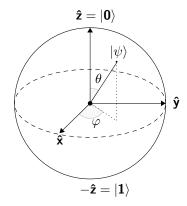
Introduction à la cryptographie Post-Quantique

Pascal Lafourcade

Séminaire 27 mars 2025

Qbit

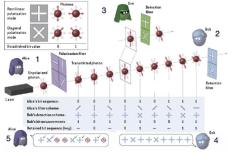
$$\begin{split} |\psi\rangle &= \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \text{ avec } (\alpha,\beta) \in \mathbb{C}, \text{ tel que } \alpha \, |0\rangle + \beta \, |1\rangle = 1 \\ ||\psi||^2 &= |\alpha|^2 + |\beta|^2 = \alpha.\overline{\alpha} + \beta.\overline{\beta} = 1 \end{split}$$



BB84

Théorème (Non-clonage (Wooters et Zurek, 1982))

Il est impossible de copier parfaitement un qubit dont l'état quantique est inconnu.



Gilles Brassard

Ordinateurs quantiques

TRM Google rigetti

1998 : 2 qbits, IBM1999 : 3 qbits, IBM

o 2001 : 7 qbits, IBM

o 2017 : 50 qbits, IBM Q50

 \circ 2019 : 53 qbits, Google Sycamore

o 2021 : 90 qbits, Rigetti Aspen-9

o 2021 : 127 qbits, IBM Eagle

o 2022 : 433 qbits, IBM Osprey

Dec 2023 : 1 121 qubits, IBM Condor

D::Wave

2011 : 128 qbits, One

o 2013 : 512 qbits, Two

2015 : 1152 qbits, 2X

2017 : 2048 qbits, 2000Q

2020 : 5760 qbits, Advantage

2024 : 7440 qbits, Advnatage2

Ordinateurs quantiques

rigetti

Portes quantiques

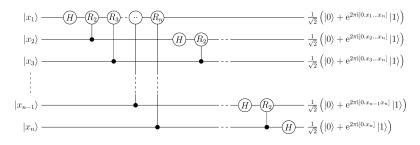
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Circuits quantiques



Transformée de Fourrier quantique

Algorithmes quantiques

- o Algorithme de Deutsch (1985) et Deutsch-Jozsa (1992)
- o Algorithme de Simon (1994)
- o Algorithme de Shor (1994)
- o Algorithme de Grover (1996)

Shor et Grover

Algorithme de Shor (1994)

Calcule l'ordre d'un nombre en temps polynomial.

Définition de l'ordre

L'ordre de a est le plus petit entier r tel que $a^r \equiv 1 \mod N$

Algorithme de Grover (1996)

Trouver efficacement un élément qui satisfait une propriété dans une liste donnée.

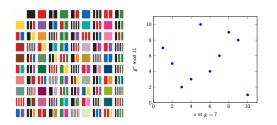
Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie
- 3. Cryptographie Post-Quantique Fonction de hachage Réseaux Euclidiens (Lattices) Codes Systèmes Multivariés Isogénies
- 4. Conclusion

Cryptographie Pré-quantique

Deux problèmes :

- Factorisation : $n = p \times q$ difficile de trouver p et q.
- Logarithme disctet : $g, p, g^x \mod p$ difficile de trouver x.



C'est deux problèmes sont cassés par l'algorithmes de Shor!

"store-now, decrypt-later"

Rivest Shamir Adelmann (RSA 1978)

Soit n = pq, p etq deux nombres premiers.

Clé Publique : (e, n)

Clé Secrète : d où $d = e^{-1} \mod \phi(n)$

et $pgcd(e, \phi(n)) = 1$

Chiffrement : $c = m^e \mod n$

Déchiffrement: $m = c^d \mod n$

Correction

 $c^d = m^{de} = m.m^{k\phi(n)} \mod n$

Rappel : Théorème d'Euler $\forall x \in (\mathbb{Z}/n\mathbb{Z})^*, x^{\phi(n)} = 1 \bmod n$

Rivest Shamir Adelmann (RSA 1978)

Soit n = pq, p etq deux nombres premiers.

Clé Publique : (e, n)

Clé Secrète : d où $d = e^{-1} \mod \phi(n)$

et $pgcd(e, \phi(n)) = 1$

Chiffrement : $c = m^e \mod n$

Déchiffrement: $m = c^d \mod n$

Correction

 $c^d = m^{de} = m.m^{k\phi(n)} \mod n$

Rappel : Théorème d'Euler $\forall x \in (\mathbb{Z}/n\mathbb{Z})^*, x^{\phi(n)} = 1 \bmod n$

Casser la factorisation permet de casser RSA!

Algorithme de factorisation (Shor), N = pq

- Choisir 1 < a < N au hasard.
- Si $d = pgcd(N, a) \neq 1$ alors d est un facteur de N
- Sinon pgcd(N, a) = 1 alors a est inversible modulo N, cad $\exists k, a^k \equiv 1 \mod N$ (Euler)
- Calcule l'ordre de a cad : La période de $F_a(x) = a^x \mod N$ est le plus petit entier w tel que $F_a(x) = F_a(x + w)$

$$a^{x+w} \equiv a^x \mod N$$

 $a^{x+w}a^{-x} \equiv 1 \mod N$
 $a^w - 1 \equiv 0 \mod N$

- Si w est impair ou $a^{w/2} \not\equiv -1 \mod N$, l'algorithme tire un nouveau a et réitère les différentes étapes.
- Sinon $d = pgcd(a^{w/2} 1, N) \neq 1$ ou $d' = pgcd(a^{w/2} + 1, N) \neq 1$ d ou d' donne un facteur non-trivial de N

Détails de l'algorithme de factorisation (Shor)

L'ordre w de a est pair et $a^{w/2} \equiv -1 \mod N$.

- o Comme w est pair cela permet d'obtenir $a^w-1\equiv (a^{w/2}-1)(a^{w/2}+1)\equiv 0 \mod N$, car $x^2-y^2=(x-y)(x+y)$. Ainsi pour tout $q\in \mathbb{N}$, $(a^{w/2}-1)(a^{w/2}+1)=qN$. Ce qui signifie que N divise $(a^{w/2}-1)(a^{w/2}+1)$.
- o Par définition de w, il s'agit du plus petit entier tel que $a^w \equiv 1 \mod N$, comme w/2 < w, Il en découle que $a^{w/2} \not\equiv 1 \mod N$ Donc $a^{w/2} 1 \not\equiv 0 \mod N$. Ainsi $d = pgcd(a^{w/2} 1, N)$ est un facteur non-trivial de N
- o $a^{w/2}\equiv -1 \mod N$ signifie que $a^{w/2}+1\equiv 0 \mod N$, cad N divise $a^{w/2}+1$. Donc $d'=pgcd(a^{w/2}+1,N)$ donne un facteur d' non-trivial de N.

Exemple N = 15

```
a=2
pgcd(2,15) = 1, donc w = 4 car 2^4 = 16 = 1 mod 15. donc
d = pgcd(a^{w/2} - 1, N) = pgcd(3, 15) = 5
d' = pgcd(a^{w/2} + 1, N) = pgcd(5, 15) = 5
a=3
pgcd(3, 15) \neq 1 donc 3 divise 15
a = 11
pgcd(11, 15) = 1, donc w = 2 car 11^2 = 121 = 15 * 8 + 1 = 1 \mod 15,
donc
d = pgcd(a^{w/2} - 1, N) = pgcd(10, 15) = 5
d' = pgcd(a^{w/2} + 1, N) = pgcd(12, 15) = 3
a = 13
pgcd(13, 15) = 1, donc w = 4 car
13^4 = 28561 = 1804 * 15 + 1 = 1 \mod 15, donc
d = pgcd(a^{w/2} - 1, N) = pgcd(168, 15) = 3
d' = pgcd(a^{w/2} + 1, N) = pgcd(170, 15) = 5
```

Logarithme discret et Shor

Problème du logarithme discret

Retrouver s à partir de $y \equiv g^s \mod p$ avec $0 \le s < q$.

Appliquer Shor à $F_{g,y}$:

$$F_{g,y}: \mathbb{Z}_q \times \mathbb{Z}_q \to G$$

$$(x,x') \to g^x y^{x'} \mod p$$

L'algorithme de Shor donne $(w, w') \in \mathbb{Z}_q \times \mathbb{Z}_q$ une période de cette fonction $F_{g,y}$, soit $F_{g,y}(x+w,x'+w') = F_{g,y}(x,x')$

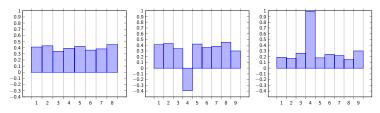
$$g^{x}y^{x'} \equiv g^{w+x}y^{w'+x'} \mod p$$

 $g^{w}y^{w'} \equiv 1 \mod p$
 $g^{w+sw'} \equiv 1 \mod p$

Ainsi $w + sw' \equiv 0 \mod q$ $s \equiv -w \cdot (w')^{-1} \mod q$, si w' est inversible modulo qs.

Grover 1996

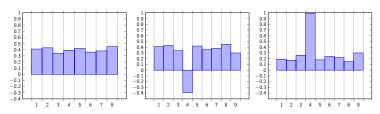
Trouve $x \in \{0,1\}^n$ avec F(x) en $\sqrt{2^n}$ évaluations de F



Oracle quantique qui détermine x

Grover 1996

Trouve $x \in \{0,1\}^n$ avec F(x) en $\sqrt{2^n}$ évaluations de F



Oracle quantique qui détermine x

Diminue légèrement la sécurité pour :

- o les fonctions de hachages de $O(2^{\frac{N}{2}})$ à $O(2^{\frac{N}{3}})$
- o les chiffrements symmétriques de $O(2^n)$ à $O(2^{\frac{n}{2}})$

Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie

3. Cryptographie Post-Quantique

Fonction de hachage Réseaux Euclidiens (Lattices) Codes Systèmes Multivariés Isogénies

4. Conclusion

Cryptographie Post-Quantique

- Fonctionne sur les ordinateurs classiques
- Résite à un ordinateur quantique

Les problèmes difficiles sous-jacents sont différents !

Compétition du NIST lancée en 2017

- 30 novembre 2017 : 69 sousmissions Round 1
- 30 janvier 2019 : 26 sousmissions choisies pour le Round 2
- 22 juillet 2020 : 7+8 sousmissions choisies pour le Round 3
- 5 juillet, 2022 :
 - KEM : Kyber
 - $\circ \ \ Signature: \ Dilithium, \ Falcon, \ SPHINCS+$
- 13 août 2024, NIST publie les standards :
 - FIPS 203 (Kyber),
 - o FIPS 204 (Dilithium)
 - ∘ FIPS 205 (SPHINCS+)
 - o FIPS 206 (FALCON à venir)
- 10 mars 2025, NIST annonce le vainqueur du Round 4 : KEM HQC

5 familles de problèmes difficiles

- Fonctions de hachage
- Réseaux Euclidiens (Lattices)
- Codes
- Systèmes Multivariés
- Isogénies

Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie
- 3. Cryptographie Post-Quantique Fonction de hachage

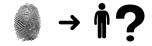
Réseaux Euclidiens (Lattices) Codes Systèmes Multivariés Isogénies

4. Conclusion

Fonctions de hachage (SHA-1, SHA-3)

Properties

First Pré-image



Second Pré-image

Collision

Signature de Lamport, 1979

Génération de clés

• Calculer
$$y_{i,b} = H(x_{i,b})$$

o
$$sk = (x_{i,b})_{i,b}$$

o
$$pk = (y_{i,b})_{i,b}$$

Signature de $m = m_1...m_k$ avec sk

$$o \forall i, i = 1...k, \sigma_i = x_{i,m_i}$$

$$\circ$$
 $\sigma = (\sigma_i)_i$

Vérification avec pk

Vérifier si
$$\forall i, H(\sigma_i) = y_{i,m_i}$$

$$k = 4$$

$$sk = \begin{cases} x_{1,0}, x_{2,0}, x_{3,0}, x_{4,0} \\ x_{1,1}, x_{2,1}, x_{3,1}, x_{4,1} \end{cases}$$

$$pk = \begin{cases} y_{1,0}, y_{2,0}, y_{3,0}, y_{4,0} \\ y_{1,1}, y_{2,1}, y_{3,1}, y_{4,1} \end{cases}$$

$$m = 0110$$

$$\sigma = (x_{1,0}, x_{2,1}, x_{3,1}, x_{4,0})$$

$$H(\sigma) = (y_{1,0}, y_{2,1}, y_{3,1}, y_{4,0})$$

Signature de Winternitz, 1989

Génération de clés

- \circ w est un paramètre choisi par l'utilisateur, $I=rac{k}{w}$, $B=1+\left\lceil rac{log_2 I}{w}
 ight
 ceil$
- Construire I + B chaînes Chaque chaîne part de y_i^0 et finit par $y_i^{2^l-1} = H^{2^l-1}(y_i^0) = z_i$.
- Clé publique : $z = h(z_1||z_2||...||z_{I+B})$
- Clé secrète : $(y_i^0)_{0 \le i \le l+B}$

Signature de (x_1, \ldots, x_k)

- Calculer $C = (x_{k+1}, \dots, x_{k+B}) = \sum_{i=1}^{l} (2^{w} 1 x_i)$
- Calculer $a_i = H^{x_i}(y_i)$, pour 1 < i < I + B
- La signature $sig_k(x_1, \ldots, x_k) = (a_1, \ldots, a_{l+B})$

Vérification

- Calculer $C = (x_{k+1}, \dots, x_{k+B}) = \sum_{i=1}^{l} (2^w 1 x_i)$
- Pour $1 \le i \le I + B$ calculer $a_i = H^{x_i}(y_i)$
- Vérifier que $z = h(z_1||z_2||\dots||z_{l+B})$

Exemple, k = 9, w = 3, donc l = 3

$$B = 1 + \left\lceil \frac{\log_2 l}{w} \right\rceil = 2$$

- Clé secrète : $(y_i^0)_{0 \le i \le l+B}$
- Clé publique : $z = H(z_1||z_2||z_3||z_4||z_5)$

Signature de $x : \sigma = (a_1, a_2, a_3, a_4, a_5)$

$$\circ x = 011101001$$
, donc $x_1 = 011 = 3$, $x_2 = 101 = 5$, et $x_3 = 001 = 1$

$$y_1^0 \to y_1^1 \to y_1^2 \to \frac{\mathbf{y_1^3}}{\mathbf{y_1^4}} \to y_1^4 \to y_1^5 \to y_1^6 \to y_1^7 = z_1$$

$$y_2^0 \to y_2^1 \to y_2^2 \to y_2^3 \to y_2^4 \to \frac{\mathbf{y_2^5}}{\mathbf{y_2^6}} \to y_2^6 \to y_2^7 = z_2$$

$$y_2^0 \to \frac{\mathbf{y_2^4}}{\mathbf{y_2^4}} \to y_2^2 \to y_3^3 \to y_2^4 \to y_2^5 \to y_2^6 \to y_2^7 = z_3$$

o
$$C = (7-3) + (7-5) + (7-1) = 4 + 2 + 6 = 12$$
 donc $C = 001100$

$$y_4^0 \to y_4^1 \to y_4^2 \to y_4^3 \to y_4^4 \to y_4^5 \to y_4^6 \to y_4^7 = z_4 y_5^0 \to y_5^1 \to y_5^2 \to y_5^3 \to y_5^4 \to y_5^5 \to y_5^6 \to y_5^7 = z_5$$

$$\circ \sigma = (y_1^3, y_2^5, y_3^1, y_4^1, y_5^5)$$

Vérification de $x=(x_1,x_2,x_3)$ et $\sigma=(a_1,a_2,a_3,a_4,a_5)$ avec z

- Calcul de C pour la création de x₃ et x₅
- Vérification de (a₄, a₅)
- Vérification de $z = h(z_1||z_2||...||z_5)$

Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie
- 3. Cryptographie Post-Quantique

Réseaux Euclidiens (Lattices)

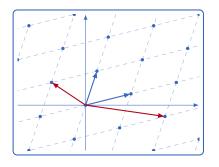
Codes Systèmes Multivariés Isogénies

4. Conclusion

Réseaux Euclidiens

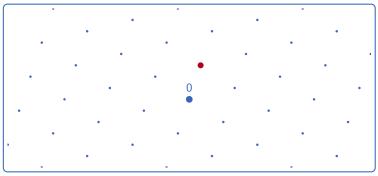
Definition

Un *réseau* est un sous-groupe discret \mathcal{L} de \mathbb{R}^n où n un entier positif.



- o Tour ensemble B de vecteru libres qui générent \mathcal{L} est appelé une base.
- o II y a une infinité de bases.
- Certaine sont meilleures : orthogonalité, petits vecteurs.

Probleme difficile sur les lattices (SVP)



Shortest Vector Problem (SVP) : Trouver un vecteur petit de $\mathcal{L}\setminus\{0\}$. $||v||=\sqrt{\sum_{i=i}^n v_i^2}$

Deux problèmes difficiles sur les Lattices

SIS and LWE

Short Integer Solution (SIS)

Soit $q, n \in \mathbb{N}$.

Entrée : $A \stackrel{\mathcal{U}}{\leftarrow} \mathrm{M}_n(\mathbb{Z}/q\mathbb{Z})$

But : Trouver **un petit vecteur** $s \in \mathbb{Z}^n \mid As = 0 \mod q$

Learning With Error (LWE)

Soit $q, n, m \in \mathbb{N}$.

Entrée : (A, b = As + e),

où $A \stackrel{\mathcal{U}}{\leftarrow} \mathrm{M}_{m,n}(\mathbb{Z}/q\mathbb{Z}), \ s \stackrel{\mathcal{D}_s}{\leftarrow} (\mathbb{Z}/q\mathbb{Z})^n, \ e \stackrel{\mathcal{D}_e}{\leftarrow} \mathbb{Z}^m$

But : Trouver s.

Signature: FALCON, 2017

Fast Fourier lattice-based compact signatures over NTRU.

Génération de clés

- 1. Clé publique : $A \leftarrow \$ R_a^{m \times k}$
- 2. Clé secrète : $B \leftarrow R_q^{m \times k}$ de petite norme tel que $A \cdot B = 0 \mod q$

Signature de *m*

- 1. Calculer $c = A^{-1} \cdot H(m)$
- 2. Calculer $v \in B \cdot R_q$ (partie difficile)
- 3. $\sigma = c v$

Vérification

 $A \cdot \sigma = H(m)$ et σ est de petite norme

$$A \cdot \sigma = A \cdot (c - v)$$

$$= A \cdot (A^{-1} \cdot H(m) - v)$$

$$= H(m) - A \cdot v$$

$$= H(m) - A \cdot B \cdot R_1$$

$$= H(m)$$

KYBER, 2011 par Lyubashevski, Peikert et Regev

Soient n, m, et q des entiers.

Génération des clés

- Clé secrète : $s \in R$, choisi petit.
- Clé publique : (a, b) = (a, b = a.s + e), où a random et $e \in R$ petit.

Chiffrement de m = polynôme à coefficients 0 ou 1

- Choisir r, e_1, e_2 petits dans R.
- Caculer $c = (a.r + e_1, b.r + e_2 + \lfloor q/2 \rfloor.m) \in R_q \times R_q$

Déchiffrement de c = (u, v)

Calculer

$$v - u.s = a.s.r + e.r + e_2 + \lfloor q/2 \rfloor.m) - a.s.r - s.e_1$$

= $(r.e - s.e_1 + e_2) + \lfloor q/2 \rfloor.m)$

Pour chaque coordonnée de m, le clair est 0 si le résultat est plus proche de 0 que de $\lfloor q/2 \rfloor$, et 1 sinon.

Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie
- 3. Cryptographie Post-Quantique

Fonction de hachage Réseaux Euclidiens (Lattices)

Codes

Systèmes Multivariés Isogénies

4. Conclusion

Codes correcteurs

- Message émis avec redondance m pour corriger t erreurs
- Message reçu m'
- Création d'une matrice génératirce G
- Calcule de la matrice de contrôle H
- Syndrome y = Hm'

Si y=0 pas d'erreur dans m sinon on peut corriger et retrouver m

Codes correcteurs

- Message émis avec redondance m pour corriger t erreurs
- Message reçu m'
- Création d'une matrice génératirce G
- Calcule de la matrice de contrôle H
- Syndrome y = Hm'

Si y = 0 pas d'erreur dans m sinon on peut corriger et retrouver m

Problème : Décodage de syndrome

 \circ Entrée : Matrice H, syndrome y et un poids w

• Problème : Trouver e de poids w avec He = y

Théorème : Berlekamp, McEliece, van Tilborg 1978

Décodage d'un syndrome est NP-complet.

Chiffrement de McEliece 1978

Génération des clés

- o Soit un code correcteur de t erreurs, G une matrice génératrice
- Choisir S une matrice inversible
- Choisir une matrice de permutation P
- Clé publique : $(G = S \cdot G \cdot P, t)$
- Clé privée : (S, G, P)

Chiffrement de m

- o Choisir aléatoirement e "avec moins" de t erreurs
- Calculer $c = m \cdot \mathcal{G} + e$

Déchiffrement de c

- Calculer $a = c \cdot P^{-1} = m \cdot S \cdot G + eP^{-1}$
- Correction des erreurs sur a pour obtenir $b = m \cdot S$
- Résoudre le système linéaire $b = m \cdot S$, pour m

HQC: Hamming Quasi-Cyclic

Génération des clés (pk, sk)

 $\mathbf{h} \overset{\$}{\leftarrow} \mathcal{R}$, la matrice génératirce $\mathbf{G} \in \mathbb{F}^{k \times n}$ de \mathcal{C} , $\mathbf{sk} = (\mathbf{x}, \mathbf{y}) \overset{\$}{\leftarrow} \mathcal{R}^2$ tel que $\omega(\mathbf{x}) = \omega(\mathbf{y}) = w$, soit $\mathbf{pk} = (\mathbf{h}, \mathbf{s} = \mathbf{x} + \mathbf{h} \cdot \mathbf{y})$,

Chiffrement de **m** avec **pk** : $\mathbf{c} = (\mathbf{u}, \mathbf{v})$.

Générer
$$\mathbf{e} \stackrel{\$}{\leftarrow} \mathcal{R}$$
, $\mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2) \stackrel{\$}{\leftarrow} \mathcal{R}^2$ tel que $\omega(\mathbf{e}) = w_\mathbf{e}$ et $\omega(\mathbf{r}_1) = \omega(\mathbf{r}_2) = w_\mathbf{r}$, soit $\mathbf{u} = \mathbf{r}_1 + \mathbf{h} \cdot \mathbf{r}_2$ et $\mathbf{v} = \mathbf{m}\mathbf{G} + \mathbf{s} \cdot \mathbf{r}_2 + \mathbf{e}$

Déchiffrement de c avec sk

C.Decode($\mathbf{v} - \mathbf{u} \cdot \mathbf{y}$).

$$\mathbf{v} - \mathbf{u} \cdot \mathbf{y} = mG + sr_2 + e - (r_1 + hr_2)y$$

= $mG + r_2x + hy_r^2 + e - r_1y - hr_2y$
= $mG + r_2x + e - r_1y$

Plan

- 1. Ordinateur quantique
- 2. Impact de l'ordinateur quantique sur la cryptographie
- 3. Cryptographie Post-Quantique

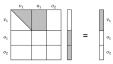
Fonction de hachage Réseaux Euclidiens (Lattices)

Systèmes Multivariés

Isogénies

4. Conclusion

Problème difficile sur les systèmes multivariés



Soit l'ensemble d'équations E:

$$\begin{cases} y_1 = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_5 + x_3x_4 + x_3x_5 \\ y_2 = x_1x_3 + x_1x_4 + x_1x_2 + x_2x_4 + x_2x_5 + x_3x_4 + x_4x_5 \\ y_3 = x_1x_2 + x_1x_4 + x_2x_3 + x_4 + x_5 \\ y_4 = x_1x_5 + x_3x_5 + x_2x_3 + x_2x_4 + x_3x_4 \\ y_5 = x_1x_2 + x_1x_3 + x_1x_5 + x_2x_5 + x_4x_5 \end{cases}$$

À partir de x_i et E, c'est facile de calculer y_i

À partir de y_i et E c'est difficile de trouver x_i

Problème difficile

$$\begin{array}{l} f_x(x_1, x_2, \dots, x_n) = \sum_{1 \leq i < j \leq n} a_{ij} x_i x_j + \sum_{i=1}^n b_i x_i^2 + c \\ \text{Trouver } (s_1, s_2, \dots, s_n) \text{ tel quel } f_x(s_1, s_2, \dots, s_n) = d_i, \text{ for } i \leq i \leq m. \end{array}$$

HFE: Hidden Field Equations

Soit
$$g(X) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_{ij} X_i^{q^i + q^j} + x_j + \sum_{i=0}^{n-1} b_i X_i^{q^i} + c$$

Génération des clés

- o Clé secrete : R et S deux transformations affines inversibles
- Clé publique : La fonction suivante sur $x = (x_1, x_2, \dots, x_n)$:

$$g^{pub} = R(g(S(x)))$$

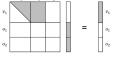
Chiffrement de
$$a = (a_1, a_2, ..., a_n)$$

 $c = g^{pub}(a)$

Déchiffrement de c

- 1. Calculer $y' = R^{-1}(c)$
- 2. Trouver les solutions z de g(X) = y'
- 3. Calculer $a = S^{-1}(z)$.

Exemple de chiffrements multivariés



- MIA: Matsumoto Imai Scheme A, par Tsutomu Matsumoto et Ideki Imai en 1985
- STS: Sepwise Triangular Systems, par Copperslith, Stern, Vaudenay en 1993
- o HFE: Hidden Field Equations, par Patarin 1996
- o QUARTZ : par Courtois en 1996
- UOV : Unbalanced Oil and Vinegar, par Patarin en 1997
- SFLASH par Patarin, Courtois, Goubin en 2003

Finalistes du NIST

- MQDSS
- HFEv-: GUI, GeMSS, DualModeMS
- Rainbow, L(ifted)UOV, HiMQ3 (a version of TTS)

Rainbow en 2004 par Jintai Ding et Dieter Schmidt

Beaucoup sont cassés!

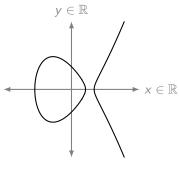
Plan

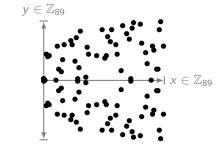
- 3. Cryptographie Post-Quantique

Isogénies

Courbes Elliptiques

$$y^2 = x^3 + ax + b$$



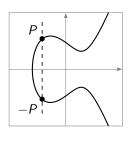


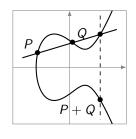
$$y^2 = x^3 - 2x + 1$$
 over $\mathbb R$

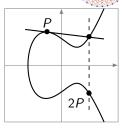
$$y^2 = x^3 - 2x + 1$$
 over \mathbb{Z}_{89}

 $E(K) = \{(x, y) \text{ tel que } y^2 = x^3 + ax + b\}$ plus un point "à l'infini" Weierstrass : $\Delta = -16(4a^3 + 27b^2) \neq 0$ Si K n'est pas de caractérisitque 2 ou 3

Lois de groupe







Inverse -P

 $\mathsf{Addition}\ P+Q$

Double
$$P + P$$

$$P + R + Q = \mathcal{O} \Rightarrow R = -(P + Q)$$

 $R + S + \mathcal{O} = \mathcal{O} \Rightarrow R = -S$

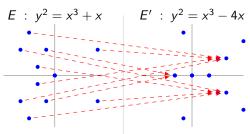
Isogénie

Définition

Une isogénie $\varphi: E_1 \to E_2$ est un (non-trivial) homomorphism de groupe défini par $f_i, g_i \in k[x,y]$, avec

$$\varphi(x,y) = \left(\frac{f_1(x,y)}{g_1(x,y)}, \frac{f_2(x,y)}{g_2(x,y)}\right)$$

Exemple :
$$(x,y)\mapsto \left(\frac{(x^2+1)}{x},\ \frac{y(x^2-1)}{x^2}\right)$$
 sur \mathbb{N}_{11}



Supersingular isogeny Diffie-Hellman key exchange

SIKE : Supersingular Isogeny Key Encapsulation

- o SIDH proposé par Feo, Jao and Plût, PQCrypto 2011
- o SIDH est vulnérable à une attaque "key-recovery" en juillet 2022

SIKE and SIDH are insecure and should not be used

Plan

- 1. Ordinateur quantique
- Impact de l'ordinateur quantique sur la cryptographie
- 3. Cryptographie Post-Quantique Fonction de hachage Réseaux Euclidiens (Lattices) Codes Systèmes Multivariés Isogénies

4. Conclusion

Changements en cours

 2014 : La Fondation Linux a créé la Post-Quantum Cryptography Alliance (PQCA)

Septembre 2023 : PQXDH protocol (Signal)

devient quantum resistant

Février 2024 : PQ3 protocol (imessage)

devient quantum resistant

Avril 2024 :

Google Chrome > 124 utilise KEM Kyber768 pour TLS 1.3

Mai 2024 :

migre vers Kyber pour l'échange de clés TLS

• Février 2025 : 1 million de qbits topologiques, Majorana

Hybridation

Le meilleur des deux mondes

Standardisation 2023

ML-KEM : CRYSTALS-Kyber

KEM : HQC

ML-DSA : CRYSTALS-Dilithium

SLH-DSA : SPHINCS+

FN-DSA : Falcon (en cours)

	Clé publique	Chiffré	Encapsulation	Décapsulation
ML-KEM	800	2 420	45 200	34 572

	Taille en bytes		Temps en cycles	
	Clé publique	Signature	Signature	Vérification
ML-DSA	1 312	2 420	333 013	118 412
FN-DSA	897	666	386 678	82 340
SLH-DSA	32	17 088	1 100 000 000	1 190 000

A retenir

Algorithmes	Transition	
FCDSA	Déprécié après 2030	
LCD3A	Interdit après 2035	
RSA	Déprécié après 2030	
NJA	Interdit après 2035	

Conclusion

Merci pour votre attention

pascal.lafourcade@uca.fr