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(Electronic) Cash

Electronic Cash = digital equivalent
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(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit
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Security properties of physical cash

I Unforgeability: Only the bank can create coins.
I Anonymity:

I Weak Anonymity: Nobody can distinguish which client makes
a payment.

I Strong Anonymity: Nobody is able to decide whether two
payments were made by the same client.

I Do they really hold?
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Security properties of electronic cash

Electronic coins can be copied:

⇒

Two additional properties:
I Double Spending Identification: If a client spends a coin

twice, his identity is revealed.
I Exculpability: An attacker cannot forge a double spend by a

client to blame him.
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Electronic Cash vs. Electronic Payments

⇒ No strong anonymity!
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Contributions

I General formal framework for the verification of E-Cash
protocols:

I Formal model in the applied π-calculus [?]
I Formal definitions of the security properties
I Suitable for automated verification using ProVerif [?]

I Three case studies:
I Chaum’s On-Line Protocol [?]
I Protocol [?]
I Chaum’s Off-Line Protocol [?]
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Model

I Processes in the applied π-calculus [?]
I Annotated using two events:

I withdraw( ) at the bank
I spend( ) at the seller

I Unforgeability as correspondence between events
I Anonymity properties as observational equivalence between

instances
I Automatic verification using ProVerif [?]
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Unforgeability

Only the bank can create coins.

Definition:
On every trace:

withdraw( )

spend( )

Withdraw

Spend

preceeded by distinct occurence
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Double Spending Identification

If a client spends a coin twice, his identity is revealed:

∃ Test TDSI such that:

I ∀ transactions and using the same coin

TDSI

(
, ,

)
=

(
,

)
I TDSI(·, ·, ·) = ⊥ otherwise

where

I is some data from the bank

I is evidence that withdrew
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Exculpability

An attacker cannot forge a double spend by a client to blame him:

I Attacker sees , i.e.:

withdraw( )

spend( )

Withdraw

Spend

I but cannot forge such that:

TDSI

(
, ,

)
=

(
,

)
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Weak Anonymity

Nobody can distinguish which client makes a payment.

Definition:
Observational equivalence of two instances:

Instance 1 Instance 2

Withdraw ,
Spend

Withdraw

≈l

Withdraw

Withdraw ,
Spend

Note that the bank and the seller are corrupted.
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Strong Anonymity

Nobody is able to decide whether two payments were made by the same
client:

Withdraw
Spend

. . .
Withdraw
Spend

. . .

. . .
Withdraw

. . .
Withdraw
Spend

≈l

Withdraw
Spend

. . .
Withdraw

. . .

. . .
Withdraw
Spend

. . .
Withdraw
Spend
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Application: Chaum’s On-Line Protocol

First on-line E-Cash protocol [?] using
I blind signatures
I on-line verification by the bank to prevent double spending

Goal: ensure
I unforgeability
I anonymity

in presence of dishonest
I banks
I sellers
I clients

20/35



Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk )

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk )

3. Coin = (x , y) = (x , sign(x , sk ))
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Payment and Deposit Phase

= (x , sign(x , sk ))

Verify signature

= (x , sign(x , sk ))

1. Verify signature
2. Check if deposited

OKOK
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Results

Formal Verification with ProVerif [?]:

Property Result Time
Unforgeability × < 1 s

Double Spending Identification – –
Exculpability – –

Weak Anonymity X < 1 s
Strong Anonymity X < 1 s

I Race condition on the on-line verification, requires
synchronization

I Double Spending Identification and Exculpability are
irrelevant for on-line protocols.
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DigiCash Protocol

Variant of Chaum’s On-Line protocol
I Different payment and deposit phase:

; pay = enc(( , h( ), ), pk )

Verify coin’s signature

; sign((h( ), pay), sk )

1. Verify signature
2. Decrypt and check hash
3. Check coin
OKOK
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Results

Formal Verification with ProVerif:

Property Result Time
Unforgeability × < 1 s

Double Spending Identification – –
Exculpability – –

Weak Anonymity X < 1 s
Strong Anonymity X < 1 s

Same observations:
I Race condition on the on-line verification, requires

synchronization
I Double Spending Identification and Exculpability are

irrelevant for on-line protocols.
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Chaum’s Off-Line Protocol

Off-line variant [?] of Chaum’s on-line protocol [?] using
I blind signatures
I cryptographic hash
I XOR

Goal: ensure
I unforgeability
I double spending identification
I exculpability
I anonymity

in presence of dishonest
I banks
I sellers
I clients
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Withdrawal Phase

Hi = (h(ai , ci ), h(ai ⊕ , di ))

; bi = blind(Hi , ri )

Cut-and-choose to verify bi :
for half of the bi , reveal ai , ci , di , ri

For other half of the bi :
si = sign(bi , sk )

1. Verify signatures si
2. Compute yi = unblind(si , r) = sign(Hi , sk )

3. Coin = {Hi , yi} = {Hi , sign(Hi , sk )}
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Payment Phase

Hi = (h(ai , ci ), h(ai ⊕ , di ))

= {Hi , sign(Hi , sk )}

Verify signatures
ei ∈ {0, 1}

if ei = 0 then ai , ci else ai ⊕ , di

Verify hashes
OK
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Deposit Phase

Hi = (h(ai , ci ), h(ai ⊕ , di ))
yi = sign(Hi , sk )

{(Hi , yi , 0, ai , ci ) or (Hi , yi , 1, ai ⊕ , di )}

1. Verify signatures and hashes
2. Check if deposited

OK
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Deposit Phase
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Double Spending Identification

If receives two transactions with the same coin, with high
probability it has for at least one i

I ai
I ai ⊕
I ci
I di

Allows to compute: ai ⊕ (ai ⊕ ) =

I However: can forge double-spending as it knows

I Fix: Hi = (h(ai , ci ), h(ai ⊕ ( , zi , z
′
i ), di )) and client deposits

signature on h(zi , z ′i ) at withdrawal
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Results

Formal Verification with ProVerif:

Property Result Time
Unforgeability × < 1 s

Double Spending Identification × < 2 s
Double Spending Identification∗ X < 2 s

Exculpability × < 6 s
Exculpability† X < 6 s

Weak Anonymity X < 1 s
Strong Anonymity X < 1 s

Observations:
I Double spending possible, violating unforgeability
I Double Spending Identification requires cut-and-choose (∗)
I Exculpability needs fix (†).
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Conclusion

I E-cash can offer anonymous payment
I Formal framework for analysis of e-cash protocols:

I Formal model in the applied π-calculus
I Definitions for central forgery-related and anonymity

properties
I Automated verification in ProVerif of three case studies:

I Chaum’s On-Line Protocol: race condition on online
verification

I DigiCash Protocol: same race condition on online verification
I Chaum’s Off-Line Protocol: requires cut-and-choose and fix

I Future work: verification with synchronization and XOR,
dividable and transferable coins
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Thank you for your attention!

Questions?

jannik.dreier@inf.ethz.ch
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