Secure Keyless Multi-Party Storage Scheme

Pascal Lafourcade¹, Lola-Baie Mallordy^{1,5}, Charles Olivier-Anclin^{1,2,4}, and Léo Robert³

¹ Université Clermont Auvergne, LIMOS, CNRS, ² be ys Pay, ³ Université de Picardie Jules Verne, Amiens, ⁴ LIFO, Université d'Orléans, INSA Centre Val de Loire, ⁵ Institut Polytechnique de Paris, École Polytechnique, LIX, Palaiseau, France & INRIA

August 22, 2024

- The struggle to store a secret
- 2 Generic model for multi-cloud storage
- 3 Security Model
- 4 Cryptographic background
- 5 KAPRE
- 6 KAME
- Common download

Outline

The struggle to store a secret

- 2 Generic model for multi-cloud storage
- 3 Security Model
- Oryptographic background
- 5 KAPRE
- 6 KAME
- Common download
- 8 Experiments

How to store a secret ?

Secret lost!

Physical loss

Secret lost!

Single Point of Failure

Multi-Cloud Storage

Dangers in multi-cloud storage – Trust issues

Dangers in multi-cloud storage – Key(s) management

Dangers in multi-cloud storage – Key(s) management

- The secret must stay confidential to its owner
- Any modification on the secret must be detected
- If the secret is corrupted, the user must know which provider(s) to blame
- Centralized authentication

Centralization in a multi-cloud setting

Multi-cloud	Confidential	Providers	Proxy	Keyless
Protocols	w.r.t. proxy	collusion	collusion	
E. Stefanov et al. 2013	_	×	_	×
R. D. Pietro et al. 2017	×	×	×	×
M. Leila et al. 2020	×	×	×	×
A. Niknia et al. 2021	_	\checkmark	—	\checkmark
A. N. Bessani et al. 2013	_	×	_	\checkmark
M. Sulochana et al. 2015	×	×	×	×
E. N. Witanto et al. 2023	×	\checkmark	×	×
KAPRE	\checkmark	\checkmark	×	\checkmark
KAME	\checkmark	\checkmark	\checkmark	\checkmark

Outline

The struggle to store a secret

- 2 Generic model for multi-cloud storage
- 3 Security Model
- Oryptographic background
- **5** KAPRE
- 6 KAME
- Common download
- 8 Experiments

Upload – Transform

Upload – Open

Download – Designate

Download – Merge

or blame the culprit(s)!

Outline

The struggle to store a secret

2 Generic model for multi-cloud storage

3 Security Model

- 4 Cryptographic background
- **5** KAPRE

6 KAME

Common download

8 Experiments

Proxy Honest but curious **Servers** Malicious Collusion of adversaries

k-providers secrecy

Guess the bit b ?

k-collusion secrecy

Guess the bit b ?

User integrity

After an honest upload of a message chosen by the adversary, send a corrupted secret accepted by the user.

Accountability

After an upload of a message chosen by the adversary, send back corrupted shares such that either the proxy accepts them, or blame uncorrupted shares.

Outline

The struggle to store a secret

- 2 Generic model for multi-cloud storage
- 3 Security Model
- Cryptographic background
- **5** KAPRE
- 6 KAME
- Common download
- 8 Experiments

Shamir's secret sharing – Shamir, 1979

Homomorphic encryption – Brakerski, Gentry, Vaikuntanathan, 2014

Definition

Let D be a finite set and R, S groups. Let $\mathcal{F} = \{F_s\}_{s \in S}$ be a family of keyed functions mapping $D \to R$. The family \mathcal{F} is pseudorandom if the advantage of any adversary \mathcal{A} given oracle access to a function f to distinguish if $f = F_s$ for $s \leftarrow S$ or if f was randomly chosen from the set of functions mapping $D \to R$. \mathcal{F} is key homomorphic if for all $x \in D$,

$$F_a(x) \cdot F_b(x) = F_{a+b}(x).$$

Information Dispersal Algorithm (IDA) – Rabin, 1989

 $\mathsf{Split}((m_1,\ldots,m_k)\in\mathbb{Z}_p^k,n,k):A \leftarrow \mathbb{Z}_p^{k\times n}$ such that every k imes k submatrix of A is invertible,

 $\operatorname{Rec}(A, r_{i_1}, \ldots, r_{i_k})$: Let A' be the $k \times k$ submatrix formed by the lines i_1, \ldots, i_k of A,

Proxy Re-Encryption – KeySwitching (BGV)

Outline

The struggle to store a secret

- 2 Generic model for multi-cloud storage
- 3 Security Model
- Oryptographic background
- 5 KAPRE
- 6 KAME
- Common download
- 8 Experiments

Upload KAPRE (n = 3, k) – Transform

User:

 $\mathsf{recK} \leftarrow \mathsf{E}.\mathsf{KeyGen}$ $ct \leftarrow \{\mathbb{E}\}_{rock}$ $a_1,\ldots,a_{k-1} \leftarrow \mathbb{Z}_n$ k - 1 $y_0 \leftarrow \operatorname{recK} + \sum_{i=1}^{n-1} a_i$ $\overset{\textstyle{}}{\blacktriangleright} \leftarrow \big\{\mathsf{recK}\big\}_{\textcircled{\tiny{n}}}, \big\{\{a_i\}_{\textcircled{\tiny{n}}}\big\}_{i=1}^{k-1}$ $\longleftrightarrow \leftarrow x, F_{\text{recK}}(x), \{F_{a_i}(x)\}_{i=1}^{k-1}$

Upload KAPRE (n = 3, k) – Distrib

Proxy:

 $\{r_i\}_i \leftarrow \mathsf{IDA.Split}(ct, n+1, k)$ $\{y_i\}_{\widehat{1}} \leftarrow \{\mathsf{recK}\}_{\widehat{1}} + \sum_{j=1}^{k-1} \{a_j\}_{\widehat{1}} (i+1)^j$ $\{y_1\}_{\widehat{1}} \leftarrow \mathsf{PRE.ReEnc}(\{y_1\}_{\widehat{1}}, \widehat{1})$ $\{y_2\}_{\widehat{1}} \leftarrow \mathsf{PRE.ReEnc}(\{y_2\}_{\widehat{1}}, \widehat{1})$ $\{y_3\}_{\widehat{1}} \leftarrow \mathsf{PRE.ReEnc}(\{y_3\}_{\widehat{1}}, \widehat{1})$

Upload KAPRE (n = 3, k) – Open

Adversary:

$$\{\operatorname{recK}\}_{\overrightarrow{r}} \leftarrow \operatorname{PRE.ReEnc}(\{\operatorname{recK}\}_{\overrightarrow{r}}, \textcircled{P})$$
$$\operatorname{recK} \leftarrow \operatorname{PRE.Dec}(\{\operatorname{recK}\}_{\overrightarrow{r}}, \overset{\r{P}}{)})$$
$$\overrightarrow{\mathbb{B}} \leftarrow \operatorname{E.Dec}(ct, \operatorname{recK})$$

No secrecy for the user's data!

Outline

The struggle to store a secret

- 2 Generic model for multi-cloud storage
- 3 Security Model
- Oryptographic background
- **5** KAPRE
- 6 KAME
- Common download
- 8 Experiments

Multi-Key Encryption Scheme – Lòpez-Alt et al., 2012

Upload KAME (n = 3, k) – Transform

<u>User:</u>

$recK \leftarrow E.KeyGen$	ct	
$ct \leftarrow \{ \textcircled{B} \}_{recK}$ $a_1, \ldots, a_{k-1} \leftarrow \$ \mathbb{Z}_p$		
$\leftarrow \{recK\}_{\overbrace{i=1}}^{k}, \{\{a_i\}_{i=1}^{k-1}\}_{i=1}^{k-1}$		
$\leftarrow x, F_{recK}(x), \{F_{a_i}(x)\}_{i=1}^{k-1}$		

Upload KAME (n = 3, k) – Distrib

$$\{y_i\}_{\text{min}} \leftarrow \{\text{recK}\}_{\text{min}} + \sum_{j=1}^{k-1} \{a_j\}_{\text{min}} (i+1)^j$$
$$\{r_i\} \leftarrow \text{IDA.Split}(ct, n+1, k)$$

Upload KAME (n = 3, k) – Open

Upload KAME (n = 3, k) – Open

Outline

The struggle to store a secret

- 2 Generic model for multi-cloud storage
- 3 Security Model
- Oryptographic background
- **5** KAPRE

6 KAME

Common download

8 Experiments

Download (n = 3, k = 3) – Designate

Download (n = 3, k = 3) – Hide

 $\frac{\operatorname{Proxy:}}{\operatorname{shiftK}} \leftarrow \sum_{i=0}^{2} y'_{i} \ell_{i}$ if $F_{\operatorname{recK}}(x) + \sum F_{n_{i}}(x) \ell_{i} = F_{\operatorname{shiftK}}(x)$:

 $ct \leftarrow \mathsf{IDA.Rec}(\{r_i\},3)$

else blame every party for which

$$F_{y_i'}(x) \neq F_{n_i}(x) + F_{\mathsf{recK}}(x) + \sum_{j=1}^{k-1} F_{a_j} x_i^j$$

$$(1, y_0, r_0)$$

Theorem

Assume that the proxy re-encryption scheme and the symmetric encryption have indistinguishability under plaintext attack and the function family $\{F_x\}_x$ is pseudorandom. Then, KAPRE achieves 0-collusion secrecy.

Theorem

Assume that the symmetric encryption have indistinguishability under plaintext attack. Then, KAPRE achieves (k - 1) provider secrecy.

Theorem

Assume that the symmetric encryption and the multi-key encryption have indistinguishability under plaintext attack, and the function family $\{F_x\}$ is pseudorandom. Then, KAME achieves (k-2) collusion secrecy.

Theorem

Assume that the symmetric encryption and the multi-key encryption have indistinguishability under plaintext attack, and the function family $\{F_x\}$ is pseudorandom. Then, KAME achieves (k-2) collusion secrecy.

Theorem

Assume that the symmetric encryption has authenticity, the function family $\{F_x\}_x$ is pseudorandom and the public key encryption has indistinguishability. Then, both schemes have user integrity.

Theorem

Assume that the function family $\{F_x\}$ is pseudorandom. Then, both schemes have accountability.

Outline

The struggle to store a secret

- 2 Generic model for multi-cloud storage
- 3 Security Model
- Oryptographic background
- **5** KAPRE
- 6 KAME
- Common download

Experiments – Average execution time comparison

Benchmarks: Ubuntu 22.04.2 laptop messages of 1MB

Protocols	Security	Complexity	Communication
Upload KAPRE	Proxy,	$\mathcal{O}(nk-k^2)$	One round
	collusion of servers		
Upload KAME	Proxy colluding	$\mathcal{O}(nk-k^2)$	Interactive
	with servers		
Download	Collusion proxy	$\mathcal{O}(k)$	One round
	with serveurs		

Thank you for your attention !