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Internet of Thing (IoT)
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Increasing Succes of IoT
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Reasons of the Succes of IOT

Technology

I Wireless Communications:
Wifi, 3G, 4G, Bluethooth, Sigfox ...

I Batteries

I CPU

I Sensors

I Price

Usage

I Monitoring services

I Hyperconnectivity

I Avaibility
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Wireless communications ⇒ Wormhole Attack
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Real attacks on IoT from 2007 ...
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Insecurity of IoT by HP in 2015

POODLE: Padding Oracle On Downgraded Legacy Encryption
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TOP 10: Vulnerabilities of IoT

1. Insecure Web Interface (weak passwords, account protection)

2. Unsufficient Authtneitcation/Authorization

3. Insecure Newtork Services (ports open, DoS)

4. Lack of Transport Encryption

5. Privacy Concerns (leak of personal informations)

6. Insecure Cloud interfaces

7. Insecure Mobile Interfaces

8. Insufficient Security Configurability

9. Insecure Software/Firmeware

10. Poor Physical Security

https://www.owasp.org/images/8/8e/Infographic-v1.jpg
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How to Secure IoT

Cryptography:

I Primitives: RSA, Elgamal, AES, DES, SHA-3 ...

I Protocols: Distributed Algorithms

Properties:

I Secrecy,

I Authentication,

I Privacy

I Non Repudiation ...
Intruders:

I Passive, active

I CPA, CCA ...

Designing such secure protocols is difficult
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Is it preserving your privacy?

4096 RSA encryption

Environs 60 températures possibles: 35 ... 41

{35}pk , {35, 1}pk , ..., {41}pk
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Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

{m}k = m ⊕ k

XOR Properties (ACUN)

I (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) Associativity

I x ⊕ y = y ⊕ x Commutativity

I x ⊕ 0 = x Unity

I x ⊕ x = 0 Nilpotency

12 / 136



Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

{m}k = m ⊕ k

XOR Properties (ACUN)

I (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) Associativity

I x ⊕ y = y ⊕ x Commutativity

I x ⊕ 0 = x Unity

I x ⊕ x = 0 Nilpotency

Vernam encryption is a commutative encryption :

{{m}KA
}KI

= (m ⊕ KA)⊕ KI = (m ⊕ KI )⊕ KA = {{m}KI
}KA
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Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption)

{m}k = m ⊕ k

Shamir 3-Pass Protocol

1 A → B : m ⊕ KA

2 B → A : (m ⊕ KA)⊕ KB

3 A → B : m ⊕ KB

Passive attacker :

m ⊕ KA

⊕

m ⊕ KB ⊕ KA

⊕

m ⊕ KB

= m
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Second Example

Needham Schroeder Key Echange 1976

A→ B : {A,NA}Pub(B)

B → A : {NA,NB}Pub(A)

A→ B : {NB}Pub(B)

I Use cryptography

I Small programs

I Distributed
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Cryptography is not sufficient !

Example : Needham Schroeder Key Echange

A→ B : {A,NA}Pub(B)

B → A : {NA,NB}Pub(A)

A→ B : {NB}Pub(B)

Broken 17 years after, by G. Lowe

A→ I : {A,NA}Pub(I )

A← I : {NA,NB}Pub(A)

A→ I : {NB}Pub(I )

I → B : {A,NA}Pub(B)

I ← B : {NA,NB}Pub(A)

I → B : {NB}Pub(B)
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Security Challenges for IoT

Data exchanged should be protected.

Security Properties

I Data Integrity

I Data Confidentiality

I Data Privacy

I Authentication

I Non-repudiation

I Avaibility
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Outline

History of Cryptography

Classical Asymmetric Encryptions

Elliptic Curves

Classical Symetric Encryptions
DES
3-DES
AES

Modes

Hash Functions

Conclusion
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Information hiding

Stéganographie

Cryptography

Transposition

Substitution

Code

Encryption
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Greeks and the Scythale

Transposition

19 / 136



Greeks and the Scythale

Transposition
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Transposition ciphers

I For block length t, let K be the set of permutations on
{1, . . . , t}. For each e ∈ K and m ∈ M

Ee(m) = me(1)me(2) · · ·me(t) .

I The set of all such transformations is called a transposition
cipher.

I To decrypt c = c1c2 · · · ct compute
Dd(c) = cd(1)cd(2) · · · cd(t), where d is inverse permutation.

I Letters unchanged so frequency analysis can be used to reveal
if ciphertext is a transposition. Decrypt by exploiting
frequency analysis for diphthongs, tripthongs, words, etc.
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Romans

Caesar Encryption
Substitution +3

Dyh Fhvdu

Ave Cesar
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Mono-alphabetic substitution ciphers

I Simplest kind of cipher. Idea over 2,000 years old.

I Let K be the set of all permutations on the alphabet A.
Define for each e ∈ K an encryption transformation Ee on
strings m = m1m2 · · ·mn ∈ M as

Ee(m) = e(m1)e(m2) · · · e(mn) = c1c2 · · · cn = c .

I To decrypt c , compute the inverse permutation d = e−1 and

Dd(c) = d(c1)d(c2) · · · d(cn) = m .

I Ee is a simple substitution cipher or a mono-alphabetic
substitution cipher.

22 / 136



Substitution cipher examples

I KHOOR ZRUOG

= HELLO WORLD
Caesar cipher: each plaintext character is replaced by the
character three to the right modulo 26.

I Zl anzr vf Nqnz = My name is Adam
ROT13: shift each letter by 13 places.
Under Unix: tr a-zA-Z n-za-mN-ZA-M.

I 2-25-5 2-25-5 = BYE BYE
Alphanumeric: substitute numbers for letters.

How hard are these to cryptanalyze? Caesar? General?
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Is it secure?

Key spaces are typically huge. 26 letters  26! possible keys.

Frequency analysis

Except for short, atypical texts
From Zanzibar to Zambia and Zaire, ozone zones make zebras run
zany zigzags.
⇒ More sophistication required to mask statistical regularities
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Homophonic substitution ciphers

I To each a ∈ A, associate a set H(a) of strings of t symbols,
where H(a), a ∈ A are pairwise disjoint. A homophonic
substitution cipher replaces each a with a randomly chosen
string from H(a). To decrypt a string c of t symbols, one
must determine an a ∈ A such that c ∈ H(a). The key for the
cipher is the sets H(a).

Example:

A = {a, b}, H(a) = {00, 10}, and H(b) = {01, 11}. The plaintext
ab encrypts to one of 0001, 0011, 1001, 1011.

Rational: makes frequency analysis more difficult.
Cost: data expansion and more work for decryption.
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Polyalphabetic substitution ciphers

I Leon Alberti: conceal distribution using family of mappings.

I A polyalphabetic substitution cipher is a block cipher with
block length t over alphabet A where:
I the key space K consists of all ordered sets of t permutations

over A, (p1, p2, . . . , pt).
I Encryption of m = m1 · · ·mt under key e = (p1, · · · , pt) is

Ee(m) = p1(m1) · · · pt(mt).
I Decryption key for e is d = (p−1

1 , · · · p−1
t ).
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Example: Vigenère ciphers 1553

I Key given by sequence of numbers e = e1, . . . , et , where

pi (a) = (a + ei ) mod n

defining a permutation on an alphabet of size n.

I Example: English (n = 26), with k = 3,7,10

m = THI SCI PHE RIS CER TAI NLY NOT SEC URE

then

Ee(m) = WOS VJS SOO UPC FLB WHS QSI QVD VLM XYO
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One-time pads (Vernam cipher)

I A one-time pad is a cipher defined over {0, 1}. Message
m1 · · ·mn is encrypted by a binary key string k1 · · · kn.

Ek1···kn(m1 · · ·mn) = (m1 ⊕ k1) · · · (mn ⊕ kn)

Dk1···kn(c1 · · · cn) = (c1 ⊕ k1) · · · (cn ⊕ kn)

I Unconditional (information theoretic) security,
if key isn’t reused!
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One-Time Pad (Vernam 1917)

Example:

m = 010111
k = 110010

c = 100101

Problem?

Securely exchanging and synchronizing long keys.
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Kerchoff’s Principle

In 1883, a Dutch linguist Auguste Kerchoff von Nieuwenhof stated
in his book “La Cryptographie Militaire” that:

“the security of a crypto-system must be totally dependent on the
secrecy of the key, not the secrecy of the algorithm.”

Author’s name sometimes spelled Kerckhoff
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Chiffrement : Enigma (Seconde guerre mondiale)

+ =

+ =

+ + . . . + + =
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Shannon’s Principle 1949

Confusion
The purpose of confusion is to make the relation between the key
and the ciphertext as complex as possible.

Ciphers that do not offer much confusion (such as Vigenere cipher)
are susceptible to frequency analysis.

Diffusion
Diffusion spreads the influence of a single plaintext bit over many
ciphertext bits.

The best diffusing component is substitution (homophonic)

Principle

A good cipher design uses Confusion and Diffusion together
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Symmetric Encryption

Encryption Decryption

Clef symétrique Clef symétrique

Examples

I DES

I AES
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Cellphone Communications
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Public Key Encryption

Encryption Decryption

Clef publique

Clef privée

Examples

I RSA : c = me mod n

I ElGamal : c ≡ (g r , hr ·m)
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Comparison

I Size of the key

I Complexity of computation (time, hardware, cost ...)

I Number of different keys ?

I Key distribution

I Signature only possible with asymmetric scheme

36 / 136



Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

DVD 4,7 G.B Blu-Ray 25 GB

Schemes encrypt decrypt encrypt decrypt

RSA 2048(1) 22 min 24 h 115 min 130 h
RSA 1024(1) 21 min 10 h 111 min 53 h

AES CTR(2) 20 sec 20 sec 105 sec 105 sec
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Outline

History of Cryptography

Classical Asymmetric Encryptions

Elliptic Curves

Classical Symetric Encryptions
DES
3-DES
AES

Modes

Hash Functions

Conclusion
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One-way function and Trapdoor

Definition
A function is One-way, if :

I it is easy to compute

I its inverse is hard to compute :

Pr[m
r← {0, 1}∗; y := f (m) : f (A(y , f )) = y ]

is negligible.

Trapdoor:

I Inverse is easy to compute given an additional information (an
inverse key e.g. in RSA).
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Integer Factoring

→ Use of algorithmically hard problems.

Factorization
I p, q 7→ n = p.q easy (quadratic)

I n = p.q 7→ p, q difficult
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RSA

RSA function n = pq, p and q primes.
e: public exponent

I x 7→ xe mod n easy (cubic)

I y = xe 7→ x mod n difficult
x = yd where d = e−1 mod φ(n)

Soundness
Assume n = pq, gcd(e, φ(n)) = 1 and d = e−1 mod φ(n).
cd = mde = m.mkφ(n) mod n
According to the Fermat Little Theorem ∀x ∈ (Z/nZ )∗, xφ(n) = 1

41 / 136



Example RSA

Example

I p = 61 (destroy this after computing E and D)

I q = 53 (destroy this after computing E and D)

I n = pq = 3233 modulus (give this to others)

I e = 17 public exponent (give this to others)

I d = 2753 private exponent (keep this secret!)

Your public key is (e, n) and your private key is d .
encrypt(T ) = (T e) mod n = (T 17) mod 3233
decrypt(C ) = (Cd) mod n(C 2753) mod 3233

I encrypt(123) = 12317 mod 3233
= 337587917446653715596592958817679803 mod 3233
= 855

I decrypt(855) = 8552753 mod 3233
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Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000

Modulus Operations
(bits) (log2)

512 58

1024 80

2048 111

4096 149

8192 156

≈ 260 years

→ Can be used for RSA too.
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ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group
generator g of (Z/pZ )∗ and a ∈ (Z/(p − 1)Z )∗.

Public key: (p, g , h), where h = ga mod p.

Private key: a

Encryption: Bob chooses r ∈R (Z/(p − 1)Z )∗ and computes
(u, v) = (g r ,Mhr )

Decryption: Given (u, v), Alice computes M ≡p
v
ua

Justification: v
ua = Mhr

g ra ≡p M

Remarque: re-usage of the same random r leads to a security flaw:

M1h
r

M2hr
≡p

M1

M2

Practical Inconvenience: Cipher is twice as long as plain text.
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Optimal Asymmetric Encryption Padding (OAEP)

The OAEP cryptosystem (K ,E ,D) obtained from a permutation
f , whose inverse is denoted by g . And two hash functions:

G : {0, 1}k0 → {0, 1}k−k0

H : {0, 1}k−k0 → {0, 1}k0

K (1k): specifies an instance of the function f , and of its inverse g .
The public key pk is therefore f and the private key sk is g .
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OAEP: Encryption

Epk(m, r) = c = f (s, t) with m ∈ {0, 1}n, and r ← {0, 1}k0

s = (m||0k1)⊕ G (r), t = r ⊕ H(s)

m

n − k0 − k1

0 . . . 0

k1

r

k0

G

H

s

n − k0

t

k0 46 / 136



OAEP: Decryption

Dsk(c)

g(c) = (s, t)

r = t ⊕ H(s)

M = s ⊕ G (r)

If [M]k1 = 0k1 , the algorithm returns [M]n , otherwise it returns
“Reject”

I [M]k1 denotes the k1 least significant bits of M

I [M]n denotes the n most significant bits of M
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Others CryptosystemsI Bellare & Rogaway’93:

f (r)||x ⊕ G (r)||H(x ||r)

I Zheng & Seberry’93:

f (r)||G (r)⊕ (x ||H(x))

I OAEP’94 (Bellare & Rogaway):

f (s||r ⊕ H(s))

where s = x0k ⊕ G (r)
I OAEP+’02 (Shoup):

f (s||r ⊕ H(s))

where s = x ⊕ G (r)||H ′(r ||x).
I Fujisaki & Okamoto’99:

E ((x ||r);H(x ||r))

where E is IND-CPA.
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Introduction
y2 = x3 + ax + b

x ∈ R

y ∈ R

y2 = x3 − 2x + 1 over R
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y2 = x3 − 2x + 1 over Z89

E (K ) = {(x , y) such that y2 = x3 + ax + b} plus an extra point
“at infinite”
Weierstrass form if ∆ = −16(4a3 + 27b2) 6= 0 (if K is not of
characteristic 2 or 3).
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Laws

Theorem
I Addition law on E (K )

I Associativity: (P1 + P2) + P3 = P1 + (P2 + P3)
I Commutativity: P1 + P2 = P2 + P1

I Neutral element is ∞: P +∞ = P
I Inverse: Given P on E , there exists P ′ on E with P + P ′ =∞

(usually denoted −P)

I Three aligned points sum to neutral element often denoted
zero
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Laws

•P

•
−P

Inverse element −P

•P
•Q •

•
P + Q

Addition P + Q
“Chord rule”

•P •

•
2P

Doubling P + P
“Tangent rule”

P + R + Q = 0⇒ R = −(P + Q)

R + S + 0 = 0⇒ R = −S
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“Elliptic Discrete Logarithm”

Hard Problem
Finding k, given P and Q = kP. is computationally intractable for
large values of k.
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Cryptosystem: ECDH

Exercice: Give an Elliptic curve of ElGamal.
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Cryptosystem: ECDH

Alice’s key is (dA,QA) where QA = dAG .

DH like Protocol

1. Alice sends QA,G to Bob.

2. Bob computes k = dBQA.

3. Bob sends to Alice QB

4. Alice computes k = dAQB .

The shared key is xk (the x coordinate of the point).

The number calculated by both parties is equal, because
k = dAQB = dAdBG = dBdAG = dBQA = k .
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ECDSA (Digital Signature Algorithm) I

Alice private key dA and a public key QA (where QA = dAG ).

Signature generation algorithm

1. Calculate e = HASH(m), where HASH is a cryptographic
hash function, such as SHA-1.

2. Select a random integer k from [1, n − 1].

3. Calculate r = x1( mod n), where (x1, y1) = kG .
If r = 0, go back to step 2.

4. Calculate s = k−1(e + rdA)( mod n).
If s = 0, go back to step 2.

5. The signature is the pair (r , s).
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ECDSA (Digital Signature Algorithm) II

Signature verification algorithm

1. Verify that r and s are integers in [1, n − 1].
If not, the signature is invalid.

2. Calculate e = HASH(m), where HASH is the same function
used in the signature generation.

3. Calculate w = s−1( mod n).

4. Calculate u1 = ew( mod n) and u2 = rw( mod n).

5. Calculate (x1, y1) = u1G + u2QA.

6. The signature is valid if r = x1( mod n), invalid otherwise.
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ECDSA (Digital Signature Algorithm)

s = k−1(e + rdA)( mod n)

Hence
k = s−1(e + rdA)( mod n) = w(e + rdA) = we +wrdA = u1 + u2dA
since w = s−1, u1 = we and u2 = wr

(x1, y1) = u1G + u2QA

Hence (x1, y1) = u1G + u2dAG = kG
because QA = dAG and k = u1 + u2dA
We conclude that r = x1( mod n) by construction.
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Data Encryption Standard, (call in 1973)

Lucifer designed in 1971 by Horst Feistel at IBM.

I Block cipher, encrypting 64-bit blocks
Uses 56 bit keys
Expressed as 64 bit numbers (8 bits parity checking)

I First cryptographic standard.
I 1977 US federal standard (US Bureau of Standards)
I 1981 ANSI private sector standard

60 / 136



DES — overall form

I 16 rounds Feistel cipher + key-scheduler.

I Key scheduling algorithm derives subkeys Ki

from original key K .

I Initial permutation at start, and inverse
permutation at end.

I fi consists of two permutations and an
s-box substitution.

Li+1 = Ri and Ri+1 = Li ⊕ f (Ri ,Ki )
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DES — overall form

f1

f2

for 16 rounds

f15

f16

IP

L R

FP

L′ R ′
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DES — Subkey generation

First, produce two subkeys K1 and K2:

K1 = P8(LS1(P10(key)))

K2 = P8(LS2(LS1(P10(key))))

where P8, P10, LS1 and LS2 are bit substitution operators.

I P10 : 10 bits to 10 bits
3 5 2 7 4 10 1 9 8 6

I P8 : 10 bits to 8 bits
6 3 7 4 8 5 10 9

I LS1 (”left shift 1 bit” on 5 bit words) : 10 bits to 10 bits
2 3 4 5 1 7 8 9 10 6

I LS2 (”left shift 2 bit” on 5 bit words) : 10 bits to 10 bits
3 4 5 1 2 8 9 10 6 7
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DES — Before round subkey

Each half of the key schedule state is rotated left by a number of
places.

# Rds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Left 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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DES — 1 round

L i−1 R i−1

P−Box Permutation

Left Shift Left Shift

S−Box Substitution

Compression Permutation

Expansion Permutation

RL i i

32 48

28

i−1K

K i

(b1b6, b2b3b4b5), Cj represents the binary value in the row b1b6

and column b2b3b4b5 of the Sj box.
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S-Boxes: S1, S2, S3, S4

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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S-Boxes: S5, S6, S7 and S8

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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Permutation P

58

60

62

64

57

59

61

63

50

52

54

56

49

51

53

55

42

44

46

48

41

43

45

47

34

36

38

40

33

35

37

39

26

28

30

32

25

27

29

31

18

20

22

24

17

19

21

23

10

12

14

16

9

11

13

15

2

4

6

8

1

3

5

7
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Decryption DES

Use inverse sequence key.

I IP(C ) = IP(IP−1(R16||L16)

I L′0 = R16 and R ′0 = L16

L′1 = R ′0 = L16 = R15

R ′1 = L′0 ⊕ f (R ′0,K
′
0)

R ′1 = R16 ⊕ f (L16,K15)

R ′1 = R16 ⊕ f (R15,K15)

R ′1 = L15

Recall Li+1 = Ri and Ri+1 = Li ⊕ f (Ri ,Ki )
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Property of DES

DES exhibits the complementation property, namely that

EK (P) = C ⇔ EK (P) = C

where x is the bitwise complement of x . EK denotes encryption
with key K . Then P and C denote plaintext and ciphertext blocks
respectively.
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Anomalies of DES

I Existence of 6 pairs of semi-weak keys: Ek1(Ek2(x)) = x .
I 0x011F011F010E010E and 0x1F011F010E010E01
I 0x01E001E001F101F1 and 0xE001E001F101F101
I 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
I 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
I 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
I 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1
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Security of DES

I No security proofs or reductions known
I Main attack: exhaustive search

I 7 hours with 1 million dollar computer (in 1993).
I 7 days with $10,000 FPGA-based machine (in 2006).

I Mathematical attacks
I Not know yet.
I But it is possible to reduce key space from 256 to 243 using

(linear) cryptanalysis.
I To break the full 16 rounds, differential cryptanalysis requires

247 chosen plaintexts (Eli Biham and Adi Shamir).
I Linear cryptanalysis needs 243 known plaintexts (Matsui, 1993)
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Triple DES

I Use three stages of encryption instead of two.

I Compatibility is maintained with standard DES (K2 = K1).

I No known practical attack
⇒ brute-force search with 2112 operations.
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Advanced Encryption Standard

I Block cipher, approved for use by US Government in 2002.
Very popular standard, designed by two Belgian
cryptographers.

I Block-size = 128 bits, Key size = 128, 192, or 256 bits.

I Uses various substitutions and transpositions + key
scheduling, in different rounds.

I Algorithm believed secure. Only attacks are based on side
channel analysis, i.e., attacking implementations that
inadvertently leak information about the key.

Key Size Round Number

128 10

192 12

256 14
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AES: High-level cipher algorithm

I KeyExpansion using Rijndael’s key schedule

I Initial Round: AddRoundKey
I Rounds:

1. SubBytes: a non-linear substitution step where each byte is
replaced with another according to a lookup table.

2. ShiftRows: a transposition step where each row of the state is
shifted cyclically a certain number of steps.

3. MixColumns: a mixing operation which operates on the
columns of the state, combining the four bytes in each column

4. AddRoundKey: each byte of the state is combined with the
round key; each round key is derived from the cipher key using
a key schedule.

I Final Round (no MixColumns)

1. SubBytes
2. ShiftRows
3. AddRoundKey
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AES: SubBytes

SubBytes: a non-linear substitution step where each byte is
replaced with another according to a lookup table.
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AES: ShiftRows

ShiftRows: a transposition step where each row of the state is
shifted cyclically a certain number of steps.
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AES: MixColumns

MixColumns: a mixing operation which operates on the columns of
the state, combining the four bytes in each column
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AES: AddRoundKey

AddRoundKey: each byte of the state is combined with the round
key; each round key is derived from the cipher key using a key
schedule.
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Electronic Book Code (ECB)

Each block of the same length is encrypted separately using the
same key K . In this mode, only the block in which the flipped bit
is contained is changed. Other blocks are not affected.
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ECB Encryption Algorithm

algorithm EK (M)
if (|M| mod n 6= 0 or |M| = 0) then return FAIL
Break M into n-bit blocks M[1] . . .M[m]
for i = 1 to m do C [i ] = EK (M[i ])
C = C [1] . . .C [m]
return C
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ECB Encryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

· · · · · · Enc

Pn

k

Cn
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ECB Decryption Algorithm

algorithm DK (C )
if (|C | mod n 6= 0 or |C | = 0) then return FAIL
Break C into n-bit blocks C [1] . . .C [m]
for i = 1 to m do M[i ] = DK (C [i ])
M = M[1] . . .M[m]
return M
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ECB Decryption

Dec

C0

k

P0

Dec

C1

k

P1

Dec

C2

k

P2

· · · · · · Dec

Cn

k

Pn
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Cipher-block chaining (CBC)

If the first block has index 1, the mathematical formula for CBC
encryption is

Ci = EK (Pi ⊕ Ci−1),C0 = IV

while the mathematical formula for CBC decryption is

Pi = DK (Ci )⊕ Ci−1,C0 = IV

CBC has been the most commonly used mode of operation.
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CBC Encryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

IV

· · · · · · Enc

Pn

k

Cn

· · · · · · Enc

Pn

k

Cn
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CBC Decryption

Dec

P0

k

C0

Dec

P1

k

C1

Dec

P2

k

C2

IV

· · · · · · Dec

Pn

k

Cn

· · · · · · Dec

Pn

k

Cn
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The cipher feedback (CFB)

A close relative of CBC:

Ci = EK (Ci−1)⊕ Pi

Pi = EK (Ci−1)⊕ Ci

C0 = IV
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CFB Encryption

Enc

C0

k

P0

Enc

C1

k

P1

Enc

C2

k

P2

IV

· · · · · · Enc

Cn

k

Pn
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CFB Decryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

IV

· · · · · · Enc

Pn

k

Cn
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Output feedback (OFB)

Because of the symmetry of the XOR operation, encryption and
decryption are exactly the same:

Ci = Pi ⊕ Oi

Pi = Ci ⊕ Oi

Oi = EK (Oi−1)

O0 = IV
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OFB encryption

Enc

C0

k

P0

Enc

C1

k

P1

Enc

C2

k

P2

IV

· · · · · · Enc

Cn

k

Pn
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OFB Decryption

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

IV

· · · · · · Enc

Pn

k

Cn
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Counter Mode (CTR)

C0 = IV

Ci = Pi ⊕ Ek(IV + i − 1)

Pi = Ci ⊕ Ek(IV + i − 1)
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GCM Galois/Counter Mode by D. McGrew and J. Viega
Counter0

Enck

Counter1

Enck

Counter2

Enck

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C )
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GCM
GF (2128) est défini par x128 + x7 + x2 + x + 1

Si =



Ai for i = 1, . . . ,m − 1

A∗m ‖ 0128−v for i = m

Ci−m for i = m + 1, . . . ,m + n − 1

C ∗n ‖ 0128−u for i = m + n

len(A) ‖ len(C ) for i = m + n + 1

where len(A) and len(C ) are the 64-bit representations of the bit
lengths of A and C , respectively, v = len(A) mod 128 is the bit
length of the final block of A, u = len(C ) mod 128 is the bit
length of the final block of C.

Xi =
i∑

j=1

Sj ·H i−j+1 =

{
0 for i = 0

(Xi−1 ⊕ Si ) · H for i = 1, . . . ,m + n + 1
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ECB vs Others
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“Classifications” of Hash Functions

Unkeyed Hash function

I Modification Code Detection (MDC)

I Data integrity

I Fingerprints of messages

I Other applications

Keyed Hash function

I Message Authentication Code (MAC)

I Password Verification in uncrypted password-image files.

I Key confirmation or establishment

I Time-stamping

I Others applications
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Hash Functions

A hash function H takes as input a bit-string of any finite length
and returns a corresponding ’digest’ of fixed length.

h : {0, 1}∗ → {0, 1}n

H(Alice) =

Definition (Pre-image resistance (One-way) OWHF)

Given an output y , it is computationally infeasible to compute x
such that

h(x) = y
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Properties of hash functions

2nd Pre-image resistance (weak-collision resistant) CRHF

Given an input x , it is computationally infeasible to compute x ′

such that
h(x ′) = h(x)

Collision resistance (strong-collision resistant)

It is computationally infeasible to compute x and x ′ such that

h(x) = h(x ′)
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Basic construction of hash functions
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Basic construction of hash functions
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Basic construction of hash functions (Merkle-Damg̊ard)

f : {0, 1}m → {0, 1}n

1. Break the message x to hash in blocks of size m − n:

x = x1x2 . . . xt

2. Pad xt with zeros as necessary.

3. Define xt+1 as the binary representation of the bit length of x .

4. Iterate over the blocks:

H0 = 0n

Hi = f (Hi−1||xi )
h(x) = Ht+1
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Basic construction of hash functions

Theorem
If the compression function f is collision resistant, then the
obtained hash function h is collision resistant.
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Hash functions based on (MDC) block ciphers
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MD5 by Ron Rivest in 1991
For each 512-bit block of plaintext

Ai Bi Ci Di

≪ s

Fi

Ai+1 Bi+1 Ci+1 Di+1

Mi

Ki

Ki denotes a 32-bit constant, different for each operation Addition
denotes addition modulo 232.
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MD5 by Ron Rivest in 1991

There are four possible functions F; a different one is used in each
round:

I F (B,C ,D) = (B ∧ C ) ∨ (¬B ∧ D)

I G (B,C ,D) = (B ∧ D) ∨ (C ∧ ¬D)

I H(B,C ,D) = B ⊕ C ⊕ D

I I (B,C ,D) = C ⊕ (B ∨ ¬D)
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MD5 Cryptanalysis
I In 1993, Den Boer and Bosselaers gave a ”pseudo-collision” two

different initialization vectors of compression function which
produce an identical digest.

I In 1996, Dobbertin announced a collision of the compression
function of MD5.

I 17 August 2004, collisions for the full MD5 by Xiaoyun Wang,
Dengguo Feng, Xuejia Lai, and Hongbo Yu.

I On 1 March 2005, Arjen Lenstra, Xiaoyun Wang, and Benne de
Weger demonstrated construction of two X.509 certificates with
different public keys and the same MD5 hash value.

I A few days later, Vlastimil Klima able to construct MD5 collisions
in a few hours on a single notebook computer.

I On 18 March 2006, Klima published an algorithm that can find a
collision within one minute on a single notebook computer, using a
method he calls tunneling.

I On 24 December 2010, Tao Xie and Dengguo Feng announced the
first published single-block (512 bit) MD5 collision.

110 / 136



SHA-1

Ai Bi Ci Di Ei

≪ 5

≪
30

Fi

Ei+1Di+1Ci+1Bi+1Ai+1

Wi

Ki
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Collision for PDF

O R D E M P R O G R E S S
O

E

SHA1(TP/SHA1/a.pdf)=
a5a678701d8b2ab07c96d101b3331fb4992f0980

SHA1(TP/SHA1/b.pdf)=
a5a678701d8b2ab07c96d101b3331fb4992f0980
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List of Hash Functions

Algorithm Output size Internal state size Block size Length size Word size Collision
HAVAL 256/.../128 256 1024 64 32 Yes

MD2 128 384 128 No 8 Almost
MD4 128 128 512 64 32 Yes
MD5 128 128 512 64 32 Yes

PANAMA 256 8736 256 No 32 Yes
RadioGatún Arbitrarily long 58 words 3 words No 1-64 No

RIPEMD 128 128 512 64 32 Yes
RIPEMD 128/256 128/256 512 64 32 No
RIPEMD 160/320 160/320 512 64 32 No

SHA-0 160 160 512 64 32 Yes
SHA-1 160 160 512 64 32 With flaws

SHA-256/224 256/224 256 512 64 32 No
SHA-512/384 512/384 512 1024 128 64 No

Tiger(2) 192/160/128 192 512 64 64 No
WHIRLPOOL 512 512 512 256 8 No
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SHA-3 Zoo
64 Submissions, 54 selected,

1. * BLAKE Jean-Philippe Aumasson

2. Blue Midnight Wish Svein Johan Knapskog

3. CubeHash Daniel J. Bernstein preimage

4. ECHO Henri Gilbert

5. Fugue Charanjit S. Jutla

6. * Grøstl Lars R. Knudsen

7. Hamsi Özgül Küçk̈

8. * JH Hongjun Wu preimage

9. * Keccak The Keccak Team

10. Luffa Dai Watanabe

11. Shabal Jean-François Misarsky

12. SHAvite-3 Orr Dunkelman

13. SIMD Gaëtan Leurent

14. * Skein Bruce Schneier
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SHA-3 = Keccak (sponge + compression)

Authors
I Guido Bertoni (Italy) of STMicroelectronics,

I Joan Daemen (Belgium) of STMicroelectronics,

I Michaël Peeters (Belgium) of NXP Semiconductors, and

I Gilles Van Assche (Belgium) of STMicroelectronics.
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SHA-3 = Keccak

h : {1, 0}∗ → {1, 0}n

I MD5: n = 128 (Ron Rivest, 1992)

I SHA-1: n = 160 (NSA, NIST, 1995)

I SHA-2: n ∈ {224, 256, 384, 512} (NSA, NIST, 2001)

I SHA-3: n is arbitrary (NSA, NIST, 2012)
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SHA-3 = Keccak is a sponge based hash

H(P0|P1| . . . |Pi ) = Z0|Z1| . . . |Zl

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

b = r + c

I r bits of rate

I c bits of capacity (security parameter)
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Inside Keccak

I 7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
I ... from toy over lightweight to high-speed ...
I SHA-3 instance: r = 1088 and c = 512

I permutation width: 1600
I security strength 256: post-quantum sufficient

I Lightweight instance: r = 40 and c = 160
I permutation width: 200
I security strength 80: same as (initially expected from) SHA-1
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SHA-3 = Keccak f Setting
Defined for word of size, w = 2l bits (if l = 6 64-bit words )
State is 5× 5× w array of bits (a[i][j][k])

I state = 5× 5 lanes , each containing 2l bits

I ( 5× 5)-bit slices, 2l of them
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SHA-3 = Keccak

The basic block permutation function consists of 12 + 2× l
iterations of following sub-rounds.

1. step Θ

2. step ρ

3. step π

4. step χ

5. step ι
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Keccak Θ

1. Compute the parity of each of the 5-bit columns

2. ⊕ the sum of a[x-1][][z] and of a[x+1][][z-1] into a[x][y][z].

a[i ][j ][k]⊕ = parity(a[0..4][j − 1][k])⊕ parity(a[0..4][j + 1][k − 1])
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Keccak ρ

Bitwise rotate each of the 25 words by a different rotation.

a[0][0] is not rotated, and for all 0 ≤ t < 24
a[i ][j ][k] = a[i ][j ][k − (t + 1)(t + 2)/2], where(
i
j

)
=

(
3 2
1 0

)t (
0
1

)
.
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Keccak π
Permute the 25 words in a fixed pattern.

a[i ][j ] = a[j ][2i + 3j ]
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Keccak χ

Bitwise combine along rows, using a = a⊕ (¬b&c).

a[i ][j ][k]⊕ = ¬a[i ][j + 1][k]&a[i ][j + 2][k]

This is the only non-linear operation in SHA-3.
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Keccak ι

Exclusive-or a round constant into one word of the state.

I In round n, for 0 ≤ m ≤ l , a[0][0][2m − 1] is exclusive-ORed
with bit m + 7n of a degree-8 LFSR (Linear Feedback Shift
Register) sequence.

This breaks the symmetry that is preserved by the other
sub-rounds.
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Hash Functions

A hash function H takes as input a bit-string and returns a
corresponding ’digest’ of fixed length. Good hash functions are :

I collision-free: H(x) = H(y)⇒ x = y

I non-malleable: xRy ; H(x)RH(y)

H(Alice) = 6= H(Bob)
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Properties of hash functions

Definition (Preimage resistance)

Given an output y , it is computationally infeasible to compute x
such that

h(x) = y

Definition (2nd Preimage resistance)

Given an input x , it is computationally infeasible to compute x ′

such that
h(x ′) = h(x)
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Properties of hash functions

Definition (Collision resistance)

It is computationally infeasible to compute x and x ′ such that

h(x) = h(x ′)
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Properties of hash functions

Alternate terminology:

I pre-image resistant ≡ one-way

I 2nd pre-image resistant ≡ weak collision resistant

I collision resistant ≡ strong collision resistant
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Use of hash functions

Idea: compute a condensed message y from a given message m.
The condensed should be specific to the message.

I Use y in place of m in a trustworthy way.

I ”Did you get m correctly? Here’s y to check.” (file-sharing)

I ”Could you decrypt c correctly?”

I ”I sign y to prove that I wrote m.”

130 / 136



List of Hash Functions

Algorithm Output size Internal state size Block size Length size Word size Collision
HAVAL 256/.../128 256 1024 64 32 Yes

MD2 128 384 128 No 8 Almost
MD4 128 128 512 64 32 Yes
MD5 128 128 512 64 32 Yes

PANAMA 256 8736 256 No 32 Yes
RadioGatún Arbitrarily long 58 words 3 words No 1-64 No

RIPEMD 128 128 512 64 32 Yes
RIPEMD 128/256 128/256 512 64 32 No
RIPEMD 160/320 160/320 512 64 32 No

SHA-0 160 160 512 64 32 Yes
SHA-1 160 160 512 64 32 With flaws

SHA-256/224 256/224 256 512 64 32 No
SHA-512/384 512/384 512 1024 128 64 No

Tiger(2) 192/160/128 192 512 64 64 No
WHIRLPOOL 512 512 512 256 8 No
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SHA-3 Zoo
64 Submissions, 54 selected,

1. * BLAKE by Jean-Philippe Aumasson

2. Blue Midnight Wish by Svein Johan Knapskog

3. CubeHash by Daniel J. Bernstein preimage

4. ECHO byHenri Gilbert

5. Fugue by Charanjit S. Jutla

6. * Grøstl byLars R. Knudsen

7. Hamsi by Özgül Küçk̈

8. * JH by Hongjun Wu preimage

9. * Keccak by The Keccak Team

10. Luffa by Dai Watanabe

11. Shabal by Jean-François Misarsky

12. SHAvite-3 by Orr Dunkelman

13. SIMD by Gaëtan Leurent

14. * Skein by Bruce Schneier
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DMAC (CBC-MAC variant)

Example

c1 := m1;
for i = 2 to n do:

zi := ci−1 ⊕mi

ci := E (zi );
tag := E ′(cn);
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HMAC

Example

z1 := k‖m1;
c1 := H(z1);
for i = 2 to n do:;

zi := ci−1‖mi

ci := H(zi )
z ′ := k ′||cn;
tag := H(z ′);
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5 Things to Bring Home
1. Severals security challenges in IoT

2. Security has to be taken at the design of IoT

3. Designing secure protocols is difficult

4. Tradeoff between security, battery, CPU and price.

5. Use the adpated cryptographic primitives.

Protocol + Properties + Intruder ⇒ Security

136 / 136


	History of Cryptography
	Classical Asymmetric Encryptions
	Elliptic Curves
	Classical Symetric Encryptions
	DES
	3-DES
	AES

	Modes
	ECB
	CBC
	CFB
	OFB
	CTR
	GCM

	Hash Functions
	Conclusion

