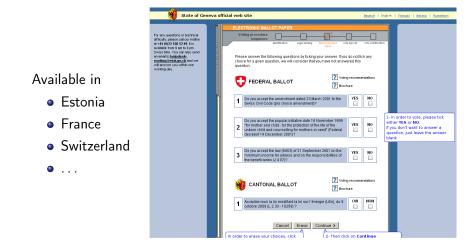
A Formal Taxonomy of Privacy in Voting Protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Université Grenoble 1, CNRS, Verimag, France

First IEEE International Workshop on Security and Forensics in Communication Systems, Ottawa, Canada June 15, 2012


Electronic voting machines...

... are used all over the world

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Internet voting

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

A Formal Taxonomy of Privacy in Voting Protocols

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○

Security Requirements

Fairness

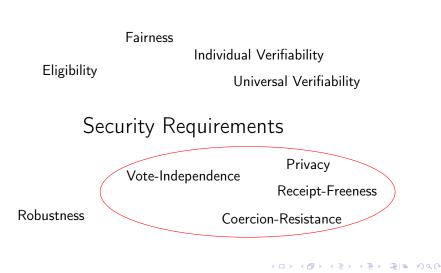
Individual Verifiability

Eligibility

Universal Verifiability

Security Requirements

Vote-Independence


Privacy

Receipt-Freeness

Robustness

Coercion-Resistance

Security Requirements

How to secure electronic voting?

Idea: Use formal methods to find bugs and increase confidence

- Need for formal definitions
- Lots of related work: [?, ?, ?, ?, ?, ?, ?]...

Ideally we need definitions that

- can be applied on any protocol
- are comparable
- include known threats: coercion, vote-buying, vote-copying, forced abstention
- are suitable for automation

2 Definitions: Four Dimensions

- Communication
- Vote-Independence
- Forced Abstention
- Knowledge about honest voters
- 3 Analysis and Case Studies

4 Conclusion

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Plan

2 Definitions: Four Dimensions

- Communication
- Vote-Independence
- Forced Abstention
- Knowledge about honest voters
- 3 Analysis and Case Studies

Conclusion

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Four Dimensions

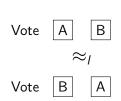
- Communication: Vote-Privacy (VP), Receipt-Freeness (RF), Coercion-Resistance (CR)
- Vote-Independence: Outsider (O), Insider (I)
- Forced Abstention Attacks: Participation Only (PO), Security against Forced-Abstention-Attacks (FA)
- Knowledge about honest voters: Exists Behavior (EB), Any Behavior (AB)

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Plan

2 Definitions: Four Dimensions

Communication


- Vote-Independence
- Forced Abstention
- Knowledge about honest voters
- 3 Analysis and Case Studies

4 Conclusion

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Main idea: Observational equivalence between two situations.

Alice Bob

Communication Vote-Independence Forced Abstention Knowledge about honest voters

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○

The Applied Pi Calculus [?]

Syntax	
P, Q, R :=	processes
0	null process
P Q	parallel composition
! <i>P</i>	replication
ν n.P	restriction ("new")
if $M=N$ then P else Q	conditional
in(u, x).P	message input
out(u, x).P	message output
$\{M/x\}$	active substitution

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Vote-Privacy: The formal definition

Definition (Vote-Privacy)

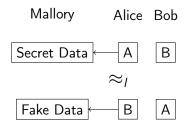
A voting process respects *Vote-Privacy (VP)* if for all votes σ_{v_A} and σ_{v_B} we have

 $VP'\left[V\sigma_{id_{A}}\sigma_{f_{A}}\sigma_{v_{A}}|V\sigma_{id_{B}}\sigma_{f_{B}}\sigma_{v_{B}}\right]\approx_{I} VP'\left[\sigma_{id_{A}}\sigma_{f_{A}}\sigma_{v_{B}}|V\sigma_{id_{B}}\sigma_{f_{B}}\sigma_{v_{A}}\right]$

Communication Vote-Independence Forced Abstention Knowledge about honest voters

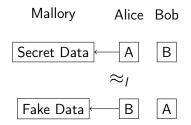
Receipt-Freeness (RF)

Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.



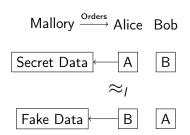
Communication Vote-Independence Forced Abstention Knowledge about honest voters

Receipt-Freeness (RF)


Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Coercion-Resistance (CR)


Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Coercion-Resistance (CR)

Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Plan

2 Definitions: Four Dimensions

Communication

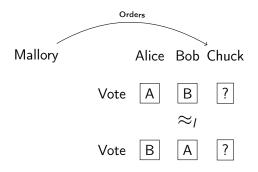
Vote-Independence


- Forced Abstention
- Knowledge about honest voters
- 3 Analysis and Case Studies

4 Conclusion

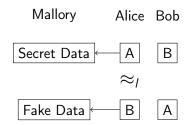
Communication Vote-Independence Forced Abstention Knowledge about honest voters

Insider (I) vs. Outsider (O)


Main idea: Privacy, but with a voter under control of the attacker. If he can relate his vote to e.g. Alice's vote, Mallory can distinguish both sides.

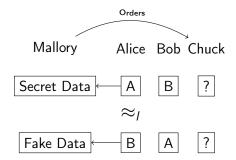
Communication Vote-Independence Forced Abstention Knowledge about honest voters

Insider (I) vs. Outsider (O)


Main idea: Privacy, but with a voter under control of the attacker. If he can relate his vote to e.g. Alice's vote, Mallory can distinguish both sides.

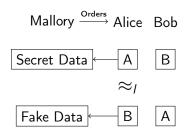
Communication Vote-Independence Forced Abstention Knowledge about honest voters

Can we combine Vote-Independence with Receipt-Freeness?


"Receipt-Freeness with Chuck":

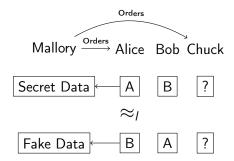
Communication Vote-Independence Forced Abstention Knowledge about honest voters

Can we combine Vote-Independence with Receipt-Freeness?


"Receipt-Freeness with Chuck":

Communication Vote-Independence Forced Abstention Knowledge about honest voters

And with Coercion-Resistance?


"Coercion-Resistance with Chuck":

Communication Vote-Independence Forced Abstention Knowledge about honest voters

And with Coercion-Resistance?

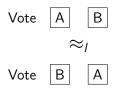
"Coercion-Resistance with Chuck":

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Plan

2 Definitions: Four Dimensions

- Communication
- Vote-Independence
- Forced Abstention
- Knowledge about honest voters
- 3 Analysis and Case Studies

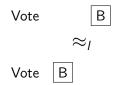

4 Conclusion

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Security against Forced Abstention Attacks (FA) vs. Participation Only (PO)

Alice abstains or votes in turn with Bob:

Alice Bob



Communication Vote-Independence Forced Abstention Knowledge about honest voters

Security against Forced Abstention Attacks (FA) vs. Participation Only (PO)

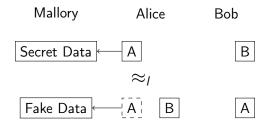
Alice abstains or votes in turn with Bob:

Alice Bob

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Plan

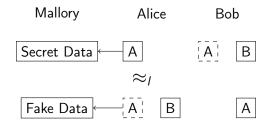
2 Definitions: Four Dimensions


- Communication
- Vote-Independence
- Forced Abstention
- Knowledge about honest voters
- 3 Analysis and Case Studies

Conclusion

Communication Vote-Independence Forced Abstention Knowledge about honest voters

Introducing Fakes: Exists Behavior (EB) vs. Any Behavior (AB)


Some protocols use fake votes [?] to achieve Receipt-Freeness and Coercion-Restistance.

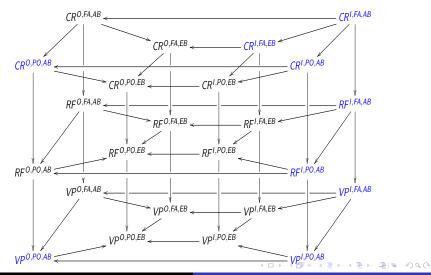
Communication Vote-Independence Forced Abstention Knowledge about honest voters

Introducing Fakes: Exists Behavior (EB) vs. Any Behavior (AB)

Some protocols use fake votes [?] to achieve Receipt-Freeness and Coercion-Restistance.

Plan

2 Definitions: Four Dimensions


- Communication
- Vote-Independence
- Forced Abstention
- Knowledge about honest voters

3 Analysis and Case Studies

4 Conclusion

< □> < □> < □> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relations among the notions

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

A Formal Taxonomy of Privacy in Voting Protocols

Plan

2 Definitions: Four Dimensions

- Communication
- Vote-Independence
- Forced Abstention
- Knowledge about honest voters

3 Analysis and Case Studies

4 Conclusion

Conclusion

- Generalized model
- New modular definition
- Includes known threats
- Hierarchy of notions
- Allows fine-grained comparison of different types of protocols
- Can be automatically verified using existing tools (within certain complexity limits)

Future Work

- Automate and/or automatically verify more of the proofs
- Computational definition

Thank you for your attention!

Questions?

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Formal Taxonomy of Privacy in Voting Protocols

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○

Existing definitions

- [?, ?]: Tailored to a specific protocol
- [?, ?]: Unsuitable for protocol by Juels/Civitas
- [?, ?]: Vote-Independence based on definitions by [?, ?]
- [?]: Coercion Resistance, very fine-grained \rightarrow difficult to compare
- [?]: Privacy as unlinkability, unsuitable for automated verification

• . . .

Case Studies

Protocol	Priv. Notion	Comments
Juels et al. [?]	CR ^{I,FA,EB}	Requires fakes to achieve CR
Bingo Voting [?]	CR ^{I,PO,AB}	Trusted voting machine
- variant	CR ^{I,FA,AB}	Secure against forced abstention
Lee et al. [?]	CR ^{O,PO,AB}	Vulnerable to vote-copying
Okamoto [?]	RF ^{1,PO,AB}	Based on trap-door commitments
- variant	RF ^{1,FA,AB}	Private channel to administrator
Fujioka et al. [?]	VP ^{I,PO,AB}	Based on blind signatures
- variant	VP ^{I,PO,AB}	Permits multiple votes
Simp. Voting Prot.	VP ^{O,PO,AB}	Vulnerable to vote-copying

Modeling a voting protocol

Definition (Voting Protocol)

A voting protocol is a tuple of processes (V, A_1, \ldots, A_m) where V is the process that is executed by the voter, and the A_j 's are the processes executed by the election authorities.

Definition (Voting Process)

A voting process of a voting protocol (V, A_1, \ldots, A_m) is a closed plain process

$$VP = \nu \tilde{n}.(V\sigma_{id_1}\sigma_{f_1}\sigma_{v_1}|\ldots|V\sigma_{id_n}\sigma_{f_n}\sigma_{v_n}|A_1|\ldots|A_l)$$

We define an evaluation context VP' which is like VP, but has a hole instead of two $V\sigma_i$.

Definition (Process P^{ch} [?])

Let P be a process and ch be a channel. We define P^{ch} as follows:

- 0^{ch} $\hat{=}$ 0,
- $(P|Q)^{ch} \stackrel{ch}{=} P^{ch}|Q^{ch}$,
- $(\nu n.P)^{ch} \doteq \nu n.out(ch, n).P^{ch}$ when n is a name of base type,

•
$$(\nu n.P)^{ch} \stackrel{.}{=} \nu n.P^{ch}$$
 otherwise,

- $(in(u, x).P)^{ch} = in(u, x).out(ch, x).P^{ch}$ when x is a variable of base type,
- $(in(u, x).P)^{ch} = in(u, x).P^{ch}$ otherwise,
- $(\operatorname{out}(u, M).P)^{ch} \doteq \operatorname{out}(u, M).P^{ch}$,
- $(!P)^{ch} \triangleq !P^{ch}$,
- (if M = N then P else Q)^{ch} \doteq if M = N then P^{ch} else Q^{ch} .

Definition (Process P^{c_1,c_2} [?])

Let P be a process, c_1 , c_2 channels. We define P^{c_1,c_2} as follows:

- $0^{c_1,c_2} \doteq 0$,
- $(P|Q)^{c_1,c_2} \triangleq P^{c_1,c_2}|Q^{c_1,c_2}$,
- $(\nu n.P)^{c_1,c_2} \triangleq \nu n.out(c_1,n).P^{c_1,c_2}$ if n is a name of base type,

•
$$(\nu n.P)^{c_1,c_2} \doteq \nu n.P^{c_1,c_2}$$
 otherwise

- (in(u, x).P)^{c₁,c₂} = in(u, x).out(c₁, x).P^{c₁,c₂} if x is a variable of base type & x is a fresh variable,
- $(in(u, x).P)^{c_1, c_2} = in(u, x).P^{c_1, c_2}$ otherwise,
- $(out(u, M).P)^{c_1, c_2} = in(c_2, x).out(u, x).P^{c_1, c_2}$,
- $(!P)^{c_1,c_2} \triangleq !P^{c_1,c_2}$,

a constant

• (if M = N then P else Q)^{$c_1, c_2 = in(c_2, x)$.if x = true then P^{c_1, c_2} else Q^{c_1, c_2} where x is a fresh variable and true is}

Definition (Process $A^{\text{out}(ch,\cdot)}$ [?])

Let A be an extended process. We define the process $A^{\operatorname{out}(ch,\cdot)}$ as $\nu ch.(A|\operatorname{in}(ch,x))$.

◆母 ▶ ◆ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● ● ● ●

Definition (Equivalence in a Frame)

Two terms M and N are equal in the frame ϕ , written $(M = N)\phi$, if and only if $\phi \equiv \nu \tilde{n}.\sigma$, $M\sigma = N\sigma$, and $\{\tilde{n}\} \cap (fn(M) \cup fn(N)) = \emptyset$ for some names \tilde{n} and some substitution σ .

Definition (Static Equivalence (\approx_s))

Two closed frames ϕ and ψ are statically equivalent, written $\phi \approx_s \psi$, when dom $(\phi) =$ dom (ψ) and when for all terms M and N $(M = N)\phi$ if and only if $(M = N)\psi$. Two extended processes Aand B are statically equivalent $(A \approx_s B)$ if their frames are statically equivalent.

Definition (Labelled Bisimilarity (\approx_l))

Labelled bisimilarity is the largest symmetric relation \mathcal{R} on closed extended processes, such that $A \mathcal{R} B$ implies

A ≈_s B,
if A → A', then B → B' and A' R B' for some B',
if A → A' and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = Ø, then B →^{*} → * B' and A' R B' for some B'.