Formal Verification of e-Auction protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Université Grenoble 1, CNRS, VERIMAG firstname.lastname@imag.fr

Principles of Security and Trust (POST) 2013, Rome

March 19, 2013

- 2 Formal Definitions
 - Authentication
 - Fairness
 - Privacy
- 3 Case Studies
 - Curtis et al.
 - Brandt

• • = • • = •

- 2 Formal Definitions
 - Authentication
 - Fairness
 - Privacy
- 3 Case Studies
 - Curtis et al.
 - Brandt

4 Conclusion

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

e-Auctions

Sotheby's

AutoBidsOnline.com

Don't Request a Quote, Set Your Price!

Pricardo.ch

WineCommune Buy and Sell Fine Wine - Online!

・ロト ・聞 ト ・ヨト ・ヨト

Challenges in e-Auctions

- Competing parties: Bidders/Buyers, Seller, Auctioneer, ...
- Many possible (complex) mechanisms:
 - English
 - Dutch
 - Sealed Bid
 - First Price
 - Second Price
 - Bulk Goods
 - ...
- Here: Sealed Bid First Price auctions

e-Auctions: Security Requirements

Fairness

Verifiability

Non-Repudiation

Non-Cancellation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Security Requirements

Secrecy of Bidding Price

Receipt-Freeness

Anonymity of Bidders

Coercion-Resistance

Authenticatior Fairness Privacy

Plan

Introduction

2 Formal Definitions

- Authentication
- Fairness
- Privacy

3 Case Studies

- Curtis et al.
- Brandt

4 Conclusion

<□> <同> <同> <目> <日> <同> <日> <日> <日> <日> <日> <日> <日> <日> <日 < □> <10 < 0 <0

Authentication Fairness Privacy

The Applied π -Calculus [AF01]

We use the Applied π -Calculus to model protocols:

P, Q, R :=	processes
0	null process
P Q	parallel composition
! <i>P</i>	replication
ν n.P	name restriction ("new")
if $M=N$ then P else Q	conditional
in(u, x)	message input
out(u,x)	message output
$\{M/x\}$	substitution

Authentication Fairness Privacy

To express our properties, we use the following events:

- bid(p,id): a bidder id bids the price p
- recBid(p,id): a bid at price p by bidder id is recorded by the auctioneer/bulletin board/etc.
- won(p,id): a bidder id wins the auction at price p

Authentication Fairness Privacy

Plan

Introduction

2 Formal Definitions

- Authentication
- Fairness
- Privacy

3 Case Studies

- Curtis et al.
- Brandt

4 Conclusion

<□> <同> <同> <目> <日> <同> <日> <日> <日> <日> <日> <日> <日> <日> <日 < □> <10 < 0 <0

Authentication Fairness Privacy

Non-Repudiation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三世 ���

Authentication Fairness Privacy

Non-Cancellation

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○

Authentication Fairness Privacy

Plan

2 Formal Definitions

Authentication

Fairness

Privacy

3 Case Studies

- Curtis et al.
- Brandt

4 Conclusion

<□> <同> <同> <目> <日> <同> <日> <日> <日> <日> <日> <日> <日> <日> <日 < □> <10 < 0 <0

Authentication Fairness Privacy

Strong Noninterference & Weak Noninterference

Definition (Strong Noninterference (SN))

An auction protocol ensures Strong Noninterference (SN) if for any two auction processes AP_A and AP_B that halt at the end of the bidding phase (i.e. where we remove all code after the last recBid event) we have $AP_A \approx_I AP_B$.

Definition (Weak Noninterference (WN))

Like Strong Noninterference, but we consider only processes with the same bidders.

(D) (A) (A)

Authentication Fairness Privacy

Highest Price Wins

4日 + 4日 + 4日 + 4日 + 4日 - 900

Authenticatior Fairness Privacy

Introduction

2 Formal Definitions

- Authentication
- Fairness
- Privacy
- 3 Case Studies
 - Curtis et al.
 - Brandt

4 Conclusion

<□> <同> <同> <目> <日> <同> <日> <日> <日> <日> <日> <日> <日> <日> <日 < □> <10 < 0 <0

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Formal Verification of e-Auction protocols

Authenticatio Fairness Privacy

Bidding-Price Unlinkability (BPU)

The list of bids can be public, but must be unlinkable to the bidders.

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Formal Verificat

Formal Verification of e-Auction protocols

Authenticatior Fairness Privacy

Strong Anonymity (SA)

The winner may stay anonymous.

イロト イポト イヨト イヨト

Authenticatior Fairness Privacy

Weak Anonymity (WA)

Unlinkability, but also for the winner.

イロト イポト イヨト イヨト

Authentication Fairness Privacy

e-Auctions: Hierarchy of Privacy Notions

Authentication Fairness Privacy

e-Auctions: Hierarchy of Privacy Notions

Authentication Fairness Privacy

e-Auctions: Hierarchy of Privacy Notions

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ■ ■ ● ○ ○ ○

Curtis et al. Brandt

Plan

1 Introduction

2 Formal Definitions

- Authentication
- Fairness
- Privacy

- Curtis et al.
- Brandt

4 Conclusion

Curtis et al. Brandt

Plan

2 Formal Definitions

- Authentication
- Fairness
- Privacy

Conclusion

Curtis et al. Brandt

Protocol by Curtis et al. [CPS07]: Registration

Main idea: a registration authority (RA) distributes pseudonyms, which are then used for bidding.

Bidder

Registration Authority

Curtis et al. Brandt

Protocol by Curtis et al. [CPS07]: Registration

Main idea: a registration authority (RA) distributes pseudonyms, which are then used for bidding.

A (2) > (

Curtis et al. Brandt

Protocol by Curtis et al. [CPS07]: Registration

Main idea: a registration authority (RA) distributes pseudonyms, which are then used for bidding.

A (2) > (

Curtis et al. Brandt

Bidding

The bidder uses his pseudonym to submit his bids.

Registration Authority

4日 + 4日 + 4日 + 4日 + 4日 - 900

Curtis et al. Brandt

Bidding

The bidder uses his pseudonym to submit his bids.

Curtis et al. Brandt

Bidding

The bidder uses his pseudonym to submit his bids.

Curtis et al. Brandt

Bidding Cont'd

The Registration Authority forwards the bids to the auctioneer, encrypted using a symmetric key k, which is revealed at the end.

Registration Authority

Auctioneer

Curtis et al. Brandt

Bidding Cont'd

The Registration Authority forwards the bids to the auctioneer, encrypted using a symmetric key k, which is revealed at the end.

(日) (同) (三) (三) (三)

Curtis et al. Brandt

Bidding Cont'd

The Registration Authority forwards the bids to the auctioneer, encrypted using a symmetric key k, which is revealed at the end.

Curtis et al. Brandt

Completion

The auctioneer decrypts the bids using k and his secret key sk(Auctioneer), and announces the winning pseudonym.

Registration Authority

Auctioneer

Curtis et al. Brandt

Completion

The auctioneer decrypts the bids using k and his secret key sk(Auctioneer), and announces the winning pseudonym.

Registration Authority

・ 同 ト ・ ヨ ト ・ ヨ ト

EL NOR

Curtis et al. Brandt

Analysis

Formal analysis using ProVerif [Bla01]:

- Non-Repudiation: X attack, the messages from the RA to the auctioneer are not authenticated - anybody can impersonate the RA
- Non-Cancellation: X same attack
- Highest Price Wins: 🗡 same attack
- Weak Noninterference: (✓) OK if first message (hash of bid) is encrypted.
- **Privacy:** () Weak Anonymity if first message is encrypted and synchronization is added

・ロト・4月ト・4日ト・4日ト 900

Curtis et al. Brandt

Plan

2 Formal Definitions

- Authentication
- Fairness
- Privacy

4) Conclusion

- Completely distributed protocol (no authorities)
- Distributed homomorphic ElGamal encryption
- Function $f_{ij} = 1$ if bidder *i* won at price *j*, $f_{ij} \neq 1$ otherwise.

Curtis et al. Brandt

Protocol execution

Seller

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○

Curtis et al. Brandt

Protocol execution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Curtis et al. Brandt

Protocol execution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Curtis et al. Brandt

Protocol execution

Seller

・ロト ・ 同ト ・ ヨト ・ ヨト

イロト イヨト イヨト イヨト

Curtis et al. Brandt

Protocol execution

イロト イポト イヨト イヨト

Curtis et al. Brandt

Protocol execution

(日) (同) (三) (三)

Curtis et al. Brandt

Analysis

Automatic analysis using ProVerif:

- Non-Repudiation, Non-Cancellation: X attack, lack of authentication
- Weak Noninterference: 🗸 OK
- Highest Price Wins: X attack, an intruder can impersonate all bidders, hence controlling winner and winning price

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Privacy: 🗡 attack

Curtis et al. Brandt

Attack on Privacy

Exploit lack of authentication:

- Target one bidder
- Impersonate all other bidders
- Resubmit the targeted bidder's bid as their bids
- Impersonate the seller
- Obtain winning price=targeted bidder's bid

Plan

1 Introduction

2 Formal Definitions

- Authentication
- Fairness
- Privacy

3 Case Studies• Curtis et al.

Brandt

4 Conclusion

<□> <同> <同> <目> <日> <同> <日> <日> <日> <日> <日> <日> <日> <日> <日 < □> <10 < 0 <0

Conclusion

- Much work on e-Auction protocols, but not on formal analysis
- Developed a framework formalizing Non-Repudiation, Non-Cancellation, Fairness (Strong and Weak Noninterference, Highest Price Wins) and different notions of Privacy
- Suitable for automatic analysis using ProVerif
- Two case studies:
 - Protocol by Curtis et al.: attacks on Non-Repudiation, Non-Cancellation, Fairness and Privacy due to lack of authentication and synchronization
 - Protocol by Brandt: attacks on Privacy, Highest Price Wins, Non-Repudiation and Non-Cancellation

• Future work: fix problems and prove a protocol secure

Thank you for your attention!

Questions?

jannik.dreier@imag.fr

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Formal Verification of e-Auction protocols

- M. Abadi and C. Fournet.
 Mobile values, new names, and secure communication.
 In Proc. 28th Symposium on Principles of Programming Languages, POPL '01, pages 104–115, New York, 2001. ACM.
- M. Abe and K. Suzuki.

Receipt-free sealed-bid auction.

In *Proc. 5th Conference on Information Security*, volume 2433 of *LNCS*, pages 191–199. Springer, 2002.

B. Blanchet.

An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.

In Proc. 14th Computer Security Foundations Workshop (CSFW-14), pages 82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society.

How to obtain full privacy in auctions. International Journal of Information Security, 5:201–216, 2006.

- B. Curtis, J. Pieprzyk, and J. Seruga.
 An efficient eAuction protocol.
 In Proc. 7th Conference on Availability, Reliability and Security (ARES'07), pages 417–421. IEEE Computer Society, 2007.
- Jannik Dreier, Hugo Jonker, and Pascal Lafourcade.
 Defining verifiability in e-auction protocols.
 In 8th ACM Symposium on Information, Computer and Communications Security (ASIACCS), 2013.
- Naipeng Dong, Hugo L. Jonker, and Jun Pang. Analysis of a receipt-free auction protocol in the applied pi calculus.

In Pierpaolo Degano, Sandro Etalle, and Joshua D. Guttman, editors, *Formal Aspects in Security and Trust*, volume 6561 of *LNCS*, pages 223–238. Springer, 2010.

N. Dong, H. L. Jonker, and J. Pang.
 Analysis of a receipt-free auction protocol in the applied pi

calculus.

In Proc. 7th Workshop on Formal Aspects in Security and Trust (FAST'10), volume 6561 of LNCS, pages 223–238. Springer-Verlag, 2011.

Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of electronic voting protocols. *Journal of Computer Security*, 17:435–487, December 2009.

J. Dreier, P. Lafourcade, and Y. Lakhnech. A formal taxonomy of privacy in voting protocols.

In Proc. 1st IEEE International Workshop on Security and Forensics in Communication Systems (ICC'12 WS - SFCS), 2012.

Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech.

Defining privacy for weighted votes, single and multi-voter coercion.

In Sara Foresti, Moti Yung, and Fabio Martinelli, editors, Computer Security - ESORICS 2012 - 17th European Symposium on Research in Computer Security, Pisa, Italy, September 10-12, 2012. Proceedings, volume 7459 of LNCS, pages 451-468. Springer, 2012.

M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic auctions with private bids. In Proc. 3rd USENIX Workshop on Electronic Commerce. Usenix, 1998.

- B. Księżopolski and P. Lafourcade.
 Attack and revision of electronic auction protocol using ofmc.
 Annales UMCS Informatica 2007, pages 171–183, 2007.
- R. Küsters, T. Truderung, and A. Vogt.
 Accountability: definition and relationship to verifiability.
 In Proc. 17th Conference on Computer and Communications Security (CCS'10), CCS '10, pages 526–535. ACM, 2010.

G. Lowe.

A hierarchy of authentication specifications. In *Computer Security Foundations Workshop*, 1997. *Proceedings.*, 10th, pages 31–43, jun 1997.

Frank Stajano and Ross J. Anderson. The cocaine auction protocol: On the power of anonymous broadcast.

In Andreas Pfitzmann, editor, *Information Hiding*, volume 1768 of *LNCS*, pages 434–447. Springer, 1999.

K. Sako.

An auction protocol which hides bids of losers. In Hideki Imai and Yuliang Zheng, editors, *Proc. 3rd Workshop on Practice and Theory in Public Key Cryptosystems (PKC* 2000), volume 1751 of *LNCS*, pages 422–432. Springer, 2000.

Ben Smyth and Veronique Cortier.
 Attacking and fixing helios: An analysis of ballot secrecy.
 In Proceedings of the 24th IEEE Computer Security
 Foundations Symposium (CSF'11), pages 297–311. IEEE, 2011.

🔋 Srividhya Subramanian.

Design and verification of a secure electronic auction protocol.

In Proceedings of the The 17th IEEE Symposium on Reliable Distributed Systems, SRDS '98, pages 204–, Washington, DC, USA, 1998. IEEE Computer Society.

e-Auctions: Related Work

- Plenty of protocols,
 - e.g. [Bra06, CPS07, Sak00, AS02, SA99, HTK98] ...
- Some properties known from different contexts, e.g. voting [DKR09, DLL12b, DLL12a, SC11, Low97] ...
- Yet not much work on formalizing these properties for auctions:
 - Subramanian [Sub98]: design and verification using BAN-logic

- B. Księżopolski and P. Lafourcade [KL07]: Authentication attack using OFMC
- Dong, Jonker and Pang [DJP11]: Receipt-Freeness
- Küsters et al. [KTV10]: Accountability
- Dreier et al. [DJL13]: Verifiability

Receipt-Freeness (RF)

Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.

<□> → ■ → < ■ → < ■ → < ■ → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● →

Receipt-Freeness (RF)

Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.

<□> → ■ → < ■ → < ■ → < ■ → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● →

Coercion-Resistance (CR)

Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.

<□> → ■ → < ■ → < ■ → < ■ → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● → < ● →

Coercion-Resistance (CR)

Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.

◇∂ → ◆ ● → ▲ ● → ■ ■ → ◇ ◆

Definition (Equivalence in a Frame)

Two terms M and N are equal in the frame ϕ , written $(M = N)\phi$, if and only if $\phi \equiv \nu \tilde{n}.\sigma$, $M\sigma = N\sigma$, and $\{\tilde{n}\} \cap (fn(M) \cup fn(N)) = \emptyset$ for some names \tilde{n} and some substitution σ .

Definition (Static Equivalence (\approx_s))

Two closed frames ϕ and ψ are statically equivalent, written $\phi \approx_s \psi$, when dom $(\phi) =$ dom (ψ) and when for all terms M and N $(M = N)\phi$ if and only if $(M = N)\psi$. Two extended processes Aand B are statically equivalent $(A \approx_s B)$ if their frames are statically equivalent.

Definition (Labelled Bisimilarity (\approx_l))

Labelled bisimilarity is the largest symmetric relation \mathcal{R} on closed extended processes, such that $A \mathcal{R} B$ implies

A ≈_s B,
 if A → A', then B → B' and A' R B' for some B',
 if A → A' and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = Ø, then B →^{*} → * B' and A' R B' for some B'.

= 200

Definition (Process P^{ch} [DKR09])

Let P be a process and ch be a channel. We define P^{ch} as follows:

- 0^{ch} ≙ 0,
- $(P|Q)^{ch} \stackrel{ch}{=} P^{ch}|Q^{ch}$,
- $(\nu n.P)^{ch} \doteq \nu n.out(ch, n).P^{ch}$ when n is a name of base type,

•
$$(\nu n.P)^{ch} = \nu n.P^{ch}$$
 otherwise,

- (in(u, x).P)^{ch} = in(u, x).out(ch, x).P^{ch} when x is a variable of base type,
- $(in(u, x).P)^{ch} = in(u, x).P^{ch}$ otherwise,
- $(\operatorname{out}(u, M).P)^{ch} \doteq \operatorname{out}(u, M).P^{ch}$,
- $(!P)^{ch} \triangleq !P^{ch}$,
- (if M = N then P else Q)^{ch} \doteq if M = N then P^{ch} else Q^{ch} .

Definition (Process P^{c_1,c_2} [DKR09])

Let P be a process, c_1 , c_2 channels. We define P^{c_1,c_2} as follows:

- $0^{c_1,c_2} \doteq 0$,
- $(P|Q)^{c_1,c_2} \triangleq P^{c_1,c_2}|Q^{c_1,c_2},$
- $(\nu n.P)^{c_1,c_2} \triangleq \nu n.\operatorname{out}(c_1,n).P^{c_1,c_2}$ if n is a name of base type,

•
$$(\nu n.P)^{c_1,c_2} \triangleq \nu n.P^{c_1,c_2}$$
 otherwise,

- (in(u, x).P)^{c₁,c₂} = in(u, x).out(c₁, x).P^{c₁,c₂} if x is a variable of base type & x is a fresh variable,
- $(\operatorname{in}(u, x).P)^{c_1, c_2} \stackrel{\sim}{=} \operatorname{in}(u, x).P^{c_1, c_2}$ otherwise,
- $(\operatorname{out}(u, M).P)^{c_1, c_2} = \operatorname{in}(c_2, x).\operatorname{out}(u, x).P^{c_1, c_2}$,
- $(!P)^{c_1,c_2} \triangleq !P^{c_1,c_2}$,

a constant

• (if M = N then P else Q)^{$c_1, c_2 = in(c_2, x)$.if x = true then P^{c_1, c_2} else Q^{c_1, c_2} where x is a fresh variable and true is}

Definition (Process $A^{\operatorname{out}(ch,\cdot)}$ [DKR09])

Let A be an extended process. We define the process $A^{\operatorname{out}(ch,\cdot)}$ as $\nu ch.(A|\operatorname{in}(ch,x))$.

- ▲□ → ▲目 → ▲目 → ● ● ●