Pascal Lafourcade (with Stéphanie Delaune, Denis Lugiez & Ralf Treinen)

Venise Italy****

LSV, CNRS UMR 8643, ENS de Cachan & INRIA Futurs LIF, Université Aix-Marseille 1 & CNRS UMR 6166

ICALP 10th July 2006

Symbolic approach

- Intruder controls the network
- Messages represented by terms
 - $\{m\}_k$
 - $\langle m_1, m_2 \rangle$
- Number of sessions bounded
- Perfect encryption hypothesis

Symbolic approach

- Intruder controls the network
- Messages represented by terms
 - $\{m\}_k$
 - $\langle m_1, m_2 \rangle$
- Number of sessions bounded
- Perfect encryption hypothesis

Advantages

- Automatic verification
- Useful abstraction

Introduction

Symbolic approach

- Intruder controls the network
- Messages represented by terms
 - $\{m\}_k$
 - $\langle m_1, m_2 \rangle$
- Number of sessions bounded
- Perfect encryption hypothesis + algebraic properties

Advantages

- Automatic verification
- Useful abstraction

Example: Key Exchange TMN Protocol (simplified)

TMN Protocol: Distribution of a fresh symmetric key

[Tatebayashi, Matsuzuki, Newmann 89]:

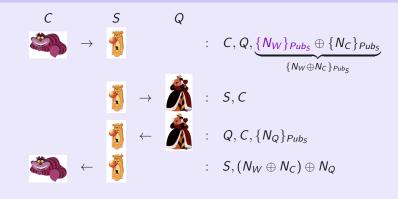
Alice retrieves N_W :

Using $x \oplus x = 0$ and $x \oplus 0 = x$, knowing N_A

Example: Key Exchange TMN Protocol (simplified)

Attack on TMN Protocol [Simmons 89]

With homomorphic encryption $\{a\}_k \oplus \{b\}_k = \{a \oplus b\}_k$

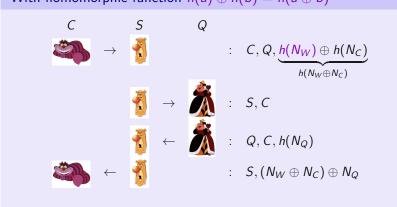


Cheshire Learns: N_W Using $x \oplus x = 0$ and $x \oplus 0 = x$, knowing N_C and N_Q

Example: Key Exchange TMN Protocol (simplified)

Attack on TMN Protocol [Simmons 89]

With homomorphic function $h(a) \oplus h(b) = h(a \oplus b)$



Cheshire Learns: N_W

Using $x \oplus x = 0$ and $x \oplus 0 = x$, knowing N_C and N_Q

Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive-Or State of the Art Intruder Capabilities

Deduction System: Extended Dolev-Yao

(A)
$$\frac{u \in T}{T \vdash u}$$
 (UL) $\frac{T \vdash \langle u, v \rangle}{T \vdash u}$

(P)
$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle}$$
 (UR) $\frac{T \vdash \langle u, v \rangle}{T \vdash v}$

(C)
$$\frac{T \vdash u \quad T \vdash v}{T \vdash \{u\}_v}$$
 (D) $\frac{T \vdash \{u\}_v \quad T \vdash v}{T \vdash u}$

$$(M_E) \quad \frac{T \vdash u_1 \quad \cdots \quad T \vdash u_n}{T \vdash C[u_1, \dots, u_n] \downarrow} \quad C \text{ is an context made with } \{h, \oplus\}$$

Example for M_E

$$\mathsf{T} \vdash \mathsf{a} \oplus \mathsf{h}(\mathsf{a}) \quad \mathsf{T} \vdash \mathsf{b}\mathsf{T} \vdash \mathsf{a} \oplus \mathsf{h}^2(\mathsf{a}) \oplus \mathsf{h}(\mathsf{b})$$

 $C[u_1, u_2] = u_1 \oplus \mathsf{h}(u_1) \oplus \mathsf{h}(u_2)$

Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive-Or State of the Art Intruder Deduction Problem

Passive Intruder with homomorphisme and Xor

Theorem of Locality [LLT'05,Del'05]

A minimal proof P of $T \vdash u$ contains only computable terms.

Complexity of Intruder Deduction [Del'05]

 $T \vdash u$ (for T, u ground) is decidable in PTIME

The proof uses

- McAllester's locality theorem
- linear equation solving over $\mathbb{Z}/2\mathbb{Z}[h]$

Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive-Or State of the Art Security Problem

Some Results to Active Intruder

XOR : ACUN [Rusinowitch & al 03] [Comon-Shmatikov 03]

- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $x \oplus y = y \oplus x$ Commutativity
- $x \oplus 0 = x$ Unity
- $x \oplus x = 0$ Nilpotency

Abelian Group and Exponential : AG [Millen-Shmatikov 05]

- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $x \oplus y = y \oplus x$ Commutativity
- $x \oplus 0 = x$ Unity
- $x \oplus I(x) = 0$ Inversion

Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive-Or State of the Art Security Problem

Our contribution

Homomorphism over XOR : ACUNh

- $h(x \oplus y) = h(x) \oplus h(y)$
- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $x \oplus y = y \oplus x$ Commutativity
- $x \oplus 0 = x$ Unity
- $x \oplus x = 0$ Nilpotency

Theorem

The security problem with a bounded number of sessions is decidable with ACUNh.

Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive-Or State of the Art Security Problem

Outline

Motivation

Introduction

Example: Key Exchange TMN Protocol (simplified)

2 State of the Art

Intruder Capabilities Intruder Deduction Problem Security Problem

3 Modelisation of Protocols (Active Attacker)

Constraints System Well-defined Constraints System

4 From Well-defined Constraints System to System of Equations

5 Conclusion

Symbolic Protocol Analysis in Presence of a Homomorphism Operator and Exclusive-Or Modelisation of Protocols (Active Attacker)

Outline

Motivation

- Introduction
- Example: Key Exchange TMN Protocol (simplified)

2 State of the Art

Intruder Capabilities Intruder Deduction Problem Security Problem

3 Modelisation of Protocols (Active Attacker)

Constraints System Well-defined Constraints System

④ From Well-defined Constraints System to System of Equations

6 Conclusion

Modelisation of a protocol in a system of constraint

The Intruder is the network, he can listen, built, send and replay messages.

$$P := \begin{cases} \operatorname{recv}(u_1); \operatorname{send}(v_1) \\ \operatorname{recv}(u_2); \operatorname{send}(v_2) \\ \vdots \\ \operatorname{recv}(u_n); \operatorname{send}(v_n) \end{cases}$$

 T_0 Intruder initial knowledge.

$$\mathcal{L} := \left\{ egin{array}{cccc} T_0 & \Vdash & u_1 \ T_0, v_1 & \Vdash & u_2 \ & & \vdots \ & & & \vdots \ T_0, v_1, \dots, v_n & \Vdash & s \end{array}
ight.$$

If this system has a solution σ then the secret s can be obtain by the Intruder.

System of Constraints Well-formed [Millen-Shmatikov 03]

 $C = \{T_i \Vdash u_i\}_{1 \le i \le k}$ is *well-formed* if:

• monotonicity: The knowledge of the intruder is increasing.

$$T_1 \subseteq T_2 \subseteq \ldots \subseteq T_k$$

• origination: Variables appear first on right side:

 $x \in vars(T_i) \Rightarrow \exists j < i \text{ such that } : x \in vars(u_j)$

System of Constraints Well-defined [Millen-Shmatikov 03]

C is *well-defined* if for every substitution θ , $C\theta$ is well-formed.

System of Constraints Well-formed [Millen-Shmatikov 03]

 $C = \{T_i \Vdash u_i\}_{1 \le i \le k}$ is *well-formed* if:

• monotonicity: The knowledge of the intruder is increasing.

$$T_1 \subseteq T_2 \subseteq \ldots \subseteq T_k$$

• origination: Variables appear first on right side:

$$x \in vars(T_i) \Rightarrow \exists j < i \text{ such that } : x \in vars(u_j)$$

System of Constraints Well-defined [Millen-Shmatikov 03]

C is *well-defined* if for every substitution θ , $C\theta$ is well-formed.

Well-Definedness: Example

$$\mathcal{C} := \begin{cases} T_0 & \Vdash & X \oplus Y \\ T_0, X & \Vdash & c \end{cases}$$

Well-Definedness: Example

$$\mathcal{C} := \begin{cases} T_0 & \Vdash & X \oplus Y \\ T_0, X & \Vdash & c \end{cases}$$

Monotonicity OK !

Well-Definedness: Example

$$\mathcal{C} := \begin{cases} T_0 & \Vdash & X \oplus Y \\ T_0, X & \Vdash & c \end{cases}$$

Monotonicity OK !

Origination OK !

Well-Definedness: Example

$$\mathcal{C} := \begin{cases} T_0 & \Vdash & X \oplus Y \\ T_0, X & \Vdash & c \end{cases}$$

Monotonicity OK !

Origination OK !

But NOT well-defined !

 $\theta = \{Y \rightarrow X\}$ and $C\theta$ is not well-formed:

$$\mathcal{C} heta$$
 := $\left\{ egin{array}{ccc} T_0 & ert & 0 \ T_0, X & ert & c \end{array}
ight.$

Outline

1 Motivation

- Introduction
- Example: Key Exchange TMN Protocol (simplified)

2 State of the Art

Intruder Capabilities Intruder Deduction Problem Security Problem

3 Modelisation of Protocols (Active Attacker) Constraints System

Well-defined Constraints System

4 From Well-defined Constraints System to System of Equations

5 Conclusion

```
Outline of our Procedure
```

Let \mathcal{C} a W-D constraints system

- **1** From W-D \Vdash to W-D \Vdash_1
- **2** From W-D \Vdash_1 to W-D \Vdash_{M_E}
- **3** From W-D \Vdash_{M_F} to W-D equations systems
- Ø Solve these W-D equations systems

From W-D \Vdash to W-D \Vdash_1

Example

$$\mathcal{C} \quad := \quad \left\{ \begin{array}{ccc} T & \Vdash & \langle X, h(Y) \rangle \\ T, X & \Vdash & \{Z\}_K \end{array} \right.$$

Guess set of subterms of C and an order on these subterms $S_0 = \{X, h(Y), \langle X, h(Y) \rangle\}$

$$\mathcal{C}' := \begin{cases} T & \Vdash_{1} & X \\ T, X & \Vdash_{1} & h(Y) \\ T, X, h(Y) & \Vdash_{1} & \langle X, h(Y) \rangle \\ T, S_{0} & \Vdash_{1} & Z \\ T, S_{0}, Z & \Vdash_{1} & K \\ T, S_{0}, Z, K & \Vdash_{1} & \{Z\}_{K} \end{cases}$$

From W-D \Vdash to W-D \Vdash_1

Example

$$\mathcal{C} \quad := \quad \left\{ \begin{array}{ccc} T & \Vdash & \langle X, h(Y) \rangle \\ T, X & \Vdash & \{Z\}_{K} \end{array} \right.$$

Guess set of subterms of C and an order on these subterms $S_0 = \{X, h(Y), \langle X, h(Y) \rangle\}$

$$' := \begin{cases} T & \Vdash_{1} X \\ T, X & \Vdash_{1} h(Y) \\ T, X, h(Y) & \Vdash_{1} \langle X, h(Y) \rangle \\ T, S_{0} & \Vdash_{1} Z \\ T, S_{0}, Z & \Vdash_{1} K \\ T, S_{0}, Z, K & \Vdash_{1} \{Z\}_{K} \end{cases}$$

```
From W-D \Vdash_1 to W-D \Vdash_{M_E}
```

Guess equalities between subterms of C.

(consider all the possible applications of rules (C) (P) (D) (UR) (UL))

Example

$$\mathcal{C} \hspace{0.1 cm} := \hspace{0.1 cm} \left\{ egin{array}{ccc} \langle a,b
angle & ert _1 & \langle X,b
angle \ \langle a,b
angle, X\oplus b & ert _1 & Y\oplus \langle a,b
angle a \end{array}
ight.$$

Guess { $\langle X, b \rangle = \langle a, b \rangle$ }, compute ACUNh m.g.u. $\theta : \{X \mapsto a\}$ [UNIF'06]

$$\mathcal{C} heta := egin{cases} \langle a,b
angle & ert egin{array}{cc} ert eta & ert
angle \ \langle a,b
angle & ert eta
angle \ \langle a,b
angle, a\oplus b & ert eta \ M_E & Y\oplus \langle a,b
angle \end{pmatrix}$$

From W-D \Vdash_{M_E} to W-D equations system (I)

Idea

Abstraction ρ replaces all factors by new constant symbols to get a constraint system on signature: \oplus , *h*, and constant symbols.

Example:

$$\mathcal{C} := \begin{cases} a, b & \Vdash_{M_E} & \langle X, b \rangle \\ a, b, X & \Vdash_{M_E} & X \oplus b \end{cases}$$

 ${\mathcal C}$ is well-defined, but not ${\mathcal C}\rho$

$$\mathcal{C}\rho := \begin{cases} a,b & \Vdash_{M_E} & c_1 \\ a,b,X & \Vdash_{M_E} & X \oplus b \end{cases}$$

From W-D \Vdash_{M_E} to W-D equations system (II)

Lemma

Restriction to systems where abstraction preserves Well-Definedness is sufficent for completeness.

Example:

$$\mathcal{C} := \begin{cases} a, b & \Vdash_{M_E} X \\ a, b, \langle X, b \rangle & \Vdash_{M_E} \langle X, b \rangle \oplus Z \end{cases}$$

 \mathcal{C} and $\mathcal{C}\rho$ are well-defined.

$$\mathcal{C}\rho := \begin{cases} a,b & \Vdash_{M_E} X \\ a,b,c_1 & \Vdash_{M_E} c_1 \oplus Z \end{cases}$$

Constraint M_E to Quadratic Equations System

System C of Constraints M_E

$$\mathcal{C} := egin{array}{ccc} t_1, t_2 & ert_{\mathsf{M}_\mathsf{E}} & h(X_1) \oplus X_2 \ t_1, t_2, X_1 \oplus X_2 & ert_{\mathsf{M}_\mathsf{E}} & X_1 \oplus a \ t_1, t_2, X_1 \oplus X_2, X_1 & ert_{\mathsf{M}_\mathsf{E}} & X_2 \oplus b \end{array}$$

System of equations ${\boldsymbol{\mathcal E}}$

$$\mathcal{E} := \begin{cases} z[1,1]t_1 \oplus z[1,2]t_2 &= h(X_1) \oplus X_2 \\ z[2,1]t_1 \oplus z[2,2]t_2 \oplus z[2,3](X_1 \oplus X_2) &= X_1 \oplus a \\ z[3,1]t_1 \oplus z[3,2]t_2 \oplus z[3,3](X_1 \oplus X_2) \oplus z[3,4]X_1 &= X_2 \oplus b \end{cases}$$

Solve Quadratic system of equation is in general undecidable.

Constraint M_E to Quadratic Equations System

System C of Constraints M_E

$$\mathcal{C} := egin{array}{c} t_1, t_2 & \Vdash_{\mathsf{M}_\mathsf{E}} & h(X_1) \oplus X_2 \ t_1, t_2, X_1 \oplus X_2 & \Vdash_{\mathsf{M}_\mathsf{E}} & X_1 \oplus a \ t_1, t_2, X_1 \oplus X_2, X_1 & \Vdash_{\mathsf{M}_\mathsf{E}} & X_2 \oplus b \end{array}$$

System of equations ${\boldsymbol{\mathcal E}}$

$$\mathcal{E} := \begin{cases} z[1,1]t_1 \oplus z[1,2]t_2 &= h(X_1) \oplus X_2 \\ z[2,1]t_1 \oplus z[2,2]t_2 \oplus z[2,3](X_1 \oplus X_2) &= X_1 \oplus a \\ z[3,1]t_1 \oplus z[3,2]t_2 \oplus z[3,3](X_1 \oplus X_2) \oplus z[3,4]X_1 &= X_2 \oplus b \end{cases}$$

Solve Quadratic system of equation is in general undecidable.

We propose a procedure to solve Well-defined Quadratic system of equation.

Outline

1 Motivation

- Introduction
- Example: Key Exchange TMN Protocol (simplified)

2 State of the Art

Intruder Capabilities Intruder Deduction Problem Security Problem

Modelisation of Protocols (Active Attacker) Constraints System

Well-defined Constraints System

4 From Well-defined Constraints System to System of Equations

6 Conclusion

Our Procedure

Theorem

The security problem with a bounded number of sessions is decidable with ACUNh.

Given: Well-defined protocol.

- **1** From W-D \Vdash to W-D \Vdash_1
- **2** From W-D \Vdash_1 to W-D \Vdash_{M_E}
- **3** From W-D \Vdash_{M_E} to W-D equations systems
- **4** Solve these W-D equations systems

Results & Future Works

	Complexity		
	Unification	Intruder	Security
	Problem	Deduction	Problem
		Problem	
ACUN	NP-complete	P-TIME	NP-Complete
	[Guo,Narendran98]	[CS03]	[CKRT03]
AG	Decidable	P-TIME	Decidable
	[Lankford84]	[CS03]	[MS05]
ACh	Undecidable	NP-Complete	Undecidable
	[Narendran96]	[LLT'05]	
ACUNh	NP-complete	P-TIME	Decidable
	[Guo,Narendran98]	[Del06]	
AGh	Decidable	P-TIME	Undecidable
	[Baader93]	[Del06]	[Del06]

Future works : ${x \oplus y}_k = {x}_k \oplus {y}_k$

Thank you for your attention

Questions ?