Formal Methods and Security

Pascal Lafourcade

November 2016, ARC6

What is cryptography based security?

Cryptography:

- ► Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

What is cryptography based security?

Cryptography:

- ▶ Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

Properties:

Secrecy,

- Authentication,
- Privacy
- ► Non Repudiation ...

What is cryptography based security?

Cryptography:

- ▶ Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

Properties:

Secrecy,

- Authentication,
- Privacy
- ► Non Repudiation ...

Intruders:

- ► Passive, active
- ► CPA, CCA ...

What is cryptography based security?

Cryptography:

- ▶ Primitives: RSA, Elgamal, AES, DES, SHA-3 ...
- Protocols: Distributed Algorithms

Properties:

Secrecy,

- Authentication,
- Privacy
- ► Non Repudiation ...

Intruders:

- ► Passive, active
- ► CPA, CCA ...

Designing secure cryptographic protocols is difficult

Shamir 3-Pass Protocol

Shamir 3-Pass Protocol

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

 $\{m\}_k = m \oplus k$

XOR Properties (ACUN)

- $\blacktriangleright (x \oplus y) \oplus z = x \oplus (y \oplus z)$
- $\blacktriangleright x \oplus y = y \oplus x$
- ► $x \oplus 0 = x$
- $x \oplus x = 0$

Associativity Commutativity Unity Nilpotency

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption) $\{m\}_k = m \oplus k$

XOR Properties (ACUN)

- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- $\blacktriangleright x \oplus y = y \oplus x$
- ► $x \oplus 0 = x$
- $\blacktriangleright x \oplus x = 0$

Associativity Commutativity Unity Nilpotency

Vernam encryption is a commutative encryption :

 $\{\{m\}_{K_A}\}_{K_I} = (m \oplus K_A) \oplus K_I = (m \oplus K_I) \oplus K_A = \{\{m\}_{K_I}\}_{K_A}$

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption)

Shamir 3-Pass Protocol

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption)

Shamir 3-Pass Protocol

Second Example

Needham Schroeder Key Echange 1976

 $A \rightarrow B : \{A, N_A\}_{Pub(B)}$ $B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow B : \{N_B\}_{Pub(B)}$

- Use cryptography
- Small programs
- Distributed

Cryptography is not sufficient !

Example : Needham Schroeder Key Echange

 $A \rightarrow B : \{A, N_A\}_{Pub(B)}$ $B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow B : \{N_B\}_{Pub(B)}$

Cryptography is not sufficient !

Example : Needham Schroeder Key Echange

 $A \rightarrow B : \{A, N_A\}_{Pub(B)}$ $B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow B : \{N_B\}_{Pub(B)}$

Broken 17 years after, by G. Lowe $A \rightarrow I : \{A, N_A\}_{Pub(I)}$ $A \leftarrow I : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow I : \{N_B\}_{Pub(I)}$

 $I \rightarrow B : \{A, N_A\}_{Pub(B)}$

$$I \leftarrow B : \{N_A, N_B\}_{Pub(A)}$$

$$I \rightarrow B : \{N_B\}_{Pub(B)}$$

Cryptography is not sufficient !

Example : Needham Schroeder Key Echange

 $A \rightarrow B : \{A, N_A\}_{Pub(B)}$ $B \rightarrow A : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow B : \{N_B\}_{Pub(B)}$

Broken 17 years after, by G. Lowe $A \rightarrow I : \{A, N_A\}_{Pub(I)}$ $I \rightarrow B : \{A, N_A\}_{Pub(B)}$ $A \leftarrow I : \{N_A, N_B\}_{Pub(A)}$ $I \leftarrow B : \{N_A, N_B\}_{Pub(A)}$ $A \rightarrow I : \{N_B\}_{Pub(I)}$ $I \rightarrow B : \{N_B\}_{Pub(B)}$ Computer-Aided Security

Formal Verification Approaches

Designer

Attacker

Formal Verification Approaches

Designer

Attacker

Security Team

Formal Verification Approaches

Designer

Attacker

Give a proof

Security Team

Formal Verification Approaches

Attacker

Give a proof

Find a flaw

Security Team

Necessity of Tools to Analyze Cryptographic Protocols

- Protocols are small recipes.
- ► Non trivial to design and understand.
- The number and size of new protocols.
- Out-pacing human ability to rigourously analyze them.

GOAL : A tool is finding flaws or establishing their correctness.

- completely automated,
- robust,
- expressive,
- and easily usable.

Existing Tools: AVISPA, Scyther, Proverif, Hermes, Casper/FDR, Murphi, NRL ...

Questions?

How can we find such attacks automatically?

- Models for Protocols
- Models for Properties
- Theories and Dedicated Techniques
- ► Tools
 - ► Automatic
 - Semi-automatic

Why is it difficult to verify such protocols?

- Messages: Size not bounded
- Nonces: Arbitrary number
- Intruder: Unlimited capabilities
- Instances: Unbounded numbers of principals
- ► Interleaving: Unlimited applications of the protocol.

Complexity

Complexity depends of intruder capabilities.

- Passive Intruder
 Problem is polynomial
- Bounded Number of sessions Problem is NP-complete Tools can verify 3-4 sessions: useful to finds flaws ! OFMC, Cl-Atse, SATMC, FDR, Athena...
- Unbounded Number of sessions
 Problem is in general undecidable
 Tools are corrects, but uncomplete (can find false attacks, can not terminate)
 Proverif, TA4SP, Scyther, Tamarin.

Outline

Motivation

Formal Verification Verification of Cryptogrpahic Primitives Verification of Cryptographic Protocols

Challenges Cryptography Properties Applications

Conclusion

Formal Methods and Security Formal Verification

Outline

Motivation

Formal Verification Verification of Cryptogrpahic Primitives Verification of Cryptographic Protocols

Challenges Cryptography Properties Applications

Conclusion

Related Work

- CryptoVerif [BP06]:
 - tool that generates proofs by sequences of games
 - has automatic and manual modes
- CIL [BDKL10]: Computational Indistinguishability Logic for proving cryptographic primitives.
- CertiCrypt [BGZB09] /EasyCrypt [BGHB11]:
 - Framework for machine-checked cryptographic proofs in Coq
 - Improved by EasyCrypt: generates CertiCrypt proofs from proof sketches

Automatically proving security of cryptographic primitives

- 1. Defining a language
- 2. Modeling security properties
- 3. Building a Hoare Logic for proving the security

Automatically proving security of cryptographic primitives

- 1. Defining a language
- 2. Modeling security properties
- 3. Building a Hoare Logic for proving the security

Correct but not complete.

Automatically proving security of cryptographic primitives

- 1. Defining a language
- 2. Modeling security properties
- 3. Building a Hoare Logic for proving the security

Correct but not complete.

- Asymmetric Encryption Schemes [CDELL'08,CDELL'10]
- Encryption Modes [GLLS'09]
- Message Authentication Codes (MACs) [GLL'13]

Automatically proving security of cryptographic primitives

- 1. Defining a language
- 2. Modeling security properties
- 3. Building a Hoare Logic for proving the security

Correct but not complete.

- Asymmetric Encryption Schemes [CDELL'08,CDELL'10]
- Encryption Modes [GLLS'09]
- Message Authentication Codes (MACs) [GLL'13]

Verification Technique: Hoare Logic

Set of rules (R_i) : $\{P\}$ *cmd* $\{Q\}$

Verification Technique: Hoare Logic

Set of rules (R_i) : $\{P\}$ *cmd* $\{Q\}$

Verification Technique: Hoare Logic

Set of rules (R_i) : $\{P\}$ *cmd* $\{Q\}$ $\{P_0\} c_1$ C2 Cn

Verification Technique: Hoare Logic

Set of rules (R_i) : $\{P\}$ *cmd* $\{Q\}$ $\{P_0\} c_1$ C2 c_n {Indis(out_e)} ?

Verification Technique: Hoare Logic

```
Set of rules (R_i) : \{P\} cmd \{Q\}
(R_5)\{P_0\}\ c_1\ \{Q_0\}
              C2
             c_n {Indis(out<sub>e</sub>)} ?
```


Verification Technique: Hoare Logic

```
Set of rules (R_i) : \{P\} cmd \{Q\}
(R_5)\{P_0\}\ c_1\ \{Q_0\}
(R_2)\{P_1\} \ c_2 \ \{Q_2\}, \text{ where } P_1 \subseteq Q_0
              c_n {Indis(out_e)}?
```


Verification Technique: Hoare Logic

```
Set of rules (R_i) : \{P\} cmd \{Q\}
(R_5)\{P_0\}\ c_1\ \{Q_0\}
(R_2)\{P_1\} \ c_2 \ \{Q_2\}, \text{ where } P_1 \subseteq Q_0
(R_8){P_n} c_n {Indis(out_e)}?
```


Verification Technique: Hoare Logic

```
Set of rules (R_i): \{P\} cmd \{Q\}
(R_5)\{P_0\} c<sub>1</sub> \{Q_0\}
(R_2)\{P_1\} c<sub>2</sub> \{Q_2\}, where P_1 \subseteq Q_0
\vdots
(R_8)\{P_n\} c<sub>n</sub> \{Indis(out_e)\} ?
```


Examples of rules:

(X2): { $Indis(w; V_1, y, z; V_2)$ } $x := y \oplus z$ { $Indis(w; V_1, x, y, z; V_2)$ } (H6): { $WS(y; V_1; V_2, y) \land H(H, y)$ } x := H(y) { $WS(y; V_1, x; V_2, y)$ } ^{17 / 47}

Outline

Motivation

Formal Verification Verification of Cryptogrpahic Primitives Verification of Cryptographic Protocols

Challenges Cryptography Properties Applications

Conclusion

E-exam: Players and Organization

Three Roles:

Candidate

Examination Authority

Examiner

E-exam: Players and Organization

Three Roles:

Four Phases:

1. Registration 2. Examination 3. Marking 4. Notification

- **Processes** in the applied π -calculus
- Annotated using events
- Authentication properties as correspondence between events
- Privacy properties as observational equivalence between instances
- Automatic verification using ProVerif

Model

1. Registration

Definition:

Answer Origin Authentication

All collected answers originate from registered candidates, and only one answer per candidate is accepted.

On every trace: EXAM 1. Registration Register register(K 2. Examination Questions preceeded by distinct occurrence Answer submit(Kal, accept(Ke, 22 / 47

Form Authorship

Answers are collected as submitted, i.e. without modification.

Definition:

On every trace:

Form Authenticity

Answers are marked as collected.

Definition:

Mark Authenticity

The candidate is notified with the mark associated to his answer.

Definition:

Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Can be considered with or without dishonest candidates.

Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

Can be considered with or without dishonest examiners and authorities.

Anonymous Examiner

A candidate cannot know which examiner graded his copy.

Definition:

Can be considered with or without dishonest candidates.

Mark Privacy

Marks are private.

Definition:

Can be considered with or without dishonest candidates, examiners and authorities.

Mark Anonymity

Marks can be published, but may not be linked to candidates.

Definition:

Can be considered with or without dishonest candidates, examiners and authorities. Implied by Mark Privacy.

30 / 47

Formal Methods and Security Formal Verification Huszti & Pethő's Protocol

Application: Huszti & Pethő's Protocol

"A Secure Electronic Exam System" using

- ElGamal Encryption
- ► a Reusable Anonymous Return Channel (RARC) for anonymous communication
- a network of servers providing a timed-release service using Shamir's Secret Sharing:
 - A subset of servers can combine their shares to de-anonymize
 - a candidate after the exam

Goal: ensure

- authentication and privacy
- in presence of $\ensuremath{\mathsf{dishonest}}$
 - candidates
 - examiners
 - exam authorities

Formal Methods and Security Formal Verification Huszti & Pethő's Protocol

Results

Formal Verification with ProVerif:

Property	Result	Time
Answer Origin Authentication	×	< 1 s
Form Authorship	×	< 1 s
Form Authenticity	×	< 1 s
Mark Authenticity	×	< 1 s
Question Indistinguishability	×	< 1 s
Anonymous Marking	×	8 m 46 s
Anonymous Examiner	×	9 m 8 s
Mark Privacy	×	39 m 8 s
Mark Anonymity	×	1h 15 m 58 s

Formal Methods and Security Formal Verification Huszti & Pethő's Protocol

Main reason

Given its security definition, the $\ensuremath{\mathsf{RARC}}$

- provides anonymity, but not necessarily secrecy
- does not necessarily provide integrity or authentication
- ► is only secure against passive attackers

Corrupted parties or active attackers can break secrecy and anonymity, as the following attack shows.

Formal Methods and Security Formal Verification Remark! Protocol

Application: Remark! Protocol

A recent protocol using

- ElGamal encryption
- an exponentiation mixnet to create pseudonyms based on the parties' public keys
 - \Rightarrow allows to encrypt and sign anonymously
- ► a public append-only **bulletin board**
- Goal: ensure
 - authentication and integrity
 - privacy
 - verifiability
- in presence of dishonest
 - candidates
 - examiners
 - exam authorities

Formal Methods and Security Formal Verification Remark! Protocol

Results

Formal Verification with ProVerif:

Property	Result	Time
Answer Origin Authentication	\checkmark	< 1 s
Form Authorship	\checkmark	< 1 s
Form Authenticity	\checkmark^1	< 1 s
Mark Authenticity	\checkmark	< 1 s
Question Indistinguishability	\checkmark	< 1 s
Anonymous Marking	\checkmark	2 s
Anonymous Examiner	\checkmark	1 s
Mark Privacy	\checkmark	3 m 32 s
Mark Anonymity	\checkmark	_2

¹after fix

²implied by Mark Privacy

Formal Methods and Security Challenges

Outline

Motivation

Formal Verification Verification of Cryptogrpahic Primitives Verification of Cryptographic Protocols

Challenges Cryptography Properties Applications

Conclusion

Formal Methods and Security Challenges Cryptography

Main changes

- Fully homomorphic encryption
- Post-quantum cryptogrpahy
- Lattice based cryptgraphy
- Privacy primitives

Formal Methods and Security Challenges Cryptography

Main changes

- Fully homomorphic encryption
- Post-quantum cryptogrpahy
- Lattice based cryptgraphy
- Privacy primitives

Are they really secure ?

Formal Methods and Security Challenges Cryptography

Main changes

- Fully homomorphic encryption
- Post-quantum cryptogrpahy
- Lattice based cryptgraphy
- Privacy primitives

Are they really secure ? How to model them in formal verification ?
Formal Methods and Security Challenges Properties

More Properties

- Privacy
- ► Traceability
- Accountablility
- Fairness

Near Future

Reasons of the Succes of IOT

Technology

- Wireless Communications: Wifi, 3G, 4G, Bluethooth, Sigfox ...
- Batteries
- ► CPU
- Sensors
- Price

Reasons of the Succes of IOT

Technology

- Wireless Communications: Wifi, 3G, 4G, Bluethooth, Sigfox ...
- Batteries
- ► CPU
- Sensors
- ► Price

Usage

- Monitoring services
- Hyperconnectivity
- Avaibility

Real attacks on IoT from 2007 ...

Real attacks on IoT from 2007 ...

Real attacks on IoT from 2007 ...

Is it preserving your privacy?

Is it preserving your privacy?

4096 RSA encryption

Is it preserving your privacy?

4096 RSA encryption

Around 60 possible temperatures: 35 ... 41

Is it preserving your privacy?

4096 RSA encryption

Around 60 possible temperatures: 35 ... 41

 $\{35\}_{pk}, \{35,1\}_{pk}, ..., \{41\}_{pk}$

Wormhole Attack

Several Possible Attackers to Consider

- Insider vs Outsider
- Active vs Passive
- Local vs Extended
- Single vs Multiple
- Laptop vs Server

Formal Methods and Security Conclusion

Outline

Motivation

Formal Verification Verification of Cryptogrpahic Primitives Verification of Cryptographic Protocols

Challenges Cryptograph Properties Applications

Conclusion

Formal Methods and Security Conclusion

Things to bring home

Several challenges in security.

- Designing secure protocols is difficult
- Formal methods are useful for designing secure protocols

$Protocol + Properties + Intruder \Rightarrow Security$

Formal Methods and Security Conclusion

Thanks for your attention

Questions ?