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Intruder Deduction for the Equational Theory of Exclusive-Or with Commutative and Distributive Encryption

Motivation

Introduction

Symbolic approach

• Intruder controls the network

• Messages represented by terms

- {m}k
- 〈m1,m2〉

• Perfect encryption hypothesis

Advantages

• Automatic verification

• Useful abstraction
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Intruder Deduction for the Equational Theory of Exclusive-Or with Commutative and Distributive Encryption

Motivation

State of the Art

State of the Art

XOR : ACUN [Rusinowitch & al 03] [Comon-Shmatikov 03]

1 (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) Associativity

2 x ⊕ y = y ⊕ x Commutativity

3 x ⊕ 0 = x Unity

4 x ⊕ x = 0 Nilpotency

ACUN and homomorphism [LLT05,Del 06] (AG)

h(x ⊕ y) = h(x)⊕ h(y)

ACUN and distributive encryption [LLT06] (AG)

{x ⊕ y}k = {x}k ⊕ {y}k

ACUN and distributive commutative encryption

{x ⊕ y}k = {x}k ⊕ {y}k and {{x}k1}k2 = {{x}k1}k2 3/32
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Intruder Deduction System

Extended Dolev-Yao Model

Deduction System:

(A)
u ∈ T

T ` u ↓

(P)
T ` u T ` v

T ` 〈u, v〉 ↓

(CK )
T ` u T ` K

T ` {u}K ↓

(DK )
T ` {u}K T ` K

T ` u ↓

(UL)
T ` 〈u, v〉
T ` u ↓

(UR)
T ` 〈u, v〉
T ` v ↓

(GX )
T ` u1 . . . T ` un

T ` u1 ⊕ . . .⊕ un ↓
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Intruder Deduction System

Special Rules Encryption and Decryption

(CK ) and (DK )

(CK ) T ` u T ` K
T ` {u}K ↓

(DK )
T ` {u}K T ` K

T ` u ↓

Where

• K = {kα1
1 , . . . , kαn

n }
• T ` K is: T ` k1 used α1 times, . . . ,T ` kn used αn times
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Different Kinds of Proofs

Simple Proofs

simple proof

Each node T ` v occurs at most once on each branch.

Cut the loops.
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Different Kinds of Proofs

Simple and Flat Proofs

flat proof

Avoids two successive applications of the same rule :
(C ),(D) or (GX ).

Merge rules (GX ), (C ) and (D).
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Different Kinds of Proofs

Flat Transformations (I)

Rule (C )

(CK2)

(CK1)
T ` u T ` K1

T ` {u}K1 ↓
T ` K2

T ` {u}K1,K2

⇓

(CK1,K2)
T ` u T ` K1,K2

T ` {u}K1,K2 ↓
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Different Kinds of Proofs

Flat Transformations (II)

Rule (D)

(DK2)

(DK1)
T ` {u}K T ` K1

T ` {u}K\K1
↓

T ` K2

T ` {u}K\(K1,K2)

⇓

(DK1,K2)
T ` u T ` K1,K2

T ` {u}K\(K1,K2) ↓
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Different Kinds of Proofs

Flat Transformations (III)

Rule (GX )

(GX )

(GX )
T ` x1 . . . T ` xn

T ` x1 ⊕ . . .⊕ xn T ` y1 . . . T ` ym

T ` x1 ⊕ . . .⊕ xn ⊕ y1 ⊕ . . .⊕ ym
⇓

(GX )
T ` x1 . . . T ` xn T ` y1 . . . T ` ym

T ` x1 ⊕ . . .⊕ xn ⊕ y1 ⊕ . . .⊕ ym
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Different Kinds of Proofs

D-eager Proof

D-eager proof = rules (D) applied as early as possible.

Definition

In D-eager proof these 2 cases are impossible :

(DK2)

(CK1)

...

T ` u

...

T ` K1

T ` {u}K1

...

T ` K2

{u}K1\K2

K2 ∩ K1 6= ∅

(DK2)

(GX )

(R1)

...

T ` {u1}K1

. . . (Rn)

...

T ` un

T ` {u}K2
T ` K2

T ` u
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Different Kinds of Proofs

D-eager Transformations (I)

Rule (C ) and (D) are commutative

Consequence of simplicity, K1 ∩ K2 = ∅.

(DK2)

(CK1)

...

T ` {u}K

...

T ` K1

T ` {u}K ,K1

...

T ` K2

{u}(K ,K1)\K2

Is equivalent to

(CK1)

(DK2)

...

T ` {u}K

...

T ` K2

T ` {u}K\K2

...

T ` K1

{u}(K\K2),K1
= {u}(K ,K1)\K2
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Different Kinds of Proofs

D-eager Transformation (II)

if K2 ∩ K1 6= ∅

(DK2 )

(GX )

(R1)

...

T ` {B1}K1

(R2)

...

T ` B2
. . . (Rn)

...

T ` Bn

T ` {u}K1
T ` K2

T ` {u}K1\K2

⇓

(DK2\K1
)

(GX )

(DK2∩K1 )
T ` {B1}K1

T ` K1 \ K2 ∩ K1

T ` {B1}(K1\K2∩K1)

. . . (DK2∩K1 )

(GX )

(R2)

...

T ` B2
. . . (Rn)

...

T ` Bn

T ` {ul}K1
T ` K2 ∩ K1

T ` {u1}(K1\K2∩K1)

T ` {u}(K1\K2∩K1) T ` K2 \ K1

T ` {u}(K1\K2∩K1)\(K2\K1) = {u}K1\K2
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Different Kinds of Proofs

⊕-eager Proofs

⊕-eager proof = rules (GX ) applied as early as possible.

Definition

A ⊕-eager proof authorizes only :

(GX )

(CK1 )
T ` x1 T ` K1

T ` {x1}K1

(CK2 )
T ` x2 T ` K2

T ` {x2}K2

(R1)

...

T ` z1
. . .(Rm)

...

T ` zm

T ` {x1}K1 ⊕ {x2}K2 ⊕ z1 ⊕ . . .⊕ zm

with K1 ∩ K2 6= ∅
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Different Kinds of Proofs

⊕-eager Transformation

Switch (GX ) and (C ), if K1 ∩ K2 6= ∅

(GX )

(CK1 )
T ` x1 T ` K1

T ` {x1}K1

(CK2 )
T ` x2 T ` K2

T ` {x2}K2

T ` {x1}K1 ⊕ {x2}K2

K1 ∩ K2 6= ∅
⇓

(GX )
(CK1∩K2 )

(GX )

(CK1\K2
)
T ` x1 T ` K1 \ K2

T ` {x1}K1\K2

(CK2\K1
)
T ` x2 T ` K2 \ K1

T ` {x2}K2\K1

T ` {x1}K1\K2
⊕ {x2}K2\K1

T ` K1 ∩ K2

T ` {x1}K1 ⊕ {x2}K2

T ` {x1}K1 ⊕ {x2}K2
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Decidability Result

Main Theorem

The intruder deduction problem for a commutative and distributive
encryption over XOR is decidable in 2-EXP-TIME.

Proof :
Using usual MacAllester approach :

• Locality Lemma

• S⊕(T ) computable in 2-EXP-TIME

• One-step deducibility in PTIME (solving linear equations)
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Decidability Result

Subterms

Definition

The set of subterms of a term t is the smallest set ST (t) s.t.:

• t ∈ ST (t).

• if 〈u, v〉 ∈ ST (t) then u, v ∈ ST (t).

• if {u}K ∈ ST (t) and K = {kα1
1 , . . . , k

αp
p } then u ∈ ST (t) and

ki ∈ ST (t) for all i 1 ≤ i ≤ p.

• if u = u1 ⊕ . . .⊕ un ∈ ST (t) then all ui ⊆ ST (t).

• If n > 1, K = {kα1
1 , . . . , k

αp
p } and

{u1}K ⊕ . . .⊕ {un}K ∈ ST (t) then u1 ⊕ . . .⊕ un ∈ ST (t).

Example : u = {a}k1,k2,k3 then ST (u) =
{u, a, k1, k2, k3, {a}k1, {a}k2, {a}k3, {a}k1,k2, {a}k2,k3, {a}k1,k3}

S⊕(T ) :=
{

(
⊕
s∈M

s) ↓ | M ⊆ ST (T )
}

2-EXP-TIME
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Decidability Result

Idea of our approach (I)

Lemma

P a minimal proof in number of nodes ⇒ P is S. F.

Let P be a proof of T ` w

1 From a proof to S. F. proof

2 From S. F. proof to S. F. D-eager proof

3 From S. F. D-eager proof to S. F. ⊕-eager and D-eager proof
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Decidability Result

Idea of our approach (II)

Lemma (D)

Let P be a Simple Flat D-eager and ⊕-eager proof of T ` w if P
is

(DK )

(R)

...

T ` {u}K ↓ = r

...

T ` K ↓
T ` u

then {u}K ∈ S⊕(T ).
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Decidability Result

Proof of Lemma(D)

(DK )

(GX )

(R1)
T ` B1

T ` B ′1
... (Rn)

T ` Bn

T ` B ′n

T ` {u}K ↓

...

T ` K ↓
T ` u ↓

If (R1) = (CK ′) use to prove that all B ′i ∈ S⊕(T ):

• B ′1 = {B1}K ′

• D-eager ⇒ K ∩ K ′ = ∅
• ⊕-eager ⇒ no rule (Rj) = (CK ′′) s.t. K ′′ ∩ K = ∅
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Decidability Result

Intruder Deduction Problem

Locality Lemma

A Simple Flat D-eager and ⊕-eager proof of T ` w is a
S⊕(T ,w)-local proof.

Main Theorem

The intruder deduction problem for a commutative and distributive
encryption over XOR is decidable in 2-EXP-TIME.

Proof :
Using usual MacAllester approach :

• Locality Lemma
• S⊕(T ) computable in 2-EXP-TIME
• One-step deducibility in PTIME (solving linear equations)
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Binary Case
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Binary Case

Definitions

Binary proof

All nodes of P with ⊕ are of the form ∗ ⊕ ∗

• Asymmetric encryption

(DK )
T ` {u}K T ` Inv(K )

T ` u ↓

• Notation {{u}k1}k2 by {u}k1k2

• Uniform word problem in commutative semi-groups (CSG) is
EXP-SPACE hard [Mayr Meyer 82].
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Binary Case

Result

Result

In binary case the intruder deduction is EXP-SPACE-hard.

Remark : Assume not Inv symbol in T ⇒ only rule (C ) and (GX )

Transformation

(CK )

(GX )
T ` x1. . .T ` x1

T ` x1 ⊕ . . .⊕ xn
T ` K

T ` {x1}K ⊕ . . .⊕ {xn}K
gives

(GX )

(CK )
T ` x1 T ` K

T ` {x1}K
. . .(CK )

T ` xn T ` K

T ` {xn}K
T ` {x1}K ⊕ . . .⊕ {xn}K
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Binary Case

Idea of the Proof

(GX )

(C)

(C)

(A)
{�}γ1 ⊕ {�}δ1 ∈ T

T ` {�}γ1 ⊕ {�}δ1

...

T ` {�}γ1c1 ⊕ {�}δ1c1

. . . (C)

(C)

(A)
{�}γl

⊕ {�}δl ∈ T

T ` {�}γl
⊕ {�}δl

...

T ` {�}γlcl ⊕ {�}δlcl
T ` {�}α ⊕ {�}β

An instance of uniform word problem in CSG is:

α1 = β1, . . . , αn = βn |= α = β

Chose :
α =C γ1c1, δ1c1 =c γ2c2, . . . δl−1cl−1 =C γlcl , δlcl =C β
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Conclusion
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Conclusion

Results & Future Works

Results

• Solve Intruder deduction problem in 2-EXP-TIME

• In binary case a precise complexity.

Future Works

• Extension : AG and distributive, commutative encryption

• Active Intruder for ACUN and distributive encryption
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Conclusion

Thank you for your attention

Questions ?
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