Pascal Lafourcade

SecRet'06

LSV, CNRS UMR 8643, ENS de Cachan & INRIA Futurs LIF, Université Aix-Marseille 1 & CNRS UMR 6166

> Venise, Italy∗∗∗∗ 15th July 2006

Symbolic approach

- Intruder controls the network
- Messages represented by terms
	- ${m}_k$
	- $\langle m_1, m_2 \rangle$
- Perfect encryption hypothesis

Symbolic approach

- Intruder controls the network
- Messages represented by terms
	- ${m}_k$
	- $\langle m_1, m_2 \rangle$
- Perfect encryption hypothesis

Advantages

- Automatic verification
- Useful abstraction

Symbolic approach

- Intruder controls the network
- Messages represented by terms
	- ${m}_{k}$
	- $\langle m_1, m_2 \rangle$
- Perfect encryption hypothesis $+$ algebraic properties

Advantages

- Automatic verification
- Useful abstraction

[State of the Art](#page-4-0)

State of the Art

XOR : ACUN [Rusinowitch & al 03] [Comon-Shmatikov 03]

- \bigodot $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $2 x \oplus y = y \oplus x$ Commutativity
- $3 \times 0 = x$ Unity
- $\bigoplus x \oplus x = 0$ Nilpotency

[State of the Art](#page-5-0)

State of the Art

XOR : ACUN [Rusinowitch & al 03] [Comon-Shmatikov 03]

- \bigodot $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $2 x \oplus y = y \oplus x$ Commutativity
- $3 \times 0 = x$ Unity
- $\bigoplus x \oplus x = 0$ Nilpotency

ACUN and homomorphism [LLT05,Del 06] (AG)

 $h(x \oplus y) = h(x) \oplus h(y)$

[State of the Art](#page-6-0)

State of the Art

XOR : ACUN [Rusinowitch & al 03] [Comon-Shmatikov 03]

- \bigodot $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $2 x \oplus y = y \oplus x$ Commutativity
- $3 \times 0 = x$ Unity
- $\bigoplus x \oplus x = 0$ Nilpotency

ACUN and homomorphism [LLT05,Del 06] (AG)

 $h(x \oplus y) = h(x) \oplus h(y)$

ACUN and distributive encryption [LLT06] (AG)

 ${x \oplus y}_k = {x}_k \oplus {y}_k$

[State of the Art](#page-7-0)

State of the Art

XOR : ACUN [Rusinowitch & al 03] [Comon-Shmatikov 03]

- $\bigcap (x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $2 x \oplus y = y \oplus x$ Commutativity
- $3 \times 0 = x$ Unity
- $\bigoplus x \oplus x = 0$ Nilpotency

ACUN and homomorphism [LLT05,Del 06] (AG)

 $h(x \oplus y) = h(x) \oplus h(y)$

ACUN and distributive encryption [LLT06] (AG)

 ${x \oplus y}_k = {x}_k \oplus {y}_k$

ACUN and distributive commutative encryption

 ${x \oplus y}_k = {x}_k \oplus {y}_k$ and ${x_k}_{k_1 k_2} = {x_k}_{k_1 k_2}$

Outline

1 [Motivation](#page-1-0)

[Introduction](#page-1-0) [State of the Art](#page-4-0)

2 [Intruder Deduction System](#page-9-0)

3 [Different Kinds of Proofs](#page-12-0)

4 [Decidability Result](#page-24-0)

6 [Binary Case](#page-35-0)

[Intruder Deduction for the Equational Theory of Exclusive-Or with Commutative and Distributive Encryption](#page-0-0) [Intruder Deduction System](#page-9-0)

Outline

[Motivation](#page-1-0) [Introduction](#page-1-0) [State of the Art](#page-4-0)

2 [Intruder Deduction System](#page-9-0)

- 3 [Different Kinds of Proofs](#page-12-0)
- 4 [Decidability Result](#page-24-0)
- **5** [Binary Case](#page-35-0)

[Intruder Deduction for the Equational Theory of Exclusive-Or with Commutative and Distributive Encryption](#page-0-0) [Intruder Deduction System](#page-10-0)

Extended Dolev-Yao Model

Deduction System:

$$
(A) \frac{u \in T}{T + u \downarrow} \qquad (UL) \frac{T + \langle u, v \rangle}{T + u \downarrow}
$$

\n
$$
(P) \frac{T + u}{T + \langle u, v \rangle \downarrow} \qquad (UR) \frac{T + \langle u, v \rangle}{T + v \downarrow}
$$

\n
$$
(C_K) \frac{T + u}{T + \{u\}_K \downarrow} \qquad (GR) \frac{T + u_1}{T + u_1} \dots T + u_n
$$

\n
$$
(D_K) \frac{T + \{u\}_K}{T + u \downarrow} \qquad (GX) \frac{T + u_1}{T + u_1 \oplus \dots \oplus u_n \downarrow}
$$

[Intruder Deduction for the Equational Theory of Exclusive-Or with Commutative and Distributive Encryption](#page-0-0) [Intruder Deduction System](#page-11-0)

Special Rules Encryption and Decryption

(C_K) and (D_K)
\n(C_K)
$$
\frac{T \vdash u \qquad T \vdash K}{T \vdash \{u\}_K \downarrow}
$$
 (D_K) $\frac{T \vdash \{u\}_K}{T \vdash u \downarrow}$

Where

•
$$
K = \{k_1^{\alpha_1}, \ldots, k_n^{\alpha_n}\}
$$

• $T \vdash K$ is: $T \vdash k_1$ used α_1 times, ..., $T \vdash k_n$ used α_n times

Outline

[Motivation](#page-1-0) [Introduction](#page-1-0) [State of the Art](#page-4-0)

2 [Intruder Deduction System](#page-9-0)

3 [Different Kinds of Proofs](#page-12-0)

4 [Decidability Result](#page-24-0)

6 [Binary Case](#page-35-0)

6 [Conclusion](#page-39-0)

Simple Proofs

simple proof

Each node $T \vdash v$ occurs at most once on each branch.

Cut the loops.

```
Simple and Flat Proofs
```
flat proof

Avoids two successive applications of the same rule : $(C), (D)$ or (GX) .

Merge rules (GX) , (C) and (D) .

Flat Transformations (I)

Rule (C)

$$
(C_{K_1})\frac{T+u \qquad T+K_1}{T+\{u\}_{K_1}\downarrow} \qquad T+K_2
$$

$$
(C_{K_2})\frac{T+\{u\}_{K_1,K_2}\downarrow}{\qquad \qquad \downarrow} \qquad T+K_1,K_2
$$

$$
(C_{K_1,K_2})\frac{T+u \qquad T+K_1,K_2}{T+\{u\}_{K_1,K_2}\downarrow}
$$

Flat Transformations (II)

Rule (D)

$$
(D_{K_1})\frac{T \vdash \{u\}_K \qquad T \vdash K_1}{T \vdash \{u\}_{K \setminus K_1} \downarrow} \qquad T \vdash K_2
$$
\n
$$
(D_{K_2})\frac{T \vdash \{u\}_{K \setminus (K_1, K_2)}}{\Downarrow}
$$
\n
$$
(D_{K_1, K_2})\frac{T \vdash u \qquad T \vdash K_1, K_2}{T \vdash \{u\}_{K \setminus (K_1, K_2)} \downarrow}
$$

Flat Transformations (III)

D-eager Proof

D-eager proof = rules (D) applied as early as possible.

Definition

In D-eager proof these 2 cases are impossible :

$$
(C_{K_1})\frac{\frac{\vdots}{T+u}\frac{\vdots}{T+K_1}}{T+\{u\}_{K_1}}\frac{\vdots}{T+K_2}}{\{u\}_{K_1\setminus K_2}}
$$

D-eager Proof

D-eager proof = rules (D) applied as early as possible.

Definition

In D-eager proof these 2 cases are impossible :

$$
\frac{\frac{1}{T+u} \frac{1}{T+K_1}}{(D_{K_2}) \frac{\frac{1}{T+u} \frac{1}{T+K_1}}{\frac{1}{u} \frac{1}{K_1}} \frac{1}{T+K_2}}
$$

$$
K_2 \cap K_1 \neq \emptyset
$$
\n
$$
(R_1) \frac{\vdots}{T + \{u_1\}_{K_1}} \dots \quad (R_n) \frac{\vdots}{T + u_n}
$$
\n
$$
(D_{K_2}) \frac{\tau + \{u\}_{K_2}}{T + u} \dots \quad (R_n) \frac{\tau + \mu_n}{T + u_n}
$$

.

. . .

D-eager Transformations (I)

Rule (C) and (D) are commutative

Consequence of simplicity, $K_1 \cap K_2 = \emptyset$.

$$
\frac{\frac{\vdots}{(C_{K_1})}\frac{\vdots}{T \vdash \{u\}_K} \frac{\vdots}{T \vdash K_1}}{\tau \vdash \{u\}_{K,K_1}} \frac{\vdots}{T \vdash K_2}}{\{u\}_{(K,K_1) \setminus K_2}}
$$

.

. . .

Is equivalent to

$$
(C_{K_1})\frac{\overline{T \vdash \{u\}_K} \quad \overline{T \vdash K_2}}{T \vdash \{u\}_{K \setminus K_2}} \quad \frac{\vdots}{T \vdash K_1}
$$
\n
$$
(C_{K_1})\frac{\{u\}_{K \setminus K_2}}{\{u\}_{(K \setminus K_2), K_1} = \{u\}_{(K, K_1) \setminus K_2}}
$$

D-eager Transformation (II)

⊕-eager Proofs

 \bigoplus -eager proof = rules (GX) applied as early as possible.

Definition

A ⊕-eager proof authorizes only :

$$
(GX) \frac{T \vdash x_1 T \vdash K_1}{T \vdash \{x_1\}_{K_1}}(C_{K_2}) \frac{T \vdash x_2 T \vdash K_2}{T \vdash \{x_2\}_{K_2}}(R_1) \frac{\vdots}{T \vdash z_1 \dots (R_m) \frac{\vdots}{T \vdash z_m}}}{T \vdash \{x_1\}_{K_1} \oplus \{x_2\}_{K_2} \oplus z_1 \oplus \dots \oplus z_m}
$$

with $K_1 \cap K_2 \neq \emptyset$

⊕-eager Transformation

Switch (GX) and (C), if $K_1 \cap K_2 \neq \emptyset$

Outline

[Motivation](#page-1-0)

[Introduction](#page-1-0) [State of the Art](#page-4-0)

2 [Intruder Deduction System](#page-9-0)

3 [Different Kinds of Proofs](#page-12-0)

4 [Decidability Result](#page-24-0)

6 [Binary Case](#page-35-0)

6 [Conclusion](#page-39-0)

Main Theorem

The intruder deduction problem for a commutative and distributive encryption over XOR is decidable in 2-EXP-TIME.

Proof :

Using usual MacAllester approach :

- Locality Lemma
- $S_{\oplus}(T)$ computable in 2-EXP-TIME
- One-step deducibility in PTIME (solving linear equations)

Subterms

Definition

The set of *subterms* of a term t is the smallest set $S_T(t)$ s.t.:

- $t \in S_T(t)$.
- if $\langle u, v \rangle \in S_T (t)$ then $u, v \in S_T (t)$.
- if $\{u\}_K \in S_T(t)$ and $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ then $u \in S_T(t)$ and $k_i \in S_T(t)$ for all $i \neq i \leq p$.
- if $u = u_1 \oplus \ldots \oplus u_n \in S_T(t)$ then all $u_i \subseteq S_T(t)$.
- If $n > 1$, $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ and $\{u_1\}_K \oplus \ldots \oplus \{u_n\}_K \in S_T(t)$ then $u_1 \oplus \ldots \oplus u_n \in S_T(t)$.

Subterms

Definition

The set of subterms of a term t is the smallest set $S_T(t)$ s.t.:

- $t \in S_T(t)$.
- if $\langle u, v \rangle \in S_T (t)$ then $u, v \in S_T (t)$.
- if $\{u\}_K \in S_T(t)$ and $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ then $u \in S_T(t)$ and $k_i \in S_T(t)$ for all $i \neq i \leq p$.
- if $u = u_1 \oplus \ldots \oplus u_n \in S_T(t)$ then all $u_i \subseteq S_T(t)$.
- If $n > 1$, $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ and $\{u_1\}_K \oplus \ldots \oplus \{u_n\}_K \in S_T(t)$ then $u_1 \oplus \ldots \oplus u_n \in S_T(t)$.

Example : $u = \{a\}_{k1,k2,k3}$ then $S_{\tau}(u) =$ $\{u, a, k_1, k_2, k_3, \{a\}_{k_1}, \{a\}_{k_2}, \{a\}_{k_3}, \{a\}_{k_1, k_2}, \{a\}_{k_2, k_3}, \{a\}_{k_1, k_3}\}$

Subterms

Definition

The set of *subterms* of a term t is the smallest set $S_T(t)$ s.t.:

- $t \in S_T(t)$.
- if $\langle u, v \rangle \in S_T (t)$ then $u, v \in S_T (t)$.
- if $\{u\}_K \in S_T(t)$ and $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ then $u \in S_T(t)$ and $k_i \in S_T(t)$ for all $i \neq i \leq p$.
- if $u = u_1 \oplus \ldots \oplus u_n \in S_T(t)$ then all $u_i \subseteq S_T(t)$.
- If $n > 1$, $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ and $\{u_1\}_K \oplus \ldots \oplus \{u_n\}_K \in S_T(t)$ then $u_1 \oplus \ldots \oplus u_n \in S_T(t)$.

Example :
$$
u = \{a\}_{k1,k2,k3}
$$
 then $S_T(u) =$
\n $\{u, a, k_1, k_2, k_3, \{a\}_{k1}, \{a\}_{k2}, \{a\}_{k3}, \{a\}_{k1,k2}, \{a\}_{k2,k3}, \{a\}_{k1,k3}\}$
\n $S_{\oplus}(T) := \{(\bigoplus_{s \in M} s) \downarrow | M \subseteq S_T(T)\}$

Subterms

Definition

The set of *subterms* of a term t is the smallest set $S_T(t)$ s.t.:

- $t \in S_T(t)$.
- if $\langle u, v \rangle \in S_T (t)$ then $u, v \in S_T (t)$.
- if $\{u\}_K \in S_T(t)$ and $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ then $u \in S_T(t)$ and $k_i \in S_T(t)$ for all $i \neq i \leq p$.
- if $u = u_1 \oplus \ldots \oplus u_n \in S_T(t)$ then all $u_i \subseteq S_T(t)$.
- If $n > 1$, $K = \{k_1^{\alpha_1}, \ldots, k_p^{\alpha_p}\}$ and $\{u_1\}_K \oplus \ldots \oplus \{u_n\}_K \in S_T(t)$ then $u_1 \oplus \ldots \oplus u_n \in S_T(t)$.

Example :
$$
u = \{a\}_{k1,k2,k3}
$$
 then $S_T(u) =$
\n $\{u, a, k_1, k_2, k_3, \{a\}_{k1}, \{a\}_{k2}, \{a\}_{k3}, \{a\}_{k1,k2}, \{a\}_{k2,k3}, \{a\}_{k1,k3}\}$
\n $S_{\oplus}(T) := \{(\bigoplus_{s \in M} s) \downarrow | M \subseteq S_T(T)\}$ 2-EXP-TIME

21/32

```
Idea of our approach (I)
```
Lemma

P a minimal proof in number of nodes \Rightarrow P is S. F.

```
Idea of our approach (I)
```
Lemma

P a minimal proof in number of nodes \Rightarrow P is S. F.

Let P be a proof of $T \vdash w$

- **1** From a proof to S. F. proof
- **2** From S. F. proof to S. F. D-eager proof
- **3** From S. F. D-eager proof to S. F. ⊕-eager and D-eager proof

Idea of our approach (II)

Lemma (D)

Let P be a Simple Flat D-eager and \oplus -eager proof of $T \vdash w$ if P is

$$
(R)\frac{\vdots}{T \vdash \{u\}_K \downarrow = r} \quad \frac{\vdots}{T \vdash K \downarrow}
$$

$$
(D_K)\frac{\dfrac{\vdash}{T \vdash u}}{T \vdash u}
$$

then $\{u\}_K \in S_{\oplus}(\mathcal{T})$.

Proof of Lemma(D)

$$
(GX) \frac{\tau \vdash B_1 \qquad \dots \qquad (R_n) \frac{\tau \vdash B_n}{\tau \vdash B'_n}}{\tau \vdash \{u\}_K \downarrow} \qquad \qquad \frac{\vdots}{\tau \vdash K \downarrow}
$$

If $(R_1) = (C_{K'})$ use to prove that all $B'_i \in S_{\oplus}(T)$:

$$
\bullet \ \ B'_1 = \{B_1\}_{K'}
$$

• *D*-eager
$$
\Rightarrow
$$
 $K \cap K' = \emptyset$

 $\bullet \ \oplus$ -eager \Rightarrow no rule $(R_j) = (C_{K''})$ s.t. $K'' \cap K = \emptyset$

Intruder Deduction Problem

Locality Lemma

A Simple Flat D-eager and \oplus -eager proof of $T \vdash w$ is a $S_{\oplus}(\mathcal{T},w)$ -local proof.

Main Theorem

The intruder deduction problem for a commutative and distributive encryption over XOR is decidable in 2-EXP-TIME.

Proof :

Using usual MacAllester approach :

- Locality Lemma
- $S_{\text{m}}(T)$ computable in 2-EXP-TIME
- One-step deducibility in PTIME (solving linear equations)

Outline

1 [Motivation](#page-1-0)

[Introduction](#page-1-0) [State of the Art](#page-4-0)

- 2 [Intruder Deduction System](#page-9-0)
- 3 [Different Kinds of Proofs](#page-12-0)
- 4 [Decidability Result](#page-24-0)

6 [Binary Case](#page-35-0)

Definitions

Binary proof

All nodes of P with \oplus are of the form $*\oplus*$

• Asymmetric encryption

$$
(D_K)\frac{T\vdash \{u\}_K\qquad T\vdash Inv(K)}{T\vdash u\downarrow}
$$

- Notation $\{\{u\}_{k_1}\}_{k_2}$ by $\{u\}_{k_1k_2}$
- Uniform word problem in commutative semi-groups (CSG) is EXP-SPACE hard [Mayr Meyer 82].

Result

Result

In binary case the intruder deduction is EXP-SPACE-hard.

Remark : Assume not Inv symbol in $T \Rightarrow$ only rule (C) and (GX)

Transformation

$$
(GX)\frac{T \vdash x_1 \dots T \vdash x_1}{T \vdash x_1 \oplus \dots \oplus x_n} T \vdash K
$$

$$
(C_K)\frac{T \vdash x_1 \oplus \dots \oplus x_n}{T \vdash \{x_1\}_K \oplus \dots \oplus \{x_n\}_K}
$$

gives

$$
(GX) \frac{T \vdash x_1 \ T \vdash K}{T \vdash \{x_1\}_K} \dots (C_K) \frac{T \vdash x_n \ T \vdash K}{T \vdash \{x_n\}_K}
$$

$$
(GX) \frac{T \vdash x_1 \ \vdash K}{T \vdash \{x_1\}_K \oplus \dots \oplus \{x_n\}_K}
$$

Idea of the Proof

$$
(A) \frac{\{\mathbb{B}\}_{\gamma_1} \oplus \{\mathbb{B}\}_{\delta_1} \in T}{(C) \frac{\tau \vdash \{\mathbb{B}\}_{\gamma_1} \oplus \{\mathbb{B}\}_{\delta_1}}{(\zeta) \cdots}
$$
\n
$$
(C) \frac{\vdash \mathbb{B}\}_{\gamma_1 \oplus \{\mathbb{B}\}_{\delta_1}}}{\vdots}
$$
\n
$$
(C) \frac{\tau \vdash \{\mathbb{B}\}_{\gamma_1 c_1} \oplus \{\mathbb{B}\}_{\delta_1 c_1}}{(\zeta \times \mathbb{B}) \cdots}
$$
\n
$$
(C) \frac{\tau \vdash \{\mathbb{B}\}_{\gamma_1 c_1} \oplus \{\mathbb{B}\}_{\delta_1 c_1}}{(\zeta \times \mathbb{B}) \cdots}
$$
\n
$$
(C) \frac{\tau \vdash \{\mathbb{B}\}_{\gamma_1 c_1} \oplus \{\mathbb{B}\}_{\delta_1 c_1}}{(\zeta \times \mathbb{B}) \cdots}
$$
\n
$$
(C) \frac{\tau \vdash \{\mathbb{B}\}_{\gamma_1 c_1} \oplus \{\mathbb{B}\}_{\delta_1 c_1}}{(\zeta \times \mathbb{B}) \cdots}
$$

An instance of uniform word problem in CSG is:

$$
\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n \models \alpha = \beta
$$

Chose :

 $\alpha =_C \gamma_1 c_1, \quad \delta_1 c_1 =_c \gamma_2 c_2, \quad \dots \quad \delta_{l-1} c_{l-1} =_C \gamma_l c_l, \quad \delta_l c_l =_C \beta$

Outline

1 [Motivation](#page-1-0)

[Introduction](#page-1-0) [State of the Art](#page-4-0)

- 2 [Intruder Deduction System](#page-9-0)
- 3 [Different Kinds of Proofs](#page-12-0)
- 4 [Decidability Result](#page-24-0)
- **6** [Binary Case](#page-35-0)

Results & Future Works

Results

- Solve Intruder deduction problem in 2-EXP-TIME
- In binary case a precise complexity.

Future Works

- Extension : AG and distributive, commutative encryption
- Active Intruder for ACUN and distributive encryption

Thank you for your attention

Questions ?