Security and Connected Autonomous Vehiculars

Pascal Lafourcade

ESC January 2021

VANET : Vehicular Ad-hoc NETworks

Communications

- ► V2V: Vehicular to Vehicular
- V2I: Vehicular to Infrastructure
- I2I: Infrastructure to Infrastructure
- P2I: Pedestrian to Infrastructure

Challenges in VANETs

- Mobility
- Connection volatility
- Privacy vs Authentication
- Network scalability
- Bootstrap
- Security

Security Requirements in VANETs

Data exchanged play a VITAL role in traffic safety.

Properties

- Data Integrity
- Data Confidentiality
- Data Privacy
- Authentication
- Non-repudiation
- Avaibility
- Realtime constraints

Outline

C-ROADS & IndID

Distance Bounding

SPADE

Building Blocks Protocol Anonymity Terrorist Fraud Mafia Fraud Distance Fraud

Security

Conclusion

Outline

C-ROADS & IndID

Distance Bounding

SPADE

Building Blocks Protocol Anonymity Terrorist Fraud Mafia Fraud Distance Fraud

Security

Conclusion

43 European cities Starting with C-ITS deployment in urban areas

By 2019 6,000 km of European road sections will be equipped with C-ITS equipment

By 2019 100,000 km of European roads in total will be covered by C-ITS services

Co-financed by the Connecting Europe Facility of the European Union

Cooperative Intelligent Transport Systems (C-ITS)

- C-ITS communications.
- ETSI ITS-G5/Cellular technology.

Cooperative Intelligent Transport Systems (C-ITS)

Green Light Optimal Speed Advisory (GLOSA)

A traffic efficiency C-ITS service that uses Infrastructure-to-vehicle (I2V) communication mode.

Speed Advisory Boundary flNder (SABIN)

Mouna Karoui, Antonio Freitas, Gérard Chalhoub

Evaluation of SABIN

Mouna Karoui, Antonio Freitas, Gérard Chalhoub

Infrastructure

InDid (2019-2024)

Interoperability

PKI Management

PKI Security Challenges

- Key management
- Privacy
- Interoperability
- Different countries

Outline

C-ROADS & IndID

Distance Bounding

SPADE

Building Blocks Protocol Anonymity Terrorist Fraud Mafia Fraud Distance Fraud

Security

Conclusion

Real attacks on IoT from 2007 ...

Real attacks on IoT from 2007 ...

Real attacks on IoT from 2007 ...

V2V and V2I

Attack on Infrastructure

Wireless communications \Rightarrow Wormhole Attack

Wormhole Attack

Proximity Devices Everywhere

What features do we want?

Security Privacy

Examples of Attacks

2 VIDEOS

Public transport tickets

Car opening

Relay Attacks on Passive Keyless Entry and Start Systems in Modern Cars, by Aurélien Francillon, Boris Danev, Srdjan Capkun, NDSS 2011

https://www.youtube.com/watch?v=bfjMj8fgsBo

Security: Relay Attacks (Mafia Fraud)

Security: Relay Attacks (Mafia Fraud)

Security: Relay Attacks (Mafia Fraud)

Privacy: Eavesdropper VS Curious Verifier

Privacy: Eavesdropper VS Curious Verifier

Some Naive Examples

Some Naive Examples

Signature

Typical DB protocol

Survey : 42 protocols from 1993 to 2015.

Threats against honest provers

Threats against honest provers

Threats: malicious Provers

Threats: malicious Provers

Outline

C-ROADS & IndID

Distance Bounding

SPADE

Building Blocks Protocol Anonymity Terrorist Fraud Mafia Fraud Distance Fraud

Security

Conclusion

SPADE: The intuition

If P exposes his secret key, then V can identify him! What can he expose then?

The prover picks a random, one time session key N_P

- Authentication by group signature σ_p on this key
- The prover sends $\{N_P, \sigma_p\}_{pk_V}$
- He exposes N_P during the protocol

SPADE, building blocks

- A public key encryption scheme PKE
 - IND-CCA2
- A pseudorandom function PRF
 - Unforgeable
 - ▶ In the ROM, $PRF_{sk}(M) \equiv H(sk, M)$
- A revocable group signature scheme PKE
 - Anonymous signature on behalf of the group

Security: Main Theorem

Theorem

If (i) PKE is IND-CCA2 secure, (ii) G-SIG is unforgeable, unlinkable and revocable and (iii) the challenges are random and independent then SPADE is MF, DF and TF resistant, as well as anonymous and revocable, in the random oracle model.

User tracking

If V can track users, then he can break the unlinkability of the group signature scheme

Security: TF

The accomplice can replay $\{N_P, \sigma_p\}_{pk_V}$ later: he knows N_P

The Backdoor

The backdoor helps the accomplice recover the missing bits $\frac{\{N_P, \sigma_P\}_{Pk_V}, N'_P}{\longrightarrow} \quad \text{if } d_H(N_P, N'_P) > t \text{ then abort}$

- Trick for the proof
- Slightly lowers MF resistance
- Can adjust t

Security: MF

A wrong challenge guess is detected!

Security: DF

The mask *m* ensures that $r_i^0 \neq r_i^1$ for \approx half the rounds

Outline

C-ROADS & IndID

Distance Bounding

SPADE

Building Blocks Protocol Anonymity Terrorist Fraud Mafia Fraud

Security

Conclusion

Several Possible Attackers

- Insider vs Outsider
- Active vs Passive
- Local vs Extended
- Single vs Multiple
- Laptop vs Server

Wormhole Attack

Cryptography:

- Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

Cryptography:

- ▶ Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

Properties:

- Authentication,
- Privacy
- Non Repudiation ...

Cryptography:

- ▶ Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

Properties:

- Authentication,
- Privacy
- Non Repudiation ...

Intruders:

- Passive, active
- CPA, CCA ...

Cryptography:

- ▶ Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

Properties:

- Authentication,
- Privacy
- Non Repudiation ...

Intruders:

- Passive, active
- CPA, CCA ...

Designing secure cryptographic protocols is difficult

4096 RSA encryption

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

$$\{35\}_{pk}, \{35,1\}_{pk}, ..., \{41\}_{pk}$$

Abstract Representation

$$1 \quad A \quad \rightarrow \quad B \quad : \quad \{m\}_{K_A}$$

Abstract Representation

Abstract Representation

DÉLISATION ET D'OPTIMISATION DES SYSTÈMES

0'0.0
3-pass Shamir

Abstract Representation

ATION ET D'OPTIMISATION DES SYSTÈMES

0'0.0

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

 $\{m\}_k = m \oplus k$

XOR Properties (ACUN)

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

• $x \oplus y = y \oplus x$ Commutativity

$$\blacktriangleright x \oplus 0 = x$$

$$\blacktriangleright x \oplus x = 0$$

Associativity

Nilpotency

Unity

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

 $\{m\}_k = m \oplus k$

Vernam encryption is a commutative encryption :

$$_{\mathcal{M}_{I}}\{\{m\}_{\mathcal{K}_{A}}\}_{\mathcal{K}_{I}}=(m\oplus\mathcal{K}_{A})\oplus\mathcal{K}_{I}=(m\oplus\mathcal{K}_{I})\oplus\mathcal{K}_{A}=\{\{m\}_{\mathcal{K}_{I}}\}_{\mathcal{K}_{A}}$$

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption)

 $\{m\}_k = m \oplus k$

Passive attacker :

 $m \oplus K_A$ $m \oplus K_B \oplus K_A$ $m \oplus K_B$

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption)

 $\{m\}_k = m \oplus k$

Passive attacker :

 $m \oplus K_A \oplus m \oplus K_B \oplus K_A \oplus m \oplus K_B = m$

Second Example

Needham Schroeder Key Echange 1976

 $A \rightarrow B : \{A, N_A\}_{Pub(B)}$ $B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow B : \{N_B\}_{Pub(B)}$

- Use cryptography
- Small programs
- Distributed

Cryptography is not sufficient !

Example : Needham Schroeder Key Echange

$$A \rightarrow B : \{A, N_A\}_{Pub(B)}$$
$$B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$$
$$A \rightarrow B : \{N_B\}_{Pub(B)}$$

Cryptography is not sufficient !

Example : Needham Schroeder Key Echange

$$A \rightarrow B : \{A, N_A\}_{Pub(B)}$$
$$B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$$
$$A \rightarrow B : \{N_B\}_{Pub(B)}$$

Broken 17 years after, by G. Lowe
$$A \rightarrow I : \{A, N_A\}_{Pub(I)}$$
 $I \rightarrow B : \{A, N_A\}_{Pub(B)}$ $A \leftarrow I : \{N_A, N_B\}_{Pub(A)}$ $I \leftarrow B : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow I : \{N_B\}_{Pub(I)}$ $I \rightarrow B : \{N_B\}_{Pub(B)}$

Cryptography is not sufficient !

Example : Needham Schroeder Key Echange

 $A \rightarrow B : \{A, N_A\}_{Pub(B)}$ $B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow B : \{N_B\}_{Pub(B)}$

Broken 17 years after, by G. Lowe
$$A \rightarrow I : \{A, N_A\}_{Pub(I)}$$
 $I \rightarrow B : \{A, N_A\}_{Pub(B)}$ $A \leftarrow I : \{N_A, N_B\}_{Pub(A)}$ $I \leftarrow B : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow I : \{N_B\}_{Pub(I)}$ $I \rightarrow B : \{N_B\}_{Pub(B)}$

Computer-Aided Security

Necessity of Tools to Analyze Cryptographic Protocols

- Protocols are small recipes.
- Non trivial to design and understand.
- ▶ The number and size of new protocols.
- Out-pacing human ability to rigourously analyze them.
- GOAL : A tool is finding flaws or establishing their correctness.
 - completely automated,
 - robust,
 - expressive,
 - and easily usable.

Existing Tools: AVISPA, Scyther, Proverif, Tamarin ...

Attacker

Attacker

Security Team

Designer

Attacker

Give a proof

Security Team

Designer

Attacker

Give a proof

Find a flaw

Security Team

Applications

Outline

C-ROADS & IndID

Distance Bounding

SPADE

Building Blocks Protocol Anonymity Terrorist Fraud Mafia Fraud Distance Fraud

Security

Conclusion

Things to bring home

Several challenges in VANETs, specially in security:

- Connected Vehicule will be subject to more and more attacks
- Security should be taken into account
- Distance Bounding can help also in Vehicule context
- Designing secure protocols is difficult
- Formal methods are useful for designing secure protocols

$\mathsf{Protocol} + \mathsf{Properties} + \mathsf{Intruder} \Rightarrow \mathsf{Security}$

Thanks for your attention

Questions ?

