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Intruder Deduction System

Extended Dolev-Yao Model

Deduction System:

M)UET Tk (u,v)
Tl (UL)
Thu Trv ;:”i
( TF (o, v) (UR) tu, v)

Thu TFK 71FV¢ .
(Ck) TF {uIxd (GX) 2 n
T {u} TEK T d...%u,l

(Dk)

THul
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Intruder Deduction System

Special Rules Encryption and Decryption

(Ck) and (Dk)

Tru TrK
(Ck) TH{utxl ()

Where
o K={ki", ... kyr}
e THKis: Tt ki used o7 times, ..., T F k, used o, times
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Different Kinds of Proofs

Simple Proofs

simple proof
Each node T v occurs at most once on each branch.

Cut the loops.
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Different Kinds of Proofs

Simple and Flat Proofs

flat proof

Avoids two successive applications of the same rule :
(C),(D) or (GX).

Merge rules (GX), (C) and (D).
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Different Kinds of Proofs

Flat Transformations (1)
Rule (C)

(C )Tl—u TFK; i
K: 2
! TH{ulk
T}_{U}Kth
U
ThFu T+ K, K>

TFH {U}Kl,Kz 4

(CKz)

(CKl,KQ)
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Different Kinds of Proofs

Flat Transformations (1)
Rule (D)

TH TEK
(Dx,) {ulx L' Thk
TH{u}k\k 4

Tr {U}K\(Kth)
N8

(DK2)

TFu THEK, K,
T = {u}k\ (ki k0) +

(DKl,K2)
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Different Kinds of Proofs

Flat Transformations (I11)
Rule (GX)

TEx1 T F x,
TEX1D...Dx, TEwy TEYm

TEX®..Ox®y1®...0Ym

\
TEx1 T F x, TEw TEFym

TEX1®.. 08X DV1D...DYm

(6X)

(6X)
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Different Kinds of Proofs

ative and Distributive Encryption

D-eager Proof

D-eager proof = rules (D) applied as early as possible.
Definition

In D-eager proof these 2 cases are impossible :

THu TEK;
T F{u}k THFK,
{U}K1\K2

(CKI)

(DKz)
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ative and Distributive Encryption

D-eager Proof

D-eager proof = rules (D) applied as early as possible.
Definition

In D-eager proof these 2 cases are impossible :

THu TEK;

(DKZ)(CKI) T F {u}x, TFK,
{u} ko
KoN Ky # 0 :
(GX)(Rl) Tk {IU1}K1 RlTes,
(D) T+ {u}k, TH K

14/32
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Different Kinds of Proofs

D-eager Transformations (1)

Rule (C) and (D) are commutative

Consequence of simplicity, K1 N K> = 0.

TH{u}k TEK
TH{u}lk Kk THFK

{u} (K k)\ Ko

(CKI)

(DKz)

Is equivalent to

TH{u}lk TFEK
T {U}K\KQ T Kl

{ulvo) i = (Ul kK

(DKz)

(CKI)
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Different Kinds of Proofs

D-eager Transformation (I1)

iszﬁKl#@

(RI)W (Rz)ﬁ

(GX) i
(D) T {u}k TEK
* T {ubkk
4
R)—— R
(GX‘( Of ey (R,
\TH{Bi}k THK\KNK O T+ {u}n Tk KN Ky
(Drariks F 7B (D) T
(6X) T H{Bi}k1\kanky) T+ {un} k)
T - {ub i\ ki) THK\K

(Drc\k,)
o T H{ubwnknmniek) = {8hik
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Different Kinds of Proofs

-eager Proofs

-eager proof = rules (GX) applied as early as possible.

Definition
A ®-eager proof authorizes only :

Thx TkHK Thx THK :
— . (Ck) (Ry) .
T+ {XI}K1 TF {XQ}K2 TEH=z

TH{x}l @{et®za®...0 2y,

(CKI)

(Rm)

TkFz,
(6X) E

with K1 N Kz # 0
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Different Kinds of Proofs

-eager Transformation

Switch (GX) and (C), if KN Ky # 0

Thkx TFK, Tkx THK

C C
(GX)( Kl) TE {Xl}Kl ( Kz) TE {XZ}K2
TF {atk © Pelr,
Ky Ky # 0
(3
(Coyl T THE\K (o Tre  Trk\K
R R S AV )T Dol
TF Patik © Dol TEKNK;
(Ckink:) TH{Patk ® Pelr

TE{atk © et
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Decidability Result

Main Theorem

The intruder deduction problem for a commutative and distributive
encryption over XOR is decidable in 2-EXP-TIME.

Proof :
Using usual MacAllester approach :
e Locality Lemma
e S¢(T) computable in 2-EXP-TIME
¢ One-step deducibility in PTIME (solving linear equations)
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Decidability Result

Subterms

Definition

The set of subterms of a term t is the smallest set St (t) s.t.:

t e St(t).

o if (u,v) € S7(t) then u,v € S7(t).

o if {u}k € S7(t) and K = {k{"*,..., kp"} then u € S7(t) and
ki € St(t) forallil<i<p.

e ifu=u1@®... 0 u, € St(t) then all u; C S7(t).

e Ifn>1 K={k",..., kp"} and
{1}k @ ... @ {un}k € S7(t) then u1 ... ® u, € S7(2).
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e Ifn>1 K={k",..., kp"} and
{n}k ®...®{us}k € S7(t) then uy & ... ® u, € S7(1).

Example : v = {a}k17k27k3 then ST(U) =
{u,a, ki, ko, ks, {a}k1, {a} ko, {a}ks, {at ki k2, {a}ko k3, {atkik3}
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Decidability Result

|dea of our approach (1)

Lemma

P a minimal proof in number of nodes = P is S. F.

Let P be a proof of T - w
@ From a proof to S. F. proof
® From S. F. proof to S. F. D-eager proof
© From S. F. D-eager proof to S. F. ®-eager and D-eager proof
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Decidability Result

|dea of our approach (II)

Lemma (D)

Let P be a Simple Flat D-eager and ®-eager proof of T - w if P
is

(R)Tk{U]lxizr TI—.K¢

TkEu

(Dk)

then {u}k € So(T).
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Decidability Result

Proof of Lemma(D)

T+HB T+ B,
(R)=——7 e (Ro)=—r
(6X) THB, THB :
TH{ulkl THK]

(Dk)

Thul

If (R1) = (Ckr) use to prove that all B! € Sg(T):
* B ={Bi}x
e D-eager = KNK' =
e @©-eager = no rule (Rj) = (Cxr) st. K'NK =10
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Decidability Result

Intruder Deduction Problem

Locality Lemma

A Simple Flat D-eager and @-eager proof of T = w is a
Sa(T, w)-local proof.

Main Theorem

The intruder deduction problem for a commutative and distributive
encryption over XOR is decidable in 2-EXP-TIME.

Proof :
Using usual MacAllester approach :

e Locality Lemma
e S¢(T) computable in 2-EXP-TIME
e One-step deducibility in PTIME (solving linear equations)

25/32



Intruder Deduction for the Equational Theory of Exclusive-Or with C: ative and Distributive Encryption
Binary Case

Outline

@ Binary Case

26/32



Intruder Deduction for the Equational Theory of Exclusive-Or with C: ative and Distributive Encryption
Binary Case

Definitions

Binary proof
All nodes of P with @ are of the form x @ *
e Asymmetric encryption

THA{u}k T+ Inv(K)
TFul

(Dk)

e Notation {{v}k }k, bY {U}kk
¢ Uniform word problem in commutative semi-groups (CSG) is
EXP-SPACE hard [Mayr Meyer 82].
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Intruder Deduction for the Equational Theory of Exclusive-Or with C
Binary Case

ative and Distributive Encryption

Result

Result
In binary case the intruder deduction is EXP-SPACE-hard.

Remark : Assume not /nv symbol in T = only rule (C) and (GX)

Transformation

TFXl...TFXl
(GX) THK
TEx1D...Px,

TF{Xl}K@...@{Xn}K

(Ck)

gives

TExy TEFK ( TEx, TEFK
Tk T TR Gk
THE{xa}k®...®{x}k

(Ck)

(6X)
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Binary Case

Idea of the Proof

{}’h @ {}51 eT (A){}’W D {}5/ €T

(A) ¢ (=}, ® {B}s, © TH{®}, © (@},

(©)

(©)
(6X)

(©)

T {8} ®{#}s

TF {}»chl @ {B}s, T+ {}'WC/ ® {E}s¢

An instance of uniform word problem in CSG is:

O‘lzﬂla"'aanzﬂn':azﬂ

Chose :
o =c M€, 01C1 =c Y2C2, ... Oj_1C—1 =c Vi€, 61 =cf
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Outline

® Conclusion
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Conclusion

Results & Future Works

Results

e Solve Intruder deduction problem in 2-EXP-TIME

e In binary case a precise complexity.

Future Works

e Extension : AG and distributive, commutative encryption

e Active Intruder for ACUN and distributive encryption
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Conclusion

Thank you for your attention

Questions ?
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