Formal Analysis of E-Cash Protocols

Jannik Dreier¹, Ali Kassem² and Pascal Lafourcade³

¹Institute of Information Security, ETH Zurich ²Université Grenoble Alpes, CNRS, VERIMAG ³University d'Auvergne, LIMOS

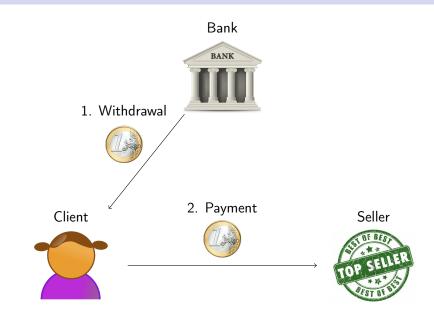
12th International Conference on Security and Cryptography (SECRYPT 2015), Colmar

July 20, 2015

(Electronic) Cash

(Electronic) Cash


Electronic Cash = digital equivalent



Security properties of physical cash

- Unforgeability: Only the bank can create coins.
- Anonymity:
 - Weak Anonymity: Nobody can distinguish which client makes a payment.
 - Strong Anonymity: Nobody is able to decide whether two payments were made by the same client.

Security properties of physical cash

- Unforgeability: Only the bank can create coins.
- Anonymity:
 - Weak Anonymity: Nobody can distinguish which client makes a payment.
 - Strong Anonymity: Nobody is able to decide whether two payments were made by the same client.
- Do they really hold?

Security properties of electronic cash

Electronic coins can be **copied**:

Two additional properties:

- Double Spending Identification: If a client spends a coin twice, his identity is revealed.
- Exculpability: An attacker cannot forge a double spend by a client to blame him.

Electronic Cash vs. Electronic Payments

Electronic Cash vs. Electronic Payments

 \Rightarrow No strong anonymity!

- General formal framework for the verification of E-Cash protocols:
 - **Formal model** in the applied *π*-calculus [?]
 - Formal definitions of the security properties
 - Suitable for automated verification using ProVerif [?]
- Three case studies:
 - Chaum's On-Line Protocol [?]
 - digicash Protocol [?]
 - Chaum's Off-Line Protocol [?]

Introduction

Model and Properties

Forgery-Related Properties Anonymity Properties

Case Studies

Chaum's On-Line Protocol DigiCash Protocol Chaum's Off-Line Protocol

Conclusion

Introduction

Model and Properties

Forgery-Related Properties Anonymity Properties

Case Studies Chaum's On-Line Protoco DigiCash Protocol Chaum's Off-Line Protoco

Conclusion

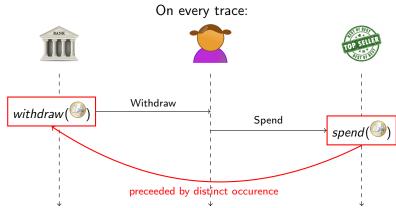
Model

- Processes in the applied π-calculus [?]
- Annotated using two events:
 - withdraw(⁽ⁱ⁾) at the bank
 - ► spend(⁽)) at the seller
- Unforgeability as correspondence between events
- Anonymity properties as observational equivalence between instances
- Automatic verification using ProVerif [?]

Introduction

Model and Properties Forgery-Related Properties

Anonymity Properties


Case Studies Chaum's On-Line Protocol DigiCash Protocol Chaum's Off-Line Protocol

Conclusion

Unforgeability

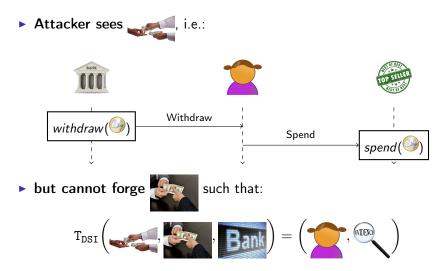
Only the bank can create coins.

Definition:

Double Spending Identification

If a client spends a coin twice, his identity is revealed:

 \exists Test T_{DSI} such that:


•
$$T_{DSI}(\cdot, \cdot, \cdot) = \bot$$
 otherwise

where

Exculpability

An attacker cannot forge a double spend by a client to blame him:

Introduction

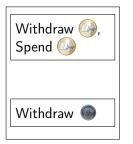
Model and Properties Forgery-Related Properties Anonymity Properties

Case Studies

Chaum's On-Line Protocol DigiCash Protocol Chaum's Off-Line Protocol

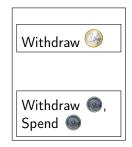
Conclusion

Nobody can distinguish which client makes a payment.

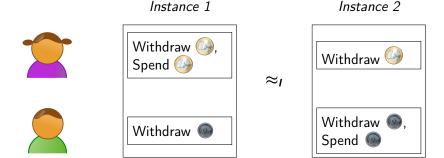

Definition:

Observational equivalence of two instances:

 \approx_1



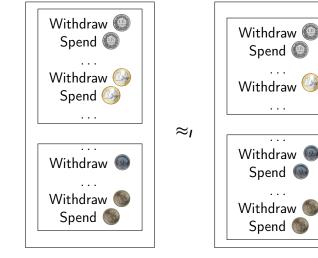
Instance 1


Instance 2

Nobody can distinguish which client makes a payment.

Definition:

Observational equivalence of two instances:



Note that the **bank** and the **seller** are **corrupted**.

Strong Anonymity

Nobody is able to decide whether two payments were made by the same client:

Introduction

Model and Properties

Forgery-Related Properties Anonymity Properties

Case Studies

Chaum's On-Line Protocol DigiCash Protocol Chaum's Off-Line Protocol

Conclusion

Introduction

Model and Properties

Forgery-Related Properties Anonymity Properties

Case Studies Chaum's On-Line Protocol

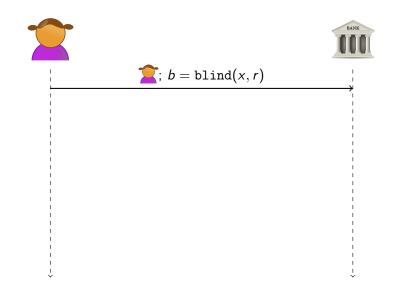
DigiCash Protocol Chaum's Off-Line Protocol

Conclusion

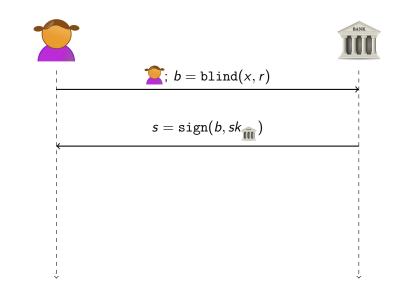
Application: Chaum's On-Line Protocol

First on-line E-Cash protocol [?] using

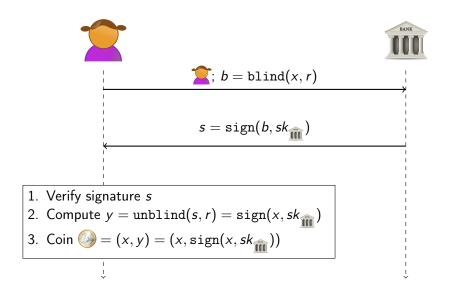
- blind signatures
- on-line verification by the bank to prevent double spending


Goal: ensure

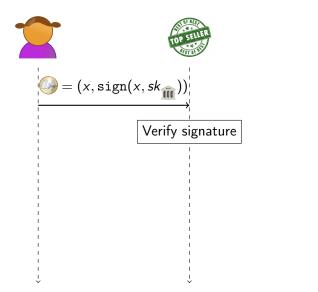
- unforgeability
- anonymity


in presence of dishonest

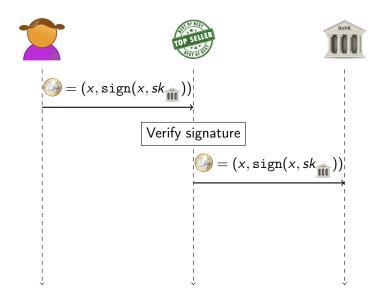
- banks
- sellers
- clients

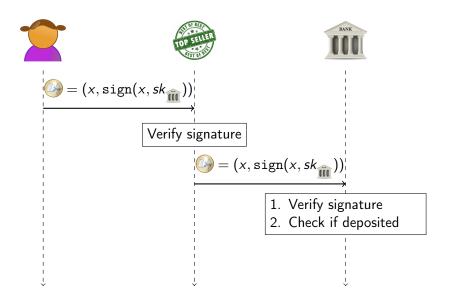

Withdrawal Phase

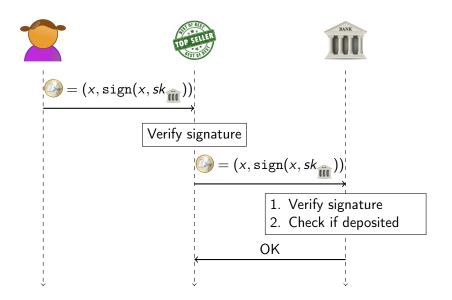
Withdrawal Phase

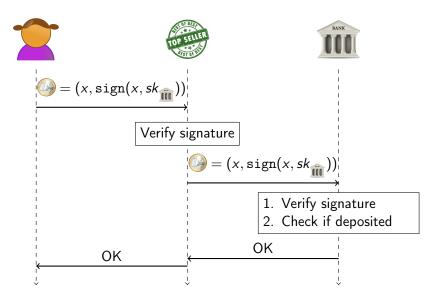


Withdrawal Phase




 $\bigcirc = (x, \operatorname{sign}(x, sk_{\widehat{m}}))$





Results

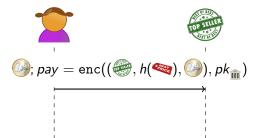
Formal Verification with ProVerif [?]:

Property	Result	Time
Unforgeability	×	$<$ 1 s
Double Spending Identification	_	-
Exculpability	_	-
Weak Anonymity	\checkmark	< 1 s
Strong Anonymity	\checkmark	< 1 s

- Race condition on the on-line verification, requires synchronization
- Double Spending Identification and Exculpability are irrelevant for on-line protocols.

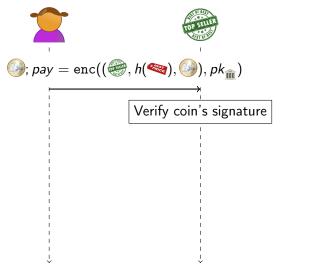
Introduction

Model and Properties

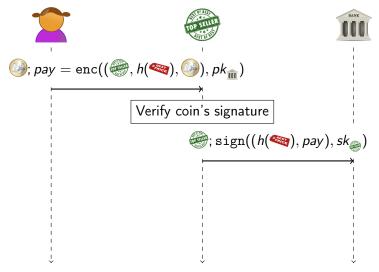

Forgery-Related Properties Anonymity Properties

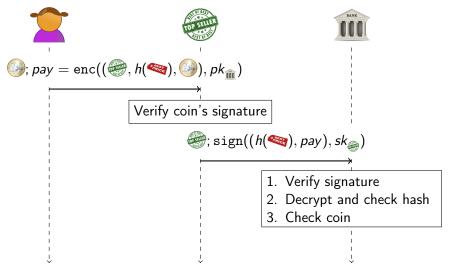
Case Studies

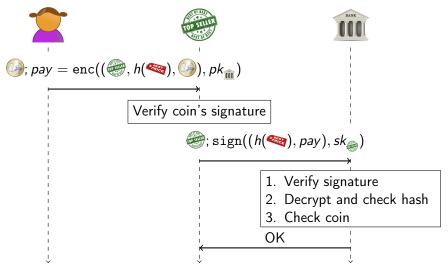
Chaum's On-Line Protocol DigiCash Protocol Chaum's Off-Line Protocol

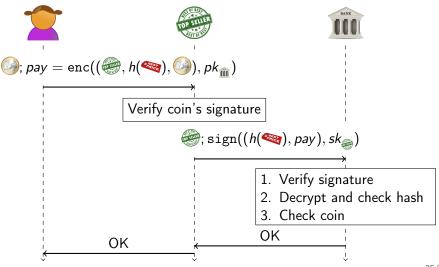

Conclusion

Variant of Chaum's On-Line protocol




Variant of Chaum's On-Line protocol


Variant of Chaum's On-Line protocol


Variant of Chaum's On-Line protocol

Variant of Chaum's On-Line protocol

Variant of Chaum's On-Line protocol

Formal Verification with ProVerif:

Property	Result	Time
Unforgeability	×	$<$ 1 s
Double Spending Identification	-	-
Exculpability	-	-
Weak Anonymity	\checkmark	< 1 s
Strong Anonymity	\checkmark	< 1 s

Same observations:

- Race condition on the on-line verification, requires synchronization
- Double Spending Identification and Exculpability are irrelevant for on-line protocols.

Introduction

Model and Properties

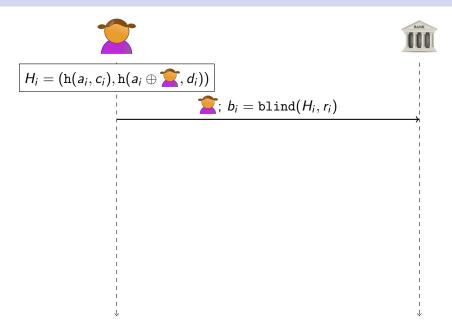
Forgery-Related Properties Anonymity Properties

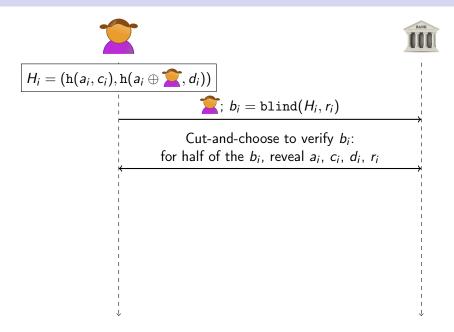
Case Studies

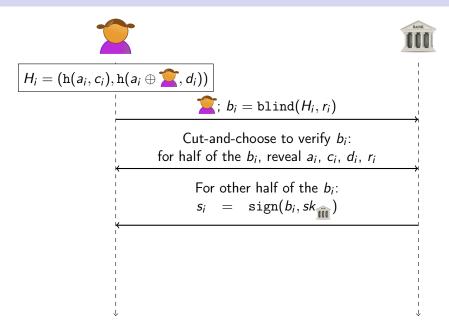
Chaum's On-Line Protocol DigiCash Protocol Chaum's Off-Line Protocol

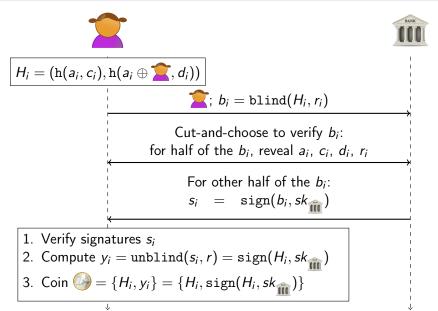
Conclusion

Chaum's Off-Line Protocol

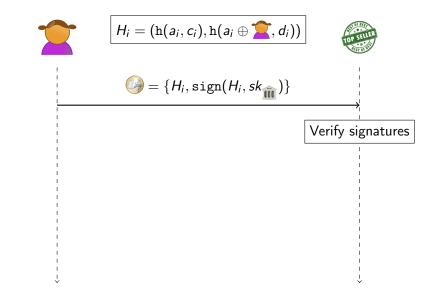

Off-line variant [?] of Chaum's on-line protocol [?] using

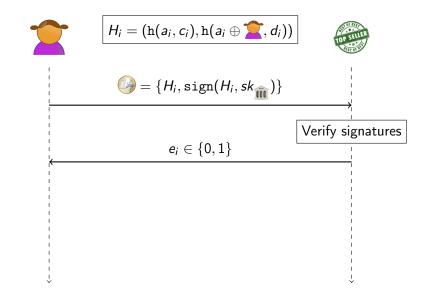

- blind signatures
- cryptographic hash
- XOR
- Goal: ensure
 - unforgeability
 - double spending identification
 - exculpability
 - anonymity
- in presence of dishonest
 - banks
 - sellers
 - clients

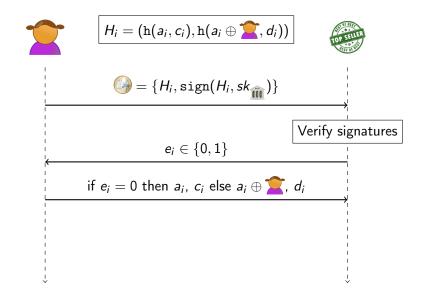


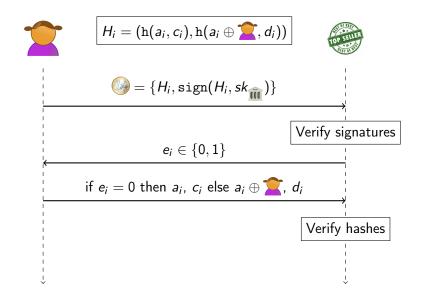


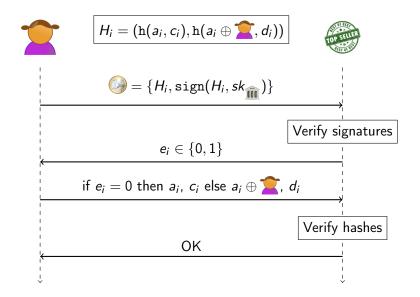
$$H_i = (h(a_i, c_i), h(a_i \oplus \mathbf{2}, d_i))$$

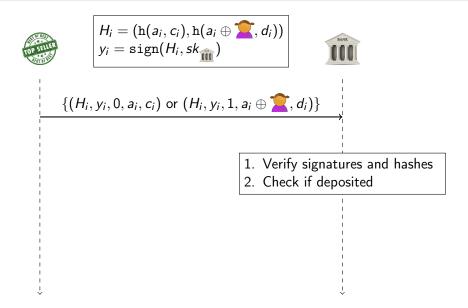




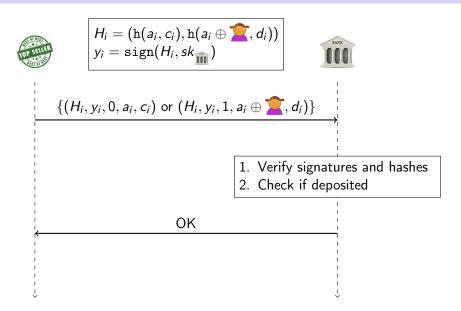

$$H_i = (h(a_i, c_i), h(a_i \oplus \mathbf{\hat{z}}, d_i))$$


$$H_i = (h(a_i, c_i), h(a_i \oplus \mathbf{\hat{z}}, d_i))$$


$$H_i = (h(a_i, c_i), h(a_i \oplus \mathbf{\hat{z}}, d_i))$$


Deposit Phase

TOP SELLER


 $H_i = (h(a_i, c_i), h(a_i \oplus \mathbf{2}, d_i))$ $y_i = \operatorname{sign}(H_i, sk_{m})$ $\{(H_i, y_i, 0, a_i, c_i) \text{ or } (H_i, y_i, 1, a_i \oplus \mathbf{2}, d_i)\}$

BANK

Deposit Phase

Deposit Phase

Double Spending Identification

If \mathbf{m} receives two transactions with the same coin, with high probability it has for at least one *i*

Allows to compute: $a_i \oplus (a_i \oplus 2) = 2$

If \mathbf{m} receives two transactions with the same coin, with high probability it has for at least one *i*

► d_i

Allows to compute: $a_i \oplus (a_i \oplus 2) = 2$

- However: m can forge double-spending as it knows 2
- ▶ Fix: $H_i = (h(a_i, c_i), h(a_i \oplus (2, z_i, z_i'), d_i))$ and client deposits signature on $h(z_i, z_i')$ at withdrawal

Formal Verification with ProVerif:

Property	Result	Time
Unforgeability	×	$< 1 \ { m s}$
Double Spending Identification	×	< 2 s
Double Spending Identification*	\checkmark	< 2 s
Exculpability	×	< 6 s
$Exculpability^\dagger$	\checkmark	< 6 s
Weak Anonymity	\checkmark	< 1 s
Strong Anonymity	\checkmark	< 1 s

Observations:

- Double spending possible, violating unforgeability
- Double Spending Identification requires cut-and-choose (*)
- Exculpability needs fix ([†]).

Introduction

Model and Properties

Forgery-Related Properties Anonymity Properties

Case Studies

Chaum's On-Line Protocol DigiCash Protocol Chaum's Off-Line Protocol

Conclusion

Conclusion

- E-cash can offer anonymous payment
- Formal framework for analysis of e-cash protocols:
 - Formal model in the **applied** π -calculus
 - Definitions for central forgery-related and anonymity properties

• Automated verification in ProVerif of three case studies:

- Chaum's On-Line Protocol: race condition on online verification
- DigiCash Protocol: same race condition on online verification
- Chaum's Off-Line Protocol: requires cut-and-choose and fix
- Future work: verification with synchronization and XOR, dividable and transferable coins

Thank you for your attention!

Questions?

jannik.dreier@inf.ethz.ch