(In)Security of e-voting

Pascal Lafourcade

FIC 2023, April 2023

E-voting a reality

Hauts-De-Seine : Neuilly-Sur-Seine Met En Place Un Système De Vote Électronique

On Juil 5, 2021

Le vote électronique fera son 🛛 🗄 retour en 2022

Après la découverte de failles en 2019, tous les projets de scrutin en ligne ont été suspendus. La Poste a cependant poursuivi l'aventure. Elle développe à Neuchâtel un système mieux sécurisé qu'elle soumettra à des hackers

Flaws in E-voting a reality

☆ > TECH > VIE NUMÉRIQUE

SUISSE: UNE FAILLE DE SÉCURITÉ "MAJEURE" DANS LE SYSTÈME DE VOTE EN LIGNE

Raphaël Grably Le 13/03/2019 à 11:10

0 💟

NEWS

Flaw in NSW's iVote platform confirmed by researcher

() 🖸 🛈 😳 🕞

By Rohan Pearce Editor, Computerworld | NOV 14, 2019 6:08 AM PST

carrange comparemental presi regizero e commissi

A security researcher has confirmed that the version of New South Wales' online voting platform, IVote, employed during the 2019 election contained a vulnerability that potentially allowed the creation of false decryption proofs for ballots. Livre

Le Vote électronique

De Pierrick GAUDRY, Véronique CORTIER 256 pages, Odile Jacob 18/05/2022

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks

Sicilian Vote Copy Cryptographic Flaw Clash Machine Bugs

Conclusion

Security:Cryptography

Cryptography

Security:Cryptography

Cryptography

Primitives RSA, Elgamal, AES, DES, SHA-3...

Security:Cryptography

Cryptography

Primitives RSA, Elgamal, AES, DES, SHA-3...

Protocols Distributed Programs

Security:Cryptography for a Property

Primitives RSA, Elgamal, AES, DES, SHA-3...

.....

Username: Username

Security:Cryptography for a Property in an Hostile Environment

Primitives RSA, Elgamal, AES, DES, SHA-3...

Protocols Distributed Programs

Security:Cryptography for a Property in an Hostile Environment

Primitives RSA, Elgamal, AES, DES, SHA-3...

Protocols Distributed Programs

Why Verification is Useful !

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks

Sicilian Vote Copy Cryptographic Flaw Clash Machine Bugs

Conclusion

E-Voting vs Traditional Voting

Vote électronique

Vote traditionnel

- + Accessibility
- + Reducing the abstention rate
- + Automatic counting
- + Less organisation costs

Two e-voting (1/2)

Offline

- $+\,$ Efficient and fast counting
- + Vote in any voting station
 - Trust the machines

Two e-voting (2/2)

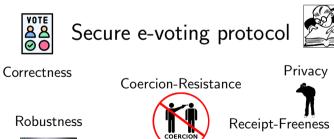
Online

- $+\,$ Vote at home
- + Easy process
- + Less costs
- Possible influence

Voting Protocol Organisation

5 Phases

- 1. Registration
- 2. Validation
- 3. Vote
- 4. Counting
- 5. Verification



Universal Verifiability

Eligibility

Individual Verifiability

VOTE

Eligibility

Only the registered voters can vote

Prevent double voting

Robustness

Tolerate a certain number of misbehaving voters


Results should be correct

Fairness

No preliminary results

Individual Verifiability

Each voter can check whether his vote was counted correctly

Universal Verifiability

Anybody can verify that the announced result corresponds to the sum of all votes

Anonymity

Privacy: unlinkability between the voter and his vote

Receipt-Freeness: A voter cannot construct a receipt

Corecion-Resistance: A coercer cannot be sure the voter followed his instructions

Privacy implies Individual Verifiability

2018 Cortier et al.

A system without Individual Verifiability cannot acheive privacy !

Reduction Results: How many agents ?

- Security properties: two agents are sufficient. 2004 by Hubert Comon-Lundh, Véronique Cortier
- When Are Three Voters Enough for Privacy Properties? 2016 by Myrto Arapinis, Véronique Cortier, Steve Kremer

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks

Sicilian Vote Copy Cryptographic Flaw Clash Machine Bugs

Conclusion

Several Definitions for Privacy for e-voting protocols:

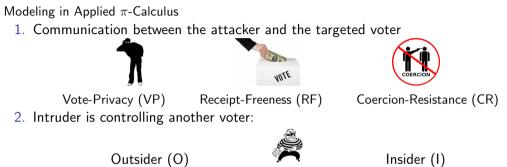
[DKR09,DKR10,MN06,BHM08,KT09,KSR10,LJP10,SC11,...]

But

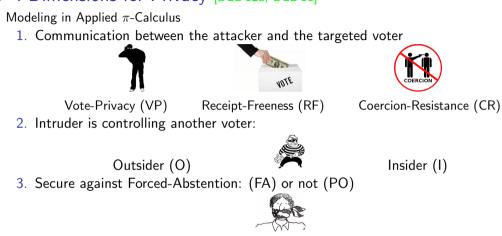
- designed for a specific protocol
- often cannot be applied to other protocols

OUR GOAL

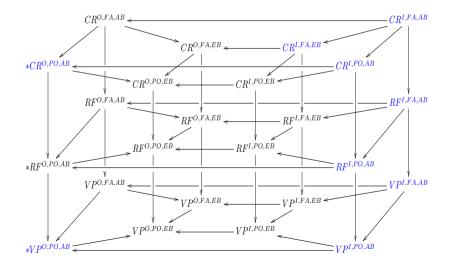
Propose fine-grain definitions to compare security levels of protocols


4 Dimensions for Privacy [DLL'12a, DLL'11]

Modeling in Applied π -Calculus


1. Communication between the attacker and the targeted voter

4 Dimensions for Privacy [DLL'12a, DLL'11]


4 Dimensions for Privacy [DLL'12a, DLL'11]

4 Dimensions for Privacy [DLL'12a, DLL'11]

Relations among the notions

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks

Sicilian Vote Copy Cryptographic Flaw Clash Machine Bugs

Conclusion

Sicilian Attack

Arlette
François
Emanuel
Marine
Jean-Luc
Arnaud
Ségolène
Jacques
Georges
Charles
Jean-Marie
Valérie

With 12 candidates, > 479 millions possible combinations!

> 2,000,000 votes have been cast

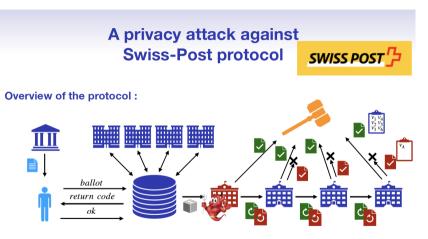
https://vote.heliosvoting.org/

Helios code is Open Source Based on scientific papers Use mixnet

By V. Cortier et al in 2010

Replaying a voter's ballot

- Alice votes A
- Bob votes B
- Charlie votes like Alice


This attack works on other protocols like Lee et al and Sako et al.

https://www.belenios.org/ Belenios code is Open Source

Swiss Post Attack (Bug Bounty 40Keuros)

Cortier et al. RWC'22

Russian Online Election

In 2019, Breaking the encryption scheme of the Moscow Internet voting system by P. Gaudry et al

- Elgamal key sizes are too small (CADO-NFS)
- Counting the number of votes cast for a candidate.

$$enc(a, pk_S) * enc(b, pk_S) = enc(a + b, pk_S)$$

Partial homomorphic are widely used in voting schemes

$$\prod enc(v_i, pk_S) = enc(\sum v_i, pk_S)$$

$dec(enc(14, pk_S), sk_S) = 14 \mod 15 \text{ or } 14 \mod 5 = 4$

Revisited Benaloh's encryption [FLA'11]

- Drawing false parameters: 33%
- Proposition of corrected version
- Proof using Kristian Gjosteen result.

Example with 15 voters

 $\{0\}_{pk_S}$ $\{1\}_{pk_S}$

- $\blacktriangleright \prod enc(v_i, pk_S) = enc(\sum v_i, pk_S) = enc(14, pk_S)$
- Result can be either 14 or 4

Clash Attack on the verifiability of e-voting systems By 2012 Kuesters et al.

Different voters with the same receipt

 \Rightarrow Authorities can manipulate the election without being detected

Attacks

- ► In 2007, Security Analysis of the Diebold AccuVote-TS Voting Machine
- In 2012, Attacking the Washington, D.C. Internet Voting System
- ► In 2017 Voting Machine Hacking Village by Matt Blaze et al. Machines :
 - AVS WinVote DRE
 - Premier AccuVote TSx DRE
 - ES&S iVotronic DRE
 - ▶ PEB version 1.7c-PEB-S
 - Sequoia AVC Edge DRE
 - Diebold Express Poll 5000 electronic pollbook

With limited resources and information, they can be hacked.

Outline

Motivations

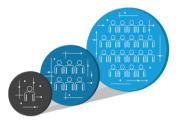
Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks

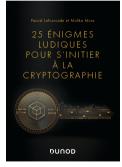
Sicilian Vote Copy Cryptographic Flaw Clash Machine Bugs


Conclusion

Summary

- Voting is important for democracy
- Protocols must be open
- Design of voting protocols is not easy
- Formal Verification can help
- Proving all properties togheter is difficult

Future Work


- Scalability
- Human aspect are not yet taken into account
- End-to-end verification
- ► All properties in one tool !

Thank you for your attention.

