(In)Security of e-voting

Pascal Lafourcade

AMUSEC, mai 2022

REDOCS

Rencontre Entreprises DOCtorants en Sécurité informatique 28 Novembre au 2 Décembre 2022 au CIRM

Recherche d'entreprises pour REDOCS'22

E-voting a reality

Hauts-De-Seine : Neuilly-Sur-Seine Met En Place Un Système De Vote Électronique

On Juil 5, 2021

Le vote électronique fera son retour en 2022

Après la découverte de failles en 2019, tous les projets de scrutin en ligne ont été suspendus. La Poste a cependant poursuivi l'aventure. Elle développe à Neuchâtel un système mieux sécurisé qu'elle soumettra à des hackers

Flaws in E-voting a reality

☆ > TECH > VIE NUMÉRIQUE

SUISSE: UNE FAILLE DE SÉCURITÉ "MAJEURE" DANS LE SYSTÈME DE VOTE EN LIGNE

Raphaël Grably Le 13/03/2019 à 11:10

00

Flaw in NSW's iVote platform confirmed by researcher

(† 💙 🗇 😳 🖸 🖯

By Rohan Pearce Editor, Computerworld | NOV 14, 2019 6:08 AM PST

A security researcher has confirmed that the version of New South Wales' online voting platform, Note, employed during the 2019 election contained a vulnerability that potentially allowed the creation of false decryption proofs for ballots.

Vanessa Teague, an associate professor at the University of Melbourne, has released a paper outlining the iVote flaw, building on previous work of Livre

Le Vote électronique

De Pierrick GAUDRY, Véronique CORTIER 256 pages, Odile Jacob 18/05/2022

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks Sicilian Vote Copy Bulletin Board

Cryptographic Flav

Clash

Machine Bugs

Blockchain and vote

Conclusion

Security:Cryptography

Cryptography

Security:Cryptography

Cryptography

Primitives RSA, Elgamal, AES, DES, SHA-3...

Security:Cryptography

Cryptography

Primitives RSA, Elgamal, AES, DES, SHA-3...

Protocols Distributed Programs

Security:Cryptography for a Property

Please cogin	()
Username:	Username
Password:	
	Remember Researd
	Login Cancel

Primitives RSA, Elgamal, AES, DES, SHA-3...



Protocols Distributed Programs

Security:Cryptography for a Property in an Hostile Environment

Primitives RSA, Elgamal, AES, DES, SHA-3...

Protocols Distributed Programs

Security:Cryptography for a Property in an Hostile Environment

Primitives RSA, Elgamal, AES, DES, SHA-3...

Cryptography Verification

Protocols Distributed Programs

Username: Username
Password:

How can we be convinced that a protocol is a good one?

How can we be convinced that a protocol is a good one?

 \checkmark

Publish the protocol and wait until someone finds an attack.

How can we be convinced that a protocol is a good one?

Publish the protocol and wait until someone finds an attack.

Prove that there is no attack.

How can we be convinced that a protocol is a good one?

Publish the protocol and wait until someone finds an attack. Prove that there is no attack.

Usual problems with proofs:

- proving is a difficult task,
- pencil-and-paper proofs are error-prone.

How can we be convinced that a proof is a good one?

How can we be convinced that a protocol is a good one?

X Publish the protocol and wait until someone finds an attack. Prove that there is no attack.

Usual problems with proofs:

- proving is a difficult task,
- pencil-and-paper proofs are error-prone.

How can we be convinced that a proof is a good one?

Publish the proof and wait until someone finds a mistake.

How can we be convinced that a protocol is a good one?

X Publish the protocol and wait until someone finds an attack. Prove that there is no attack.

Usual problems with proofs:

- proving is a difficult task,
- pencil-and-paper proofs are error-prone.

How can we be convinced that a proof is a good one? X Publish the proof and wait until someone finds a mistake. Computer-Aided Security.

Why Verification is Useful !

Success Story of Verification in Security

(Casper/FDR) 2003: ProVerif certified email protocol (B. Blanchet et al) 2005: Flaw in Kerberos 5.0 with MSR 3.0 (I. Cervesato et al)

AVISPA A ANTSSAR SATMC(A. Armando et al) 2008: • Unknown Security flaw of Single Sign-On for Google Apps

• Proof of TLS using Proverif (Fournet et al)

2010: TOOI for cryptoKi ANalysis (G. Steel et al) 2019: UKano (L. Hirschi et al)

Other Tools: Athena, Brutus, Certycrypt, CL-ATSE, Coprové, Cryptoverif, Easycrypt, Hermes, Murphy, OFMC, Scyther, TA4SP, Tamarin ...

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

oome Attacks Sicilian Vote Copy Bulletin Board Cryptographic Flaw Clash Machine Bugs

Blockchain and vote

Conclusion

E-Voting vs Traditional Voting

Vote électronique

- + Accessibility
- + Reducing the abstention rate
- + Automatic counting
- + Less organisation costs

Vote traditionnel

Two e-voting (1/2)

Offline

- $+\,$ Efficient and fast counting
- + Vote in any voting station
 - Trust the machines

Two e-voting (2/2)

Online

- + Vote at home
- + Easy process
- + Less costs
 - Possible influence

Voting Protocol Organisation

- 5 Phases
 - 1. Registration
 - 2. Validation
 - 3. Vote
 - 4. Counting
 - 5. Verification

Eligibility

Universal Verifiability

Individual Verifiability

Secure e-voting protocol

Eligibility

Only the registered voters can vote

Prevent double voting

Robustness

Tolerate a certain number of misbehaving voters

Correctness

Results should be correct

Fairness

No preliminary results

Individual Verifiability

Each voter can check whether his vote was counted correctly

Universal Verifiability

Anybody can verify that the announced result corresponds to the sum of all votes

Anonymity

Privacy: unlinkability between the voter and his vote

Receipt-Freeness: A voter cannot construct a receipt

Corecion-Resistance: A coercer cannot be sure the voter followed his instructions

Privacy implies Individual Verifiability

2018 Cortier et al.

A system without Individual Verifiability cannot acheive privacy !

Dispute Resolution in Voting

In 2020, by David Basin, Sasa Radomirovic, Lara Schmid

Reduction Results: How many agents ?

- Security properties: two agents are sufficient.
 2004 by Hubert Comon-Lundh, Véronique Cortier
- When Are Three Voters Enough for Privacy Properties? 2016 by Myrto Arapinis, Véronique Cortier, Steve Kremer

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks

Vote Copy Bulletin Board Cryptographic Flaw Clash Machine Bugs

Blockchain and vote

Conclusion

Several Definitions for Privacy for e-voting protocols:

[DKR09,DKR10,MN06,BHM08,KT09,KSR10,LJP10,SC11,...]

But

- designed for a specific protocol
- often cannot be applied to other protocols

OUR GOAL

Propose fine-grain definitions to compare security levels of protocols

- Modeling in Applied π -Calculus
 - 1. Communication between the attacker and the targeted voter

Vote-Privacy (VP) Receipt-Freeness (RF) Coercion-Resistance (CR)

- Modeling in Applied π -Calculus
 - 1. Communication between the attacker and the targeted voter

Vote-Privacy (VP) Receipt-Freeness (RF) Coercion-Resistance (CR)

2. Intruder is controlling another voter:

Outsider (O)

Insider (I)

- Modeling in Applied π -Calculus
 - 1. Communication between the attacker and the targeted voter

Vote-Privacy (VP) Receipt-Freeness (RF) Coercion-Resistance (CR)

2. Intruder is controlling another voter:

Outsider (0)

Insider (I)

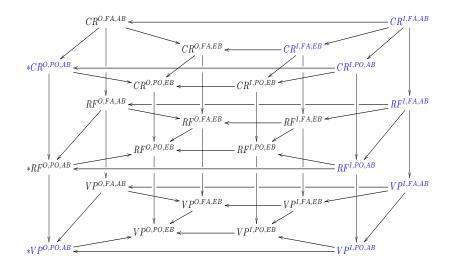
3. Secure against Forced-Abstention: (FA) or not (PO)

1. Communication between the attacker and the targeted voter

Vote-Privacy (VP) Receipt-Freeness (RF) Coercion-Resistance (CR)

2. Intruder is controlling another voter:

Outsider (0)


Insider (I)

3. Secure against Forced-Abstention: (FA) or not (PO)

4. Honest voters behavior:

Relations among the notions

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks

Sicilian Vote Copy Bulletin Board Cryptographic Flaw Clash Machine Bugs

Blockchain and vote

Conclusion

Sicilian Attack

With 12 candidates, > 479 millions possible combinations!

> 2,000,000 votes have been cast

https://vote.heliosvoting.org/

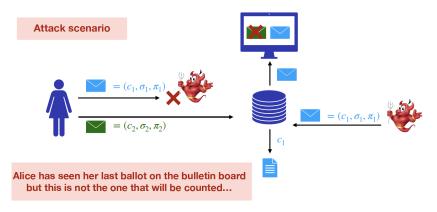
Helios code is Open Source Based on scientific papers Use mixnet

By V. Cortier et al in 2010

Replaying a voter's ballot

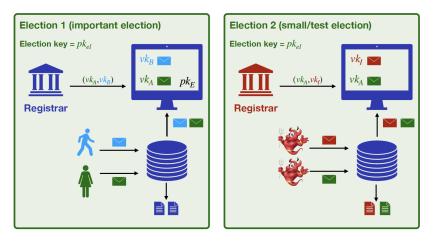
- Alice votes A
- Bob votes B
- Charlie votes like Alice

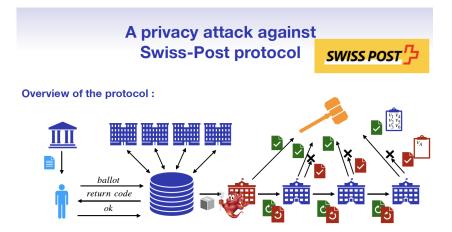
This attack works on other protocols like Lee et al and Sako et al.



https://www.belenios.org/ Belenios code is Open Source

Re-ordering Attack on Belenios 2021


Individual verifiability : if I see my last ballot on the bulletin board, it will be counted.


Attack by Baloglu et al. CSF2021 Fix with counter + Pok by Debant et al. 2022

Multi-server Attack on Belenios < 1.13

A privacy attack against Belenios

Swiss Post Attack (Bug Bounty 40Keuros)

Cortier et al. RWC'22

Bulletin Board

- Fifty Shades of Ballot Privacy: Privacy against a Malicious Board, by Véronique Cortier, Joseph Lallemand, Bogdan Warinschi in 2020
- Fixing the Achilles Heel of E-Voting: The Bulletin Board by, Lucca Hirshi, Lara Schmid, David Basin in 2021

Russian Online Election

In 2019, Breaking the encryption scheme of the Moscow Internet voting system by P. Gaudry et al

- Elgamal key sizes are too small (CADO-NFS)
- Counting the number of votes cast for a candidate.

$$enc(a, pk_S) * enc(b, pk_S) = enc(a + b, pk_S)$$

Partial homomorphic are widely used in voting schemes

$$\prod enc(v_i, pk_S) = enc(\sum v_i, pk_S)$$

 $dec(enc(14, pk_S), sk_S) = 14 \mod 15 \text{ or } 14 \mod 5 = 4$

Revisited Benaloh's encryption [FLA'11]

- Drawing false parameters: 33%
- Proposition of corrected version
- Proof using Kristian Gjosteen result.

Example with 15 voters

 $\{0\}_{pk_S}$ $\{1\}_{pk_S}$

- $\blacktriangleright \prod enc(v_i, pk_S) = enc(\sum v_i, pk_S) = enc(14, pk_S)$
- Result can be either 14 or 4

Clash Attack on the verifiability of e-voting systems By 2012 Kuesters et al.

Different voters with the same receipt

 \Rightarrow Authorities can manipulate the election without being detected

Attacks

- In 2007, Security Analysis of the Diebold AccuVote-TS Voting Machine by A. Feldman et al.
- In 2012, Attacking the Washington, D.C. Internet Voting System, by Scott Wolchok et al.
- ▶ In 2017 Voting Machine Hacking Village by Matt Blaze et al.

- AVS WinVote DRE
- Premier AccuVote TSx DRE
- ES&S iVotronic DRE
- PEB version 1.7c-PEB-S
- Sequoia AVC Edge DRE
- Diebold Express Poll 5000 electronic pollbook

With limited resources and information, they can be hacked.

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks Sicilian Vote Copy Bulletin Board Cryptographic F

Clash

Machine Bugs

Blockchain and vote

Conclusion

Hyperledger Fabric

Ledger

- Public
- Infalsifiable
- Distributed
- $\Rightarrow {\sf Verfiability} \; !$

DABSTERS

Distributed Authorities using Blind Signature To Effect Robust Security in e-voting

Ingredients

- BlindCons : BFT consensus + Blind Signtaure
- Shamir Secret Sharing
- Identity Based Encryption
- Eliptic Curve P = k.Q
- Pairing $e(aP, bQ) = e(P, Q)^{ab}$
- Hash Function

Summary

DABSTERS in e-voting		
Eligibility	 Image: A set of the set of the	
Fairness	 Image: A set of the set of the	
Robustnsse	 Image: A set of the set of the	
Integrity	 ✓ 	
Individual Verifiability	 ✓ 	
Universal Verifiability	 ✓ 	
Anonymity	 Image: A set of the set of the	
Receipt-Freeness	 Image: A set of the set of the	
Coercion Resistance	×	
Vote choice	Multiple	

Formal Verification of DABSTERS

Properties	Results	Time
Vote Secrecy	 Image: A set of the set of the	0.012 s
Authentification	 Image: A set of the set of the	0.010 s
Vote Privacy	 Image: A set of the set of the	0.024 s

Using Proverif

Outline

Motivations

Formal Methods

e-voting

Hierarchy of Privacy Notions

Some Attacks Sicilian Vote Copy

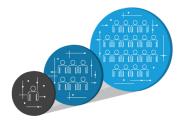
Bulletin Board

Cryptographic Flaw

Clash

Machine Bugs

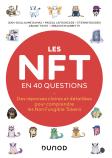
Blockchain and vote


Conclusion

Summary

- Voting is important for democracy
- Protocols must be open
- Design of voting protocols is not easy
- Formal Verification can help
- Proving all properties togheter is difficult

Future Work



- Scalability
- Human aspect are not yet taken into account
- End-to-end verification
- All properties in one tool !

Thank you for your attention.

