Formal Analysis of Electronic Exams

<u>Jannik Dreier</u>¹, Rosario Giustolisi², Ali Kassem³, Pascal Lafourcade⁴, Gabriele Lenzini² and Peter Y. A. Ryan²

¹Institute of Information Security, ETH Zurich
²SnT/University of Luxembourg
³Université Grenoble Alpes, CNRS, VERIMAG
⁴University d'Auvergne, LIMOS

11th International Conference on Security and Cryptography (SECRYPT 2014), Vienna

August 28, 2014

Information technology for the assessment of knowledge and skills.

Educational assessment

E-exam: Players and Organization

Three Roles:

Examination Authority

Examiner

E-exam: Players and Organization

Three Roles:

Four Phases:

1. Registration 2. Examination 3. Marking 4. Notification

- Candidate cheating
- Bribed, corrupted or unfair examiners
- Dishonest/untrusted exam authority
- Outside attackers

▶ ...

Most existing e-exam systems assume trusted authorities and focus on student cheating:

Exam centers

Software solutions, e.g. ProctorU

Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

Exam centers

Software solutions, e.g. ProctorU

Yet also the **other threats** are real:

- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)

Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

Exam centers

Software solutions, e.g. ProctorU

Yet also the **other threats** are real:

- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)

So what about **dishonest authorities** or **hackers** attacking the system?

Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

Exam centers

Software solutions, e.g. ProctorU

Yet also the **other threats** are real:

- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)

So what about **dishonest authorities** or **hackers** attacking the system?

 \Rightarrow need for better protocols and systems (cf. case studies)

Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

Exam centers

Software solutions, e.g. ProctorU

Yet also the **other threats** are real:

- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)

So what about **dishonest authorities** or **hackers** attacking the system?

- \Rightarrow need for better protocols and systems (cf. case studies)
- \Rightarrow precise formal definitions of required properties

Introduction

Model and Properties

Authentication Properties Privacy Properties

Case Studies

Huszti & Pethő's Protocol Remark! Protocol

Conclusion

Introduction

Model and Properties

Authentication Properties Privacy Properties

Case Studies

Huszti & Pethő's Protocol Remark! Protocol

Conclusion

- Processes in the applied π-calculus [?]
- Annotated using events
- Authentication properties as correspondence between events
- Privacy properties as observational equivalence between instances
- Automatic verification using ProVerif [?]

1. Registration

Introduction

Model and Properties Authentication Properties Privacy Properties

Case Studies

Huszti & Pethő's Protocol Remark! Protocol

Conclusion

Answer Origin Authentication

All collected answers originate from registered candidates, and only one answer per candidate is accepted.

Definition:

Form Authorship

Answers are collected as submitted, i.e. without modification.

Definition:

Form Authenticity

Answers are marked as collected.

Definition:

Mark Authenticity

The candidate is notified with the mark associated to his answer.

Definition:

3.

Introduction

Model and Properties Authentication Properties Privacy Properties

Case Studies

Huszti & Pethő's Protocol Remark! Protocol

Conclusion

Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Can be considered with or without dishonest candidates.

Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

Can be considered with or without dishonest examiners and authorities.

Anonymous Examiner

A candidate cannot know which examiner graded his copy. **Definition:**

Can be considered with or without dishonest candidates.

Marks are private.

Definition:

Can be considered with or without dishonest candidates, examiners and authorities.

Mark Anonymity

Marks can be published, but may not be linked to candidates. **Definition:**

Can be considered with or without dishonest candidates, examiners and authorities. Implied by Mark Privacy.

Introduction

Model and Properties Authentication Properties

Privacy Properties

Case Studies

Huszti & Pethő's Protocol Remark! Protocol

Conclusion

Introduction

Model and Properties Authentication Properties Privacy Properties

Case Studies Huszti & Pethő's Protocol Remark! Protocol

Conclusion

Application: Huszti & Pethő's Protocol

- "A Secure Electronic Exam System" [?] using
 - ElGamal Encryption
 - ► a Reusable Anonymous Return Channel (RARC) [?] for anonymous communication
 - a network of servers providing a timed-release service using Shamir's Secret Sharing:
 A subset of servers can combine their shares to de-anonymize
 a candidate after the exam

Goal: ensure

authentication and privacy

in presence of dishonest

- candidates
- examiners
- exam authorities

Results

Formal Verification with ProVerif [?]:

Property	Result	Time
Answer Origin Authentication	×	< 1 s
Form Authorship	×	< 1 s
Form Authenticity	×	< 1 s
Mark Authenticity	×	< 1 s
Question Indistinguishability	×	< 1 s
Anonymous Marking	×	8 m 46 s
Anonymous Examiner	×	9 m 8 s
Mark Privacy	×	39 m 8 s
Mark Anonymity	×	1h 15 m 58 s

Given its security definition, the $\ensuremath{\mathsf{RARC}}$

- provides anonymity, but not necessarily secrecy
- does not necessarily provide integrity or authentication
- is only secure against passive attackers

Corrupted parties or active attackers can **break secrecy and anonymity**, as the following attack shows.

Input (A to RARC, destination B):

 $\{ID_A, PK_A\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_B, PK_B\}_{PK_{RARC}} + PoK$

Input (A to RARC, destination B): $\{ID_A, PK_A\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_B, PK_B\}_{PK_{RARC}} + PoK$ Output (RARC to B):

 $\{ID_A, PK_A\}_{PK_{RARC}} + Signature; \{MSG\}_{PK_B}$

Input (A to RARC, destination B): $\{ID_A, PK_A\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_B, PK_B\}_{PK_{RARC}} + PoK$ Output (RARC to B):

 $\{ID_A, PK_A\}_{PK_{RARC}} + Signature; \{MSG\}_{PK_B}$

Return (B to RARC, destination A):

 $\{ID_B, PK_B\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_A, PK_A\}_{PK_{RARC}} + Signature$

Input (A to RARC, destination B): $\{ID_A, PK_A\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_B, PK_B\}_{PK_{RARC}} + PoK$ Output (RARC to B):

 ${ID_A, PK_A}_{PK_{RARC}} + Signature; {MSG}_{PK_B}$ Return (B to RARC, destination A): ${ID_B, PK_B}_{PK_{RARC}} + PoK; {MSG}_{PK_{RARC}}; {ID_A, PK_A}_{PK_{RARC}} + Signature$

Attack

Input (AD to RARC, destination AD): $\{ID_{AD}, PK_{AD}\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_{AD}, PK_{AD}\}_{PK_{RARC}} + PoK$

Input (A to RARC, destination B): $\{ID_A, PK_A\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_B, PK_B\}_{PK_{RARC}} + PoK$ Output (RARC to B):

 $\{ID_A, PK_A\}_{PK_{RARC}} + Signature; \{MSG\}_{PK_B}$ Return (B to RARC, destination A):

 $\{ID_B, PK_B\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_A, PK_A\}_{PK_{RARC}} + Signature$

Attack

Input (AD to RARC, destination AD):

 $\{ID_{AD}, PK_{AD}\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_{AD}, PK_{AD}\}_{PK_{RARC}} + PoK$ Output (RARC to AD):

 $\{ID_{AD}, PK_{AD}\}_{PK_{RARC}} + Signature; \{MSG\}_{PK_{AD}}$

Introduction

Model and Properties Authentication Properties Privacy Properties

Case Studies Huszti & Pethő's Protocol Remark! Protocol

Conclusion

Application: Remark! Protocol

A recent protocol [?] using

- ElGamal encryption
- an exponentiation mixnet [?] to create pseudonyms based on the parties' public keys
 - \Rightarrow allows to encrypt and sign anonymously
- a public append-only bulletin board
- Goal: ensure
 - authentication and integrity
 - privacy
 - verifiability

in presence of dishonest

- candidates
- examiners
- exam authorities

Results

Formal Verification with ProVerif:

Property	Result	Time
Answer Origin Authentication	\checkmark	< 1 s
Form Authorship	\checkmark	< 1 s
Form Authenticity	\checkmark^1	< 1 s
Mark Authenticity	\checkmark	< 1 s
Question Indistinguishability	\checkmark	< 1 s
Anonymous Marking	\checkmark	2 s
Anonymous Examiner	\checkmark	1 s
Mark Privacy	\checkmark	3 m 32 s
Mark Anonymity	\checkmark	_2

¹after fix ²implied by Mark Privacy

Introduction

Model and Properties Authentication Properties Privacy Properties

Case Studies Huszti & Pethő's Protocol Remark! Protocol

Conclusion

Conclusion

- E-exams are used and vulnerable to attacks
- Cryptographic protocols exist, but lack formal verification
- First formal framework for analysis of e-exams:
 - Formal model in the **applied** π -calculus
 - Definitions for central authentication, integrity and privacy properties
- Automated verification in ProVerif of two case studies:
 - Huszti & Pethő's protocol: Fails on all properties due to severe flaws in protocol design
 - Remark! protocol: Ensures all properties after one fix
- Future work: verifiability and accountability, analyzing implementations

Questions?

jannik.dreier@inf.ethz.ch

Definition

(E-exam protocol). An e-exam protocol is a tuple

$$(C, E, Q, A_1, \ldots, A_l, \tilde{n}_p),$$

where

- C is the process executed by the candidates,
- E is the process executed by the examiners,
- ▶ *Q* is the process executed by the question commitee,
- ► A_i's are the processes executed by the authorities, and
- \tilde{n}_p is the set of private channel names.

Model Definition cont'd

Definition

(E-exam instance). An e-exam instance is a closed process

$$EP = \nu \tilde{n} (C\sigma_{id_1}\sigma_{a_1}|\dots|C\sigma_{id_j}\sigma_{a_j}|E\sigma_{id_1'}\sigma_{m_1}|\dots|E\sigma_{id_k'}\sigma_{m_k}|$$
$$Q\sigma_q|A_1\sigma_{dist}|\dots|A_l),$$

where

- ñ is the set of all restricted names, which includes the set of the protocol's private channels;
- Cσ_{idi}σ_{ai}'s are the processes run by the candidates, the substitutions σ_{idi} and σ_{ai} specify the identity and the answers of the ith candidate respectively;
- Eσ_{id'i}σ_{mi}'s are the processes run by the examiners, the substitution σ_{id'} specifies the ith examiner's identity, and σ_{mi} specifies for each possible question/answer pair the corresponding mark;

Model Definition cont'd

Definition

(E-exam instance). An e-exam instance is a closed process

$$EP = \nu \tilde{n} (C\sigma_{id_1}\sigma_{a_1}|\dots|C\sigma_{id_j}\sigma_{a_j}|E\sigma_{id_1'}\sigma_{m_1}|\dots|E\sigma_{id_k'}\sigma_{m_k}|$$
$$Q\sigma_q|A_1\sigma_{dist}|\dots|A_l),$$

where

- Q is the process run by the question committee, the substitution σ_q specifies the exam questions;
- the A_i's are the processes run by the exam authorities, the substitution σ_{dist} determines which answers will be submitted to which examiners for grading.

Without loss of generality, we assume that A_1 is in charge of distributing the copies to the examiners.

Definition (Answer Origin Authentication)

An e-exam protocol ensures Answer Origin Authentication if, for every e-exam process EP, each occurrence of the event **collected**(**id**_**c**, **ques**, **ans**) is **preceded** by a distinct occurrence of the event **reg**(**id**_**c**) on every execution trace.

Definition (Form Authorship)

An e-exam protocol ensures Form Authorship if, for every e-exam process EP, each occurrence of the event **collected**(*id*_c, *ques*, *ans*) is **preceded** by a distinct occurrence of the event **submitted**(*id*_c, *ques*, *ans*) on every execution trace.

Definition (Form Authenticity)

An e-exam protocol ensures Form Authenticity if, for every e-exam process EP, each occurrence of the event marked(ques, ans, mark, id_form, id_e) is preceded by a distinct occurrence of the events distrib(id_c, ques, ans, id_form, id_e) and collected(id_c, ques, ans) on every execution trace.

Definition (Mark Authenticity)

An e-exam protocol ensures Mark Authenticity if, for every e-exam process EP, each occurrence of the event **notified**(id_c, mark) is **preceded** by a distinct occurrence of the events **marked**(**ques**, **ans**, **mark**, **id_form**, **id_e**) and **distrib**(**id_c**, **ques**, **ans**, **id_form**, **id_e**) on every execution trace.

Definition (Question Indistinguishability)

An e-exam protocol ensures Question Indistinguishability if for any e-exam process EP that ends with the registration phase, any questions q₁ and q₂, we have that: $EP_{\{id_Q\}}[Q\sigma_{q_1}]|_{reg} \approx_I EP_{\{id_Q\}}[Q\sigma_{q_2}]|_{reg}.$

Definition (Anonymous Marking)

An e-exam protocol ensures Anonymous Marking if for any e-exam process EP that ends with the marking phase, any two candidates id_1 and id_2 , and any two answers a_1 and a_2 , we have that: $EP_{\{id_1,id_2\}}[C\sigma_{id_1}\sigma_{a_1}|C\sigma_{id_2}\sigma_{a_2}]|_{mark}\approx_I EP_{\{id_1,id_2\}}[C\sigma_{id_1}\sigma_{a_2}|C\sigma_{id_2}\sigma_{a_1}]|_{mark}.$

Definition (Anonymous Examiner)

An e-exam protocol ensures Anonymous Examiner if for any e-exam process EP, any two candidates id_1 , id_2 , any two examiners id'_1 , id'_2 , and any two marks m_1 , m_2 , we have that: $EP_{\{id_1,id_2,id'_1,id'_2,id_{A_1}\}}[C\sigma_{id_1}\sigma_{a_1}|C\sigma_{id_2}\sigma_{a_2}|E\sigma_{id'_1}\sigma_{m_1}|E\sigma_{id'_2}\sigma_{m_2}|A_1\sigma_{dist_1}] \approx_l EP_{\{id_1,id_2,id'_1,id'_2,id_{A_1}\}}[C\sigma_{id_1}\sigma_{a_1}|C\sigma_{id_2}\sigma_{a_2}|E\sigma_{id'_1}\sigma_{m_2}|E\sigma_{id'_2}\sigma_{m_1}|A_1\sigma_{dist_2}]$ where σ_{dist_1} attributes the exam form of candidate id_1 to examiner id'_1 and the exam form of candidate id_2 to examiner id'_2 , and σ_{dist_2} attributes the exam form of candidate id_1 to examiner id'_2 and the exam form of candidate id_2 to examiner id'_1 .

Definition (Mark Privacy)

An e-exam protocol ensures Mark Privacy if for any e-exam process EP, any marks m_1 , m_2 , we have that: $EP_{\{id'\}}[E\sigma_{id'}\sigma_{m_1}] \approx_I EP_{\{id'\}}[E\sigma_{id'}\sigma_{m_2}].$

Definition (Mark Anonymity)

An e-exam protocol ensures Mark Anonymity if for any e-exam process EP, any candidates id_1 , id_2 , any examiner id'_1 , any answers a_1 , a_2 and a distribution σ_{dist} that assigns the answers of both candidates to the examiner, and two substitutions σ_{m_a} and σ_{m_b} which are identical, except that σ_{m_a} attributes the mark m_1 to the answer a_1 and m_2 to a_2 , whereas σ_{m_b} attributes m_2 to the answer a_1 and m_1 to a_2 , we have that:

$$\begin{split} & EP_{\{id_1,id_2,id'_1,id_{A_1}\}}[C\sigma_{id_1}\sigma_{a_1}|C\sigma_{id_2}\sigma_{a_2}|E\sigma_{id'_1}\sigma_{m_a}|A_1\sigma_{dist}] \approx_I \\ & EP_{\{id_1,id_2,id'_1,id_{A_1}\}}[C\sigma_{id_1}\sigma_{a_1}|C\sigma_{id_2}\sigma_{a_2}|E\sigma_{id'_1}\sigma_{m_b}|A_1\sigma_{dist}] \end{split}$$

Remark! Equational Theory

checkpseudo(pseudo pub(pk(k), rce))pseudo priv(k, exp(rce))) = truedecrypt(encrypt(m, pk(k), r), k) = mdecrypt(encrypt(m, pseudo pub(pk(k),rce), r), pseudo priv(k, exp(rce))) = mgetmess(sign(m, k)) = mchecksign(sign(m, k), pk(k)) = mchecksign(sign(m, pseudo priv(k, exp(rce)), pseudo pub(pk(k), rce)) = m

Remark! Protocol

Assumption: The protocol assumes a list of eligible examiners and their public keys PK_E , and a list of eligible candidates and their public keys PK_C .

Examiner Registration

1- NET calculates
$$\overline{r}_e = \prod_{i=1}^k r_{e_i}$$
, $\overline{PK}_E = PK_E^{\overline{r}_e}$ and $h_e = g^{\overline{r}_e}$
2- NET publishes $sign((\overline{PK}_E, h_e), SK_{NET})$
3- E checks if $\overline{PK}_E = h_e^{SK_E}$

Candidate Registration

4- NET calculates
$$\overline{r}_c = \prod_{i=1}^k r_{c_i}$$
, $\overline{PK}_C = PK_C^{\overline{r}_c}$ and $h_c = g^{\overline{r}_c}$
5- NET publishes $sign((\overline{PK}_C, h_c), SK_{NET})$
6- C checks if $\overline{PK}_C = h_c^{SK_C}$

Examination

7-
$$EA \rightarrow C$$
 : { $sign(question, SK_{EA})$ } _{$\overline{PK_{C}}$}
8- $C \rightarrow EA$: // $C_{a} =$ { $question, answer, \overline{PK_{C}}$ }
{ $C_{a}, sign(C_{a}, \overline{SK_{C}, h_{c}})$ } _{PK_{EA}}
9- $EA \rightarrow C$: { $C_{a}, sign(C_{a}, SK_{EA})$ } _{$\overline{PK_{C}}$}

Marking 10- $EA \rightarrow E : \{C_a, sign(C_a, SK_{EA})\}_{\overline{PK_E}}$ 11- $E \rightarrow EA : // M_a = (sign(C_a, SK_{EA}), mark)$ $\{sign(M_a, \overline{SK_E}, h_e)\}_{PK_{EA}}$ Notification

12-
$$EA \rightarrow C : \{M_a, sign(M_a, SK_E, h_e)\}_{\overline{PK}_C}$$

13- $NET \rightarrow EA : \{\overline{r}_c, sign(\overline{r}_c, SK_N)\}_{PK_{EA}}$

Huszti Equational Theory

decrypt(encrypt(m, pk(k), r), k) = mgetmess(sign(m, k)) = mchecksign(sign(m, k), pk(k)) = mexp(exp(g, x), y) = exp(exp(g, y), x)checkproof(xproof(p, p1, g, exp(g, e), e),p, p1, g, exp(g, e)) = true $zkpsec(zkp_proof(exp(b, e), e), exp(b, e)) = true$

Huszti's Protocol

Setup

 $\begin{array}{l} 1 \ - \ EA \ \text{publishes} \ g \ \text{and} \ h = g^s \\ 2 \ - \ Committee \ \rightarrow_{priv} \ EA : \\ \{question, \{question\}_{SSK_{committee}}, time_{x1}\}_{PK_{MIX}} \end{array}$

Candidate Registration

- 3 *EA* checks *C*'s eligibility, and calculates $\tilde{p} = (PK_C)^s$
- 4 $EA \rightarrow NET : \{\tilde{p}, g_C\}$ 5- NET calculates $p' = \tilde{p}^{\Gamma}$, and $r = g_C^{\Gamma}$, and stores time_{nt}
- $6 NET \rightarrow C : \{p', r\}_{r}$
- 7 C calculates $p = r^{SK_C}$
- 8 $EA \longleftrightarrow C : ZKP_{eq}((p, p'), (g, h)) //C$'s pseudonym: (r, p, p')

Huszti's Protocol

Examiner Registration

9 - EA checks E's eligibility, and calculates $\tilde{q} = (PK_F)^s$ 10 - $EA \rightarrow E : \{\tilde{q}, g_F\}$ 11 - E calculates $q' = \tilde{q}^{\alpha}$, $t = g_{E}^{\alpha}$, and $q = t^{SK_{E}}$ 12 - $EA \leftrightarrow E : ZKP_{ea}((q,q'),(g,h))$ 13 - $E \rightarrow EA : \{t,q,q',h\}$ 14 - *EA* checks $q^s = q'$ 15 - $E \leftrightarrow EA : ZKP_{sec}(SK_F)$ 16 - EA stores $\{ID_F, PK_F\}_{PK_{MIX}}, h$ Examination 17 - $C \rightarrow EA$: {r, p, p', h} 18 - EA checks $p^s = p'$ 19 - $C \leftrightarrow EA : ZKP_{sec}(SK_C)$ 20 - $EA \rightarrow C$: {question, {question}_{SSK committee}, time_{x1}}_{PKMIX}

21 -
$$C \rightarrow EA$$
: { $r, p, \{answer\}_{PK_{MIX}}, time_{x2}\}$

22 - $EA \rightarrow C$: $Hash(r, p, p', h, trans_C, question, time_{x1}, time_{x2}$ {answer}_{PKMIX})

Huszti's Protocol

Marking 23 - $EA \rightarrow E$: {answer}_{PK_{MIX}} // Note that EA stored { ID_E, PK_E }_{PK_{MIX}, h) 24 - $E \rightarrow EA$: { $mark, Hash(mark, answer), [Hash(mark, answer)]^{SK_E}, verzkp, t, q$ } 25 - $E \leftrightarrow EA$: $ZKP_{eq}(Hash(mark, answer), [Hash(mark, answer)]^{SK_E}), (t, q))$ Notification 26 - $EA \rightarrow NET : \{p'\} //Note that r = g^{\Gamma}, p = PK^{\Gamma}, p' = g^{\Gamma s}$}

26 - $EA \rightarrow NET$: {p'} //Note that $r = g_C^{\Gamma}$, $p = PK_C^{\Gamma}$, $p' = g_C^{\Gamma s}$ 27 - NET calculates $p' = \tilde{p}^{\Gamma}$ 28 - $NET \rightarrow EA$: { p', \tilde{p} } 29 - EA publishes mark, Hash(mark, answer), [Hash(mark, answer)]^{SK_E}, verzkp