active Intruder : Eaveasdrop, compose and play messages.
- Passive Intruder : Just eavesdrop messages.

Intruder deduction = Passive Intruder + Secrecy Property

Motivation

Intruder Deduction State of the Art & Our Goal

Abelian Group (AG) [Comon-Shmatikov 03] PTIME

- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $x \oplus y = y \oplus x$ Commutativity
- $x \oplus 0 = x$ Unity
- $x \oplus I(x) = 0$ Inversion

XOR (ACUN) [Rusinowitch & al 03] [Comon-Shmatikov 03] PTIME

- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $x \oplus y = y \oplus x$ Commutativity
- $x \oplus 0 = x$ Unity
- $x \oplus x = 0$ Nilpotency

Homomorphism [Comon-Treinen 03] PTIME

• $\{\langle a, b \rangle\}_k = \langle \{a\}_k, \{b\}_k \rangle$

Our Goal Add Homomorphism over \oplus for AC, ACUN and AG

Motivation Extended Dolev Yao Model with ⊕ and Homomorphism Notion of Locality One-step Deductibility S-Locality Extension (C) = (F) Conclusion	Dolev Yao with Xor and Homomorphism Extended Model
---	---

(A)
$$\frac{u \in T}{T \vdash_E u}$$
 (P) $\frac{T \vdash_E u \quad T \vdash_E v}{T \vdash_E \langle u, v \rangle}$

$$(UL) \qquad \frac{T \vdash_{E} \langle u, v \rangle}{T \vdash_{E} u} \qquad (UR) \qquad \frac{T \vdash_{E} \langle u, v \rangle}{T \vdash_{E} v}$$

(C)
$$\frac{T \vdash_E u \quad T \vdash_E v}{T \vdash_E \{u\}_v}$$

(F)
$$\frac{T \vdash_E u}{T \vdash_E f(u)}$$

(GX)
$$\frac{T \vdash_E u_1 \cdots T \vdash_E u_n}{T \vdash_E u_1 \oplus \cdots \oplus u_n}$$

(D)
$$\frac{T \vdash_E \{u\}_v \quad T \vdash_E v}{T \vdash_F u}$$

$$(\mathsf{Eq}(\mathsf{E})) \quad \frac{T \vdash_E u \quad u =_E v}{T \vdash_F v}$$

Equational Theory E = (R, S) $R = \{x \oplus x \to 0, x \oplus 0 \to x, f(x \oplus y) \to f(x) \oplus f(y), f(0) \to 0\}$ S = (AC)R is convergent and terminating modulo S = (AC)

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

 S-Locality

 Extension (C) = (F)

 Conclusion

$$(A) \qquad \frac{u \in T}{T \vdash u \downarrow}$$

$$(\mathsf{UL}) \qquad \frac{T \vdash r}{T \vdash u \downarrow} \quad if \langle u, v \rangle \to^{!} r$$

(C)
$$\frac{T \vdash u \quad T \vdash v}{T \vdash \{u\}_v \downarrow}$$

$$(\mathsf{F}) \qquad \frac{T \vdash u}{T \vdash f(u) \downarrow}$$

$$(\mathsf{P}) \qquad \frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle \downarrow}$$

$$(\mathsf{UR}) \quad \frac{T \vdash r}{T \vdash v \downarrow} \quad if \langle u, v \rangle \to^{!} r$$

(D)
$$\frac{T \vdash r \quad T \vdash v}{T \vdash u \downarrow} \quad if \{u\}_v \to^! r$$

$$(\mathsf{GX}) \quad \frac{T \vdash u_1 \quad \cdots \quad T \vdash u_n}{T \vdash (u_1 \oplus \ldots \oplus u_n) \downarrow}$$

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

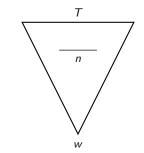
 S-Locality

 Conclusion

 Conclusion

Let $S: T \to T$

• A proof P of $T \vdash w$ is S-local :



• A Proof System is S-local

 $\forall n \in P, n \in S(T \cup \{w\})$

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

 S-Locality

 Extension (C) = (F)

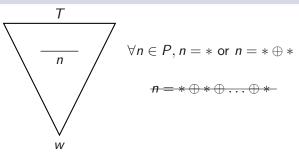
 Conclusion

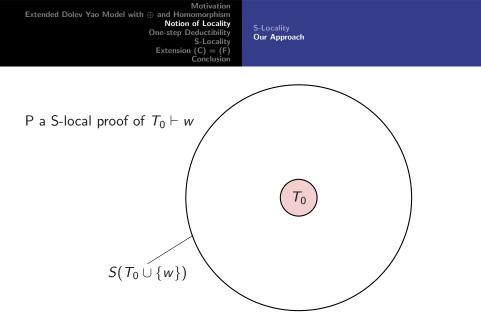
S-Locality Our Approach

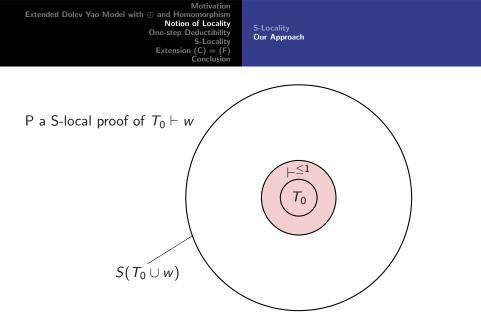
$$atoms(a \oplus b \oplus \langle d, c \rangle) = \{a, b, \langle d, c \rangle\} atoms(\langle d \oplus a, c \rangle) = \{\langle d \oplus a, c \rangle\}$$

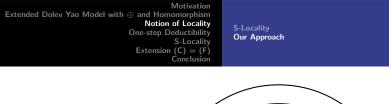
Definition

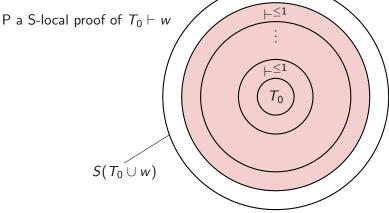
Binary proof: all nodes have at most two atoms.











 $\begin{array}{c} & Motivation \\ \mathsf{Extended \ Dolev \ Yao \ Model \ with \ \oplus \ and \ Homomorphism \\ \textbf{Notion \ of \ Locality} \\ One-step \ Deductibility \\ S-Locality \\ \mathsf{Extension} \ (\mathsf{C}) = (\mathsf{F}) \\ \mathsf{Conclusion} \end{array}$

S-Locality Our Approach

Extended McAllester's Theorem

Let P be a proof system, if:

- one-step deducibility is decidable with complexity K_1 ,
- the size of S(T) is computable with complexity K_2 ,
- P is S-local,

then provability in the proof system P is decidable in $max(K_1, K_2)$.

Example

Let $T = \{a_1 \oplus a_2 \oplus a_3, a_1 \oplus a_4, a_2 \oplus a_4\}$ and $w = a_1 \oplus a_2$

 $\begin{array}{rcl} x_0 & : & a_1 \oplus a_2 \oplus a_3 \\ x_1 & : & a_1 \oplus a_4 \\ x_2 & : & a_2 \oplus a_4 \end{array}$

We obtain the following system of equations :

 $\begin{cases} a_1 : x_0 + x_1 = 1 \\ a_2 : x_0 + x_2 = 1 \\ a_3 : x_0 = 0 \\ a_4 : x_1 + x_2 = 0 \end{cases}$

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

 S-Locality

 Extension (C) = (F)

 Conclusion

ACh Case:

- Binary case : One-step deductibility is **PTIME** (Directly).

ACUNh Case:

Solvability of a system of linear equations over $\mathbb{Z}/2\mathbb{Z}$ is PTIME[KKS87].

AGh Case:

Solvability of a system of linear equations over \mathbb{Z} is PTIME[Sch86].

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

 S-Locality

 Extension (C) = (F)

 Conclusion

Definition of Subterms ACh Locality ACUNh Locality AGh

Definition of $S_T(t)$

 $S_T(T)$ is the smallest set such that:

• $t \in S_T(t)$

•
$$\langle u, v \rangle \in S_T(t) \Rightarrow u, v \in S_T(t)$$

•
$$\{u\}_v \in S_T(t) \Rightarrow u, v \in S_T(t)$$

•
$$u = u_1 \oplus \ldots \oplus u_n \in S_T(t) \Rightarrow \operatorname{atoms}(u) \subseteq S_T(t)$$

•
$$f(u) \downarrow \in S_T(t) \Rightarrow u \in S_T(t)$$

• $f(u_1) \oplus \ldots \oplus f(u_n) \in S_T(t) \Rightarrow u_1 \oplus \ldots \oplus u_n \in S_T(t)$

Computing $S_T(T)$ is polynomial in size of T.

Motivation Extended Dolev Yao Model with ⊕ and Homomorphism Notion of Locality One-step Deductibility S-Locality Extension (C) = (F) Conclusion

Definition of Subterms ACh Locality ACUNh Locality AGh

Lemma :

If $t \in S_T(u) \setminus \{u\}$ then $\forall v, t \in S_T(u \oplus v)$

Notice: False in ACUNh and AGh.

Example

This lemma is not satisfied in the ACUNh case: $u = a \oplus b \oplus c, v = c \oplus b \Rightarrow u \oplus v = a \text{ and } b \notin S_T(u \oplus v)$

 S_T -Locality for ACh

Counter-Example with S_T and ACUNh

Example

Problem: $f(u) \oplus f(v) \notin S_T(T \cup \{w\})$.

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

 S-Locality

 Extension (C) = (F)

 Conclusion

Definitions of \oplus -lazy and \oplus -eager Proof

- \oplus -lazy proof : flat and no (GX) immediately above (F) in P.
- \oplus -eager proof : flat and at most one (F) immediately above (GX).

Transformation Rule

$$\begin{array}{cccc} T \vdash x_{1} \dots T \vdash x_{n} & T \vdash x_{1} & T \vdash x_{n} \\ (GX) & & & \\ T \vdash x_{1} \oplus \dots \oplus x_{n} & \implies & \\ (F) & & & \\ T \vdash f(x_{1}) \oplus \dots \oplus f(x_{n}) & & \\ \end{array}$$

Figure: Transformation of (GX)-(F) into (F)-(GX)

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

 S-Locality

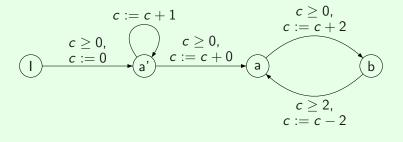
 Extension (C) = (F)

 Conclusion

In the binary case one-counter automaton is used to bound the number of applications of f.

Example

The automaton A_T for $T = \{a \oplus f^2(b), a\}$:



Definition of Subterms ACh Locality ACUNh Locality AGh

Results in the ACUNh Case

- Binary case:
 - Define S_f in "PTIME" (bounding number of application of f using a one-counter automata representation)
 - Show S_f -locality in a minimal \oplus -lazy proof.
 - One-step deducibility is PTIME
- General case:
 - Define S_{\oplus} in "EXPTIME" (partial sums)
 - Show S_{\oplus} -locality in a minimal \oplus -eager proof.
 - One-step deducibility is PTIME

 Motivation

 Extended Dolev Yao Model with ⊕ and Homomorphism

 Notion of Locality

 One-step Deductibility

 S Locality

 Extension (C) = (F)

 Conclusion

The rule $x \oplus x = 0$ becomes $x \oplus I(x) = 0$. A new rule (I) is used.

Results

- Binary case: show "PTIME locality".
- General case: show "EXP-TIME locality".

•
$${u \oplus v}_k = {u}_k \oplus {v}_k$$

- There are many different homomorphism symbols (H).
- \Rightarrow ACH locality in PTIME.
- ACUNH and AGH
 - Binary case: locality in PTIME.
 - General case: locality in EXP-TIME.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Complexity of Intruder Deduction Problem Further Work
--	--

	Intruder deduction problem		
	Binary case	General case	
ACh	PTIME	NP-Complete	
ACUNh	PTIME	EXP-TIME	
AGh	PTIME	EXP-TIME	

Same results are obtained if homomorphism = encryption.

Motivation Extended Dolev Yao Model with ⊕ and Homomorphism Notion of Locality One-step Deductibility S-Locality Extension (C) = (F) Conclusion

• Active case

	Complexity		
	Unification	Intruder	Security
	Problem	Deduction	Problem
ACUN	NP-complete	P-TIME	NP-Complete
	[Guo,Narendran98]	[CS03]	[CKTR03]
ACh	Undecidable	NP-Complete	Undecidable
	[Narendran96]		
ACUNh	NP-complete	EXP-TIME	?
	[Guo,Narendran98]		
AGh	Decidable	EXP-TIME	?
	[Baader93]		

Motivation Extended Dolev Yao Model with \oplus and Homomorphism Notion of Locality One-step Deductibility S-Locality Extension (C) = (F) Conclusion

Thank you for your attention

