
Formal Analysis of E-Cash Protocols

Jannik Dreier1, Ali Kassem2 and Pascal Lafourcade3

1Institute of Information Security, ETH Zurich
2Université Grenoble Alpes, CNRS, VERIMAG

3University d’Auvergne, LIMOS

12th International Conference on Security and Cryptography
(SECRYPT 2015), Colmar

July 20, 2015

1/35

(Electronic) Cash

Electronic Cash = digital equivalent

2/35

(Electronic) Cash

Electronic Cash = digital equivalent

2/35

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

3/35

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

3/35

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

3/35

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

3/35

Security properties of physical cash

I Unforgeability: Only the bank can create coins.
I Anonymity:

I Weak Anonymity: Nobody can distinguish which client makes
a payment.

I Strong Anonymity: Nobody is able to decide whether two
payments were made by the same client.

I Do they really hold?

4/35

Security properties of physical cash

I Unforgeability: Only the bank can create coins.
I Anonymity:

I Weak Anonymity: Nobody can distinguish which client makes
a payment.

I Strong Anonymity: Nobody is able to decide whether two
payments were made by the same client.

I Do they really hold?

4/35

Security properties of electronic cash

Electronic coins can be copied:

⇒

Two additional properties:
I Double Spending Identification: If a client spends a coin

twice, his identity is revealed.
I Exculpability: An attacker cannot forge a double spend by a

client to blame him.

5/35

Electronic Cash vs. Electronic Payments

⇒ No strong anonymity!

6/35

Electronic Cash vs. Electronic Payments

⇒ No strong anonymity!

6/35

Contributions

I General formal framework for the verification of E-Cash
protocols:

I Formal model in the applied π-calculus [?]
I Formal definitions of the security properties
I Suitable for automated verification using ProVerif [?]

I Three case studies:
I Chaum’s On-Line Protocol [?]
I Protocol [?]
I Chaum’s Off-Line Protocol [?]

7/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

8/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

9/35

Model

I Processes in the applied π-calculus [?]
I Annotated using two events:

I withdraw() at the bank
I spend() at the seller

I Unforgeability as correspondence between events
I Anonymity properties as observational equivalence between

instances
I Automatic verification using ProVerif [?]

10/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

11/35

Unforgeability

Only the bank can create coins.

Definition:
On every trace:

withdraw()

spend()

Withdraw

Spend

preceeded by distinct occurence

12/35

Double Spending Identification

If a client spends a coin twice, his identity is revealed:

∃ Test TDSI such that:

I ∀ transactions and using the same coin

TDSI

(
, ,

)
=

(
,

)
I TDSI(·, ·, ·) = ⊥ otherwise

where

I is some data from the bank

I is evidence that withdrew

13/35

Exculpability

An attacker cannot forge a double spend by a client to blame him:

I Attacker sees , i.e.:

withdraw()

spend()

Withdraw

Spend

I but cannot forge such that:

TDSI

(
, ,

)
=

(
,

)
14/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

15/35

Weak Anonymity

Nobody can distinguish which client makes a payment.

Definition:
Observational equivalence of two instances:

Instance 1 Instance 2

Withdraw ,
Spend

Withdraw

≈l

Withdraw

Withdraw ,
Spend

Note that the bank and the seller are corrupted.

16/35

Weak Anonymity

Nobody can distinguish which client makes a payment.

Definition:
Observational equivalence of two instances:

Instance 1 Instance 2

Withdraw ,
Spend

Withdraw

≈l

Withdraw

Withdraw ,
Spend

Note that the bank and the seller are corrupted.

16/35

Strong Anonymity

Nobody is able to decide whether two payments were made by the same
client:

Withdraw
Spend

. . .
Withdraw
Spend

. . .

. . .
Withdraw

. . .
Withdraw
Spend

≈l

Withdraw
Spend

. . .
Withdraw

. . .

. . .
Withdraw
Spend

. . .
Withdraw
Spend

17/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

18/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

19/35

Application: Chaum’s On-Line Protocol

First on-line E-Cash protocol [?] using
I blind signatures
I on-line verification by the bank to prevent double spending

Goal: ensure
I unforgeability
I anonymity

in presence of dishonest
I banks
I sellers
I clients

20/35

Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk)

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk)

3. Coin = (x , y) = (x , sign(x , sk))

21/35

Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk)

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk)

3. Coin = (x , y) = (x , sign(x , sk))

21/35

Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk)

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk)

3. Coin = (x , y) = (x , sign(x , sk))

21/35

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OKOK

22/35

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OKOK

22/35

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OKOK

22/35

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OKOK

22/35

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OK

OK

22/35

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OKOK

22/35

Results

Formal Verification with ProVerif [?]:

Property Result Time
Unforgeability × < 1 s

Double Spending Identification – –
Exculpability – –

Weak Anonymity X < 1 s
Strong Anonymity X < 1 s

I Race condition on the on-line verification, requires
synchronization

I Double Spending Identification and Exculpability are
irrelevant for on-line protocols.

23/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

24/35

DigiCash Protocol

Variant of Chaum’s On-Line protocol
I Different payment and deposit phase:

; pay = enc((, h(),), pk)

Verify coin’s signature

; sign((h(), pay), sk)

1. Verify signature
2. Decrypt and check hash
3. Check coin
OKOK

25/35

DigiCash Protocol

Variant of Chaum’s On-Line protocol
I Different payment and deposit phase:

; pay = enc((, h(),), pk)

Verify coin’s signature

; sign((h(), pay), sk)

1. Verify signature
2. Decrypt and check hash
3. Check coin
OKOK

25/35

DigiCash Protocol

Variant of Chaum’s On-Line protocol
I Different payment and deposit phase:

; pay = enc((, h(),), pk)

Verify coin’s signature

; sign((h(), pay), sk)

1. Verify signature
2. Decrypt and check hash
3. Check coin
OKOK

25/35

DigiCash Protocol

Variant of Chaum’s On-Line protocol
I Different payment and deposit phase:

; pay = enc((, h(),), pk)

Verify coin’s signature

; sign((h(), pay), sk)

1. Verify signature
2. Decrypt and check hash
3. Check coin

OKOK

25/35

DigiCash Protocol

Variant of Chaum’s On-Line protocol
I Different payment and deposit phase:

; pay = enc((, h(),), pk)

Verify coin’s signature

; sign((h(), pay), sk)

1. Verify signature
2. Decrypt and check hash
3. Check coin
OK

OK

25/35

DigiCash Protocol

Variant of Chaum’s On-Line protocol
I Different payment and deposit phase:

; pay = enc((, h(),), pk)

Verify coin’s signature

; sign((h(), pay), sk)

1. Verify signature
2. Decrypt and check hash
3. Check coin
OKOK

25/35

Results

Formal Verification with ProVerif:

Property Result Time
Unforgeability × < 1 s

Double Spending Identification – –
Exculpability – –

Weak Anonymity X < 1 s
Strong Anonymity X < 1 s

Same observations:
I Race condition on the on-line verification, requires

synchronization
I Double Spending Identification and Exculpability are

irrelevant for on-line protocols.

26/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

27/35

Chaum’s Off-Line Protocol

Off-line variant [?] of Chaum’s on-line protocol [?] using
I blind signatures
I cryptographic hash
I XOR

Goal: ensure
I unforgeability
I double spending identification
I exculpability
I anonymity

in presence of dishonest
I banks
I sellers
I clients

28/35

Withdrawal Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

; bi = blind(Hi , ri)

Cut-and-choose to verify bi :
for half of the bi , reveal ai , ci , di , ri

For other half of the bi :
si = sign(bi , sk)

1. Verify signatures si
2. Compute yi = unblind(si , r) = sign(Hi , sk)

3. Coin = {Hi , yi} = {Hi , sign(Hi , sk)}

29/35

Withdrawal Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

; bi = blind(Hi , ri)

Cut-and-choose to verify bi :
for half of the bi , reveal ai , ci , di , ri

For other half of the bi :
si = sign(bi , sk)

1. Verify signatures si
2. Compute yi = unblind(si , r) = sign(Hi , sk)

3. Coin = {Hi , yi} = {Hi , sign(Hi , sk)}

29/35

Withdrawal Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

; bi = blind(Hi , ri)

Cut-and-choose to verify bi :
for half of the bi , reveal ai , ci , di , ri

For other half of the bi :
si = sign(bi , sk)

1. Verify signatures si
2. Compute yi = unblind(si , r) = sign(Hi , sk)

3. Coin = {Hi , yi} = {Hi , sign(Hi , sk)}

29/35

Withdrawal Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

; bi = blind(Hi , ri)

Cut-and-choose to verify bi :
for half of the bi , reveal ai , ci , di , ri

For other half of the bi :
si = sign(bi , sk)

1. Verify signatures si
2. Compute yi = unblind(si , r) = sign(Hi , sk)

3. Coin = {Hi , yi} = {Hi , sign(Hi , sk)}

29/35

Withdrawal Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

; bi = blind(Hi , ri)

Cut-and-choose to verify bi :
for half of the bi , reveal ai , ci , di , ri

For other half of the bi :
si = sign(bi , sk)

1. Verify signatures si
2. Compute yi = unblind(si , r) = sign(Hi , sk)

3. Coin = {Hi , yi} = {Hi , sign(Hi , sk)}

29/35

Payment Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

= {Hi , sign(Hi , sk)}

Verify signatures
ei ∈ {0, 1}

if ei = 0 then ai , ci else ai ⊕ , di

Verify hashes
OK

30/35

Payment Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

= {Hi , sign(Hi , sk)}

Verify signatures

ei ∈ {0, 1}

if ei = 0 then ai , ci else ai ⊕ , di

Verify hashes
OK

30/35

Payment Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

= {Hi , sign(Hi , sk)}

Verify signatures
ei ∈ {0, 1}

if ei = 0 then ai , ci else ai ⊕ , di

Verify hashes
OK

30/35

Payment Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

= {Hi , sign(Hi , sk)}

Verify signatures
ei ∈ {0, 1}

if ei = 0 then ai , ci else ai ⊕ , di

Verify hashes
OK

30/35

Payment Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

= {Hi , sign(Hi , sk)}

Verify signatures
ei ∈ {0, 1}

if ei = 0 then ai , ci else ai ⊕ , di

Verify hashes

OK

30/35

Payment Phase

Hi = (h(ai , ci), h(ai ⊕ , di))

= {Hi , sign(Hi , sk)}

Verify signatures
ei ∈ {0, 1}

if ei = 0 then ai , ci else ai ⊕ , di

Verify hashes
OK

30/35

Deposit Phase

Hi = (h(ai , ci), h(ai ⊕ , di))
yi = sign(Hi , sk)

{(Hi , yi , 0, ai , ci) or (Hi , yi , 1, ai ⊕ , di)}

1. Verify signatures and hashes
2. Check if deposited

OK

31/35

Deposit Phase

Hi = (h(ai , ci), h(ai ⊕ , di))
yi = sign(Hi , sk)

{(Hi , yi , 0, ai , ci) or (Hi , yi , 1, ai ⊕ , di)}

1. Verify signatures and hashes
2. Check if deposited

OK

31/35

Deposit Phase

Hi = (h(ai , ci), h(ai ⊕ , di))
yi = sign(Hi , sk)

{(Hi , yi , 0, ai , ci) or (Hi , yi , 1, ai ⊕ , di)}

1. Verify signatures and hashes
2. Check if deposited

OK

31/35

Double Spending Identification

If receives two transactions with the same coin, with high
probability it has for at least one i

I ai
I ai ⊕
I ci
I di

Allows to compute: ai ⊕ (ai ⊕) =

I However: can forge double-spending as it knows

I Fix: Hi = (h(ai , ci), h(ai ⊕ (, zi , z
′
i), di)) and client deposits

signature on h(zi , z ′i) at withdrawal

32/35

Double Spending Identification

If receives two transactions with the same coin, with high
probability it has for at least one i

I ai
I ai ⊕
I ci
I di

Allows to compute: ai ⊕ (ai ⊕) =

I However: can forge double-spending as it knows

I Fix: Hi = (h(ai , ci), h(ai ⊕ (, zi , z
′
i), di)) and client deposits

signature on h(zi , z ′i) at withdrawal

32/35

Results

Formal Verification with ProVerif:

Property Result Time
Unforgeability × < 1 s

Double Spending Identification × < 2 s
Double Spending Identification∗ X < 2 s

Exculpability × < 6 s
Exculpability† X < 6 s

Weak Anonymity X < 1 s
Strong Anonymity X < 1 s

Observations:
I Double spending possible, violating unforgeability
I Double Spending Identification requires cut-and-choose (∗)
I Exculpability needs fix (†).

33/35

Plan

Introduction

Model and Properties
Forgery-Related Properties
Anonymity Properties

Case Studies
Chaum’s On-Line Protocol
DigiCash Protocol
Chaum’s Off-Line Protocol

Conclusion

34/35

Conclusion

I E-cash can offer anonymous payment
I Formal framework for analysis of e-cash protocols:

I Formal model in the applied π-calculus
I Definitions for central forgery-related and anonymity

properties
I Automated verification in ProVerif of three case studies:

I Chaum’s On-Line Protocol: race condition on online
verification

I DigiCash Protocol: same race condition on online verification
I Chaum’s Off-Line Protocol: requires cut-and-choose and fix

I Future work: verification with synchronization and XOR,
dividable and transferable coins

35/35

Thank you for your attention!

Questions?

jannik.dreier@inf.ethz.ch

36/35

	Introduction
	Model and Properties
	Forgery-Related Properties
	Anonymity Properties

	Case Studies
	Chaum's On-Line Protocol
	DigiCash Protocol
	Chaum's Off-Line Protocol

	Conclusion

