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Introduction to Cryptography

Historic of Cryptography

Kerchoff’s Principle

In 1883, a Dutch linguist Auguste Kerchoff von Nieuwenhof stated
in his book “La Cryptographie Militaire” that:

“the security of a crypto-system must be totally dependent on the
secrecy of the key, not the secrecy of the algorithm.”

Author’s name sometimes spelled Kerckhoff
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One-Time Pad (Vernam 1917)

Example:

m = 010111
k = 110010

c = 100101
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Shannon’s Principle 1949

Confusion

The purpose of confusion is to make the relation between the key
and the ciphertext as complex as possible.

Ciphers that do not offer much confusion (such as Vigenere cipher)
are susceptible to frequency analysis.

Diffusion

Diffusion spreads the influence of a single plaintext bit over many
ciphertext bits.

The best diffusing component is substitution (homophonic)

Principle

A good cipher design uses Confusion and Diffusion together
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Symmetric Encryption

encryption decryption

Clef symétrique Clef symétrique

Examples

I Caesar, Vigenère

I One Time Pad (OTP) c = m ⊕ k

I Data Encryption Standard (DES) 1976

I Advanced Encryption Strandard (AES) 2001
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Public Key Encryption

encryption decryption

Clef publique

Clef privée

Examples

I RSA (Rivest Shamir Adelmman 1977): c = me mod n

I ElGamal (1981) : c ≡ (g r , hr ·m)
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Comparaison

I Size of the key

I Complexity of computation (time, hardware, cost ...)

I Number of different keys ?

I Key distribution

I Signature only possible with asymmetric scheme
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Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

DVD 4,7 G.B Blu-Ray 25 GB

Schemes encrypt decrypt encrypt decrypt

RSA 2048(1) 22 min 24 h 115 min 130 h
RSA 1024(1) 21 min 10 h 111 min 53 h

AES CTR(2) 20 sec 20 sec 105 sec 105 sec
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ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group
generator g of (Z/pZ)∗ and a ∈ (Z/(p − 1)Z)∗.

Public key: (p, g , h), where h = ga mod p.

Private key: a

Encryption: Bob chooses r ∈R (Z/(p − 1)Z)∗ and computes
(u, v) = (g r ,Mhr )

Decryption: Given (u, v), Alice computes M ≡p
v
ua

Justification: v
ua = Mhr

g ra ≡p M

Remarque: re-usage of the same random r leads to a security flaw:

M1h
r

M2hr
≡p

M1

M2

Practical Inconvenience: Cipher is twice as long as plain text.
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Security properties

I Pré-image Resistance

I Second Pré-image Resistance

I Collision Resistance

I Unkeyed Hash function: Integrity
I Keyed Hash function (Message Authentication Code):

Authentification
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I Second Pré-image Resistance

I Collision Resistance

I Unkeyed Hash function: Integrity
I Keyed Hash function (Message Authentication Code):

Authentification

21 / 59



Introduction to Cryptography

Introduction to Cryptography

Hash Function (SHA-256, SHA-3)

Security properties
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I Second Pré-image Resistance

I Collision Resistance

I Unkeyed Hash function: Integrity
I Keyed Hash function (Message Authentication Code):

Authentification
21 / 59



Introduction to Cryptography

Introduction to Cryptography

Software Installation

H( )

Integrity of the downloaded file.

1. Download on server 1 the software.

2. Download on server 2 the hash of the software.

3. Check the integrity of the software.
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MD5, MD4 and RIPEMD Broken

MD5(james.jpg)= e06723d4961a0a3f950e7786f3766338

MD5(barry.jpg) = e06723d4961a0a3f950e7786f3766338

How to Break MD5 and Other Hash Functions, by Xiaoyun Wang,
et al.

MD5 : Average run time on P4 1.6ghz PC: 45 minutes
MD4 and RIPEMD : Average runtime on P4 1.6ghz: 5 seconds
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SHA-1 broken in 2017 shattered.io

M. Stevens, P. Karpman, E. Bursztein, A. Albertini, Y. Markov
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Broadcast encryption (Fiat-Noar 1994)

The sender can select the target group of receivers to control who
access to the data like in PAYTV
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Functional encryption [Boneh-Sahai-Waters 2011]

The user generates sub-keys Ky according to the input y to control
the amount of shared data.
From C = Encrypt(x), then Decrypt(Ky ,C ), outputs f (x , y)
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Partial and Full Homomorphic Encryption

Fully Homomorphic Encryption [Gentry 2009]

FHE: encrypt data, allow manipulation over data.
Symmetric Encryption (secret key) is enough

f ({x1}K , {x2}K , . . . , {xn}K ) = {f (x1, x2, . . . , xn)}K
I Allows private storage
I Allows private computations
I Private queries in an encrypted database
I Private search: without leaking the content, queries and

answers.
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Partial and Full Homomorphic Encryption

Rivest Adleman Dertouzos 1978

“Going beyond the storage/retrieval of encrypted data by
permitting encrypted data to be operated on for interesting
operations, in a public fashion?”
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Partial and Full Homomorphic Encryption

Partial Homomorphic Encryption

Definition (additively homomorphic)

E (m1)⊗ E (m2) ≡ E (m1 ⊕m2).

Applications

I Electronic voting
I Secure Fonction Evaluation
I Private Multi-Party Trust Computation
I Private Information Retrieval
I Private Searching
I Outsourcing of Computations (e.g., Secure Cloud Computing)
I Private Smart Metering and Smart Billing
I Privacy-Preserving Face Recognition
I . . . 36 / 59
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Partial and Full Homomorphic Encryption

Brief history of partially homomorphic cryptosystems

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)

Year Name Security hypothesis Expansion
1977 RSA factorization

1982 Goldwasser - Micali quadratic residuosity log2(n)

1994 Benaloh higher residuosity > 2

1998 Naccache - Stern higher residuosity > 2

1998 Okamoto - Uchiyama p-subgroup 3

1999 Paillier composite residuosity 2

2001 Damgaard - Jurik composite residuosity d+1
d

2005 Boneh - Goh - Nissim ECC Log

2010 Aguilar-Gaborit-Herranz SIVP integer lattices

Expansion factor is the ration ciphertext over plaintext.
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Partial and Full Homomorphic Encryption

Scheme Unpadded RSA

If the RSA public key is modulus m and exponent e, then the
encryption of a message x is given by

E(x) = xe mod m

E(x1) · E(x2) = xe1 x
e
2 mod m

= (x1x2)e mod m

= E(x1 · x2)
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Partial and Full Homomorphic Encryption

Scheme ElGamal

In the ElGamal cryptosystem, in a cyclic group G of order q with
generator g , if the public key is (G , q, g , h), where h = g x and x is
the secret key, then the encryption of a message m is
E(m) = (g r ,m · hr ), for some random r ∈ {0, . . . , q − 1}.

E(m1) · E(m2) = (g r1 ,m1 · hr1)(g r2 ,m2 · hr2)

= (g r1+r2 , (m1 ·m2)hr1+r2)

= E(m1 ·m2)
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Partial and Full Homomorphic Encryption

Fully Homomorphic Encryption

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)

Enc(a, k) + Enc(b, k) = Enc(a + b, k)

f (Enc(a, k),Enc(b, k)) = Enc(f (a, b), k)

Fully Homomorphic encryption

I Craig Gentry (STOC 2009) using lattices

I Marten van Dijk; Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan using integer

I Craig Gentry; Shai Halevi. ”A Working Implementation of
Fully Homomorphic Encryption”

I · · ·
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Partial and Full Homomorphic Encryption

Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : x0 = q0 · p
Secret key sk = p

Encryption of m ∈ {0, 1}

c = q · p + 2 · r + m

where q is a large random and r a small random.

Decryption of c

m = (c mod p) mod 2
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Security Properties

Traditional security properties

I Common security properties are:

- Confidentiality or Secrecy: No improper disclosure of
information

- Authentification: To be sure to talk with the right person.
disclosure of information

- Integrity: No improper modification of information

- Availability: No improper impairment of functionality/service
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Security Properties

Mechanisms for Authentication

Strong authentication combines multiple factors:
E.g., Smart-Card + PIN
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Security Properties

Other security properties

I Non-repudiation (also called accountability) is where one can
establish responsibility for actions.

I Fairness is the fact there is no advantage to play one role in a
protocol comparing with the other ones.

I Privacy

Anonymity: secrecy of principal identities or communication
relationships.

Pseudonymity: anonymity plus link-ability.
Data protection: personal data is only used in certain ways.
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Introduction to Cryptography

Security Properties

Example: e-voting

I An e-voting system should ensure that
I only registered voters vote,
I each voter can only vote once,
I integrity of votes,
I privacy of voting information (only used for tallying), and
I availability of system during voting period
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ZKP

Idea of Zero Knowledge Proof

Prover (P)

(P) convinces (V) that it knows something
without revealing any information

Verifier (V)

Applications:

I Authentication systems: prove its identity to someone using a
password without reavealing anything about the secret.

I Prove that a praticipant behavior is correct according to the
protocol (e.g. integrity of ballots in vote).

I Group signature, secure multiparty computation, e-cash ...
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Cave example (0)

Door with a secret code
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ZKP

Cave example (I)

V waits outside while P chooses a path
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ZKP

Cave example (II)

V enters and shouts the name of a path
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ZKP

Cave example (III)

P returns along the desired path (using the secret if necessary)

A = “P does not know the secret”
is equivalent to say “P is lucky”

Pr [A] =
1

2

After k tries,

Pr [A] = (
1

2
)k

A = “P knows the secret”, then

Pr [A] = 1− Pr [A] = 1− (
1

2
)k
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ZKP

P wants to prove to V his 3-coloring of G = (E ,V )

P selects a permutation π of the 3 colors.

π(

1 2

3
4

5

6
7

8

910

)=

1 2

3
4

5

6
7

8

910

Chooses ∀u ∈ V , ru

→ ∀u ∈ V , eu = H(π(c(u))||ru)→
←− ui , uj ←−

−→ rui , ruj , π(c(ui )), π(c(vj)) −→

V accepts, if eui = H(π(c(ui ))||rui ) and
euj = H(π(c(uj))||ruj ) Chooses i and j
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ZKP

Schnorr Protocol, 1991

Let Gq a cyclic group of order q with a public generator g

Goal

P wants to prove the knowledge of x , where y = g x

Chooses a random r

−→ t = g r −→

←− c ←−
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Ron Rivest

“Once you have something on the Internet, you are telling
the world, please come hack me.”
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