Pascal LAFOURCADE, Vanessa Terrade & Sylvain Vigier

Université Joseph Fourier, VERIMAG

6th September 2009 Eindhoven

Workshop on Formal Aspects in Security and Trust

Basic Example :

Basic Example :

Basic Example :

1 A \rightarrow B : $\{m\}_{K_A}$

$$
\begin{array}{ccccccc}\n1 & A & \rightarrow & B & : & \{m\}_{K_A} \\
2 & B & \rightarrow & A & : & \{\{m\}_{K_A}\}_{K_B}\n\end{array}
$$

1 A
$$
\rightarrow
$$
 B : {m}_{K_A}

1
$$
A \rightarrow B
$$
 : $\{m\}_{K_A}$ Commutative
\n2 $B \rightarrow A$: $\{\{m\}_{K_A}\}_{K_B} = \{\{m\}_{K_B}\}_{K_A}$ Encryption
\n3 $A \rightarrow B$: $\{m\}_{K_B}$

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

 ${m_k = m \oplus k}$

XOR Properties (ACUN)

- ► $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $\triangleright x \oplus y = y \oplus x$ Commutativity
- $\triangleright x \oplus 0 = x$ Unity
- \triangleright $x \oplus x = 0$ Nilpotency

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption) ${m_k = m \oplus k}$

XOR Properties (ACUN)

- ► $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ Associativity
- $\triangleright x \oplus y = y \oplus x$ Commutativity
- $\triangleright x \oplus 0 = x$ Unity
- \triangleright $x \oplus x = 0$ Nilpotency

Vernam encryption is a commutative encryption :

 $\{\{m\}_{K_A}\}_{K_I} = (m \oplus K_A) \oplus K_I = (m \oplus K_I) \oplus K_A = \{\{m\}_{K_I}\}_{K_A}$

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption) ${m}_k = m \oplus k$

Shamir 3-Pass Protocol

$$
\begin{array}{c|cccc}\n\downarrow & \circ \\
\downarrow & \circ \\
2 & B & \rightarrow & A: \\
3 & A & \rightarrow & B: \\
m \oplus K_A) \oplus K_B\n\end{array}
$$

Passive attacker :

 $m \oplus K_A$ $m \oplus K_B \oplus K_A$ $m \oplus K_B$

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption) ${m}_k = m \oplus k$

Shamir 3-Pass Protocol

$$
\begin{array}{c|cccc}\n\downarrow \circledast \\
2 & B & \rightarrow & A: & (m \oplus K_A) \oplus K_B \\
3 & A & \rightarrow & B: & m \oplus K_B\n\end{array}
$$

Passive attacker :

 $m \oplus K_A \oplus m \oplus K_B \oplus K_A \oplus m \oplus K_B = m$

Necessity of Tools

- ▶ Protocols are small recipes.
- \triangleright Non trivial to design and understand.
- \blacktriangleright The number and size of new protocols.
- \triangleright Out-pacing human ability to rigourously analyze them.

GOAL : A tool is finding flaws or establishing their correctness.

- \triangleright completely automated,
- \blacktriangleright robust,
- \blacktriangleright expressive,
- \blacktriangleright and easily usable.

Existing Tools: AVISPA, Scyther, Proverif, Hermes, Casper/FDR, Murphi, NRL ...

Comparison of Tools Dealing with Algebraic Properties ?

State of the art

▶ Compariosn of NRL qnd Casper. C. Meadows "Analyzing the needham-schroeder public-key protocol: A comparison of two approaches". In ESORICS 96

- ▶ Time performence comparison of AVISPA Tools L. Vigano "Automated Security Protocol Analysis With the AVISPA Tool" ENTCS 2006.
- ▶ Usability comparison between AVISPA and HERMES M. Hussain and D. Seret "A Comparative study of Security Protocols Validation Tools: HERMES vs. AVISPA". ICACT'06.
- \triangleright Comparison on the ability to find some attacks. M. Cheminod, I. C. Bertolotti, L. Durante, R. Sisto, and A. Valenzano. "Experimental comparison of automatic tools for the formal analysis of cryptographic protocols". DepCoSRELCOMEX 2007.

▶ Time efficiency comparison of: AVISPA, Proverif, Scyther, Casper/FDR Comparing State Spaces in Automatic Security Protocol Verification" C. Cremers and P. Lafourcade. (AVoCS'07) 6/40

1000 Casper/FDR \ldots . Δ CL Atse \cdots $\mathbf{\mathbf{K}}$ \cdots OFMC ProVerif Sat MC Scyther 100 time (s) 10 \blacksquare 0.1 $\overline{2}$ $\overline{3}$ 5 6 $\overline{7}$ 4 number of runs

Outline

[Tools](#page-16-0)

[Protocol](#page-18-0) [using Exclusive-Or](#page-20-0) [using Diffie-Hellman](#page-36-0)

[Conclusion & Perspective](#page-41-0)

Outline

[Tools](#page-16-0)

[Protocol](#page-18-0) [using Exclusive-Or](#page-20-0) [using Diffie-Hellman](#page-36-0)

[Conclusion & Perspective](#page-41-0)

Tools Dealing with Exclusive-Or and Diffie-Hellman

▶ Avispa:

- ▶ OFMC: On-the-fly Model-Checker employs several symbolic techniques to explore the state space in a demand-driven way.
- ► CL-Atse: Constraint-Logic-based Attack Searcher applies constraint solving with simplification heuristics and redundancy elimination techniques.
- ▶ Proverif: Analyses unbounded number of session using over-approximation with Horn Clauses.
	- ▶ XOR-ProVerif and DH-ProVerif: are two tools developed by Kuesters et al for analyzing cryptographic protocols with Exclusive-Or and Diffie-Hellman properties, using ProVerif

PC DELL E4500 Intel dual Core 2.2 Ghz with 2 GB of RAM.

Outline

[Tools](#page-16-0)

[Protocol](#page-18-0) [using Exclusive-Or](#page-20-0) [using Diffie-Hellman](#page-36-0)

[Conclusion & Perspective](#page-41-0)

Notations:

- \blacktriangleright A, B, S...: principals
- \blacktriangleright messages M_i : messages
- \blacktriangleright N_A , N_B : nonces
- \blacktriangleright PK_A, PK_B; public keys
- \triangleright K_{AB} : symmetric keys
- \blacktriangleright a prime number by P,
- \blacktriangleright a primitive root by G.
- Exclusive-Or is denoted by $A \oplus B$
- ighthrow the exponentiation of G by the nonce N_A is denoted by G^{N_A} .

We use protocols from " Survey of Algebraic Properties Used in Cryptographic Protocols", V. Cortier, S. Delaune and P. Lafourcade.

Wired Equivalent Privacy Protocol: WEP

A,B: principals $X:$ any principal (B or the intruder) M_1, M_2 : messages K_{AB} : symmetric key RC4: function modeling the RC4 algorithm (message,symmetric $key \rightarrow message$ v: initial vector used with RC4 (a constant) C: intregrity checksum (message \rightarrow message)

0. A \longrightarrow X : v, $([M_1, C(M_1)] \oplus RC4(v, K_{AX}))$ 1. A \rightarrow B : v, $([M_2, C(M_2)] \oplus RC4(v, K_{AB}))$

Protocol

using Exclusive-Or

WEP

Survey attack

- \triangleright OFMC 0.01 s
- \triangleright CL-Atse less than 0.01 s
- ▶ XOR-ProVerif less than 1 s

Same time for corrected version.

Protocol

using Exclusive-Or

M. Tatebayashi, N. Matsuzaki, and D.B Newman (1989)

 $A, B, S:$ principals K_A, K_B : fresh symmetric keys PK_S : public key of the server

1. $A \rightarrow S$: $B, \{K_A\}_{PK_S}$ 2. $S \rightarrow B : A$ 3. B \longrightarrow S : A, $\{K_B\}_{PK_S}$ 4. $S \longrightarrow A : B, K_B \oplus K_A$

Protocol

using Exclusive-Or

TMN

UNSAFE, new attack

1. $A \rightarrow S$: $B, \{K_A\}_{PK_S}$ 2. $S \longrightarrow I : A$ 3. $I(B) \longrightarrow S$: $A, \{K_I\}_{PKs}$ 4. $S \rightarrow I$: $B,K_I \oplus K_A$ Hence *I* deduces K_A . but not the survey attack based on ${X}_{PK_S} * {Y}_{PK_S} = {X * Y}_{PK_S}.$

- ▶ OFMC less one second
- ► CL-Atse less one second
- ▶ XOR-ProVerif: less one second

Protocol

using Exclusive-Or

H-T Liaw, W-S Juang and C-K Lin

- $A \cdot$ the auctioneer
- $B \cdot$ the bidder
- T : the third party
- $K :$ the bank
- d : the auctioneer's public key
- t : the third party's public key
- e : the bank's public key
- c : the bidder's public key

 $1/pk$: the corresponding private key to the public key pk.

- B_{info} :bidder's information.
- r : bidder's random number.

 w, x, y, z : third party's random number.

 B_{id} : bidder's specific number.

Protocol

using Exclusive-Or

H-T Liaw, W-S Juang and C-K Lin

1. A \longrightarrow everybody : {Auction's product information, list of recognized third parties} $^{1/d}[M_1]$ 2. $\mathsf{B}\longrightarrow \mathsf{T}$: $\{ \mathsf{B}_{\mathsf{info}}, \mathsf{c}, \mathsf{r}, \mathsf{Auction}$ product information $\}^t$ 3. T \longrightarrow Web : $M_1, H(r), H(w), H(x), H(y), H(z)$ 4. T \longrightarrow B : {Auction's product information, r, B_{id} }^c 5. $\textsf{T}\longrightarrow \textsf{K}$: $\{M_1,B_{\mathit{id}},$ payment, deposit, $\textsf{y}\}^{\textsf{e}}$ 6. K \longrightarrow B : $\{M_1, B_{id},$ deposit deducting certification, y $\}^d$ 7. $B \longrightarrow T$: $\{M_1, B_{id},$ deposit deducting certification, price, y, r}[†] 8. T \longrightarrow B : { M_1, B_{id} , order, price, r}^c 9. T \longrightarrow A : $\{M_1,$ order, maximum price offered, $z\}^d$ $10\text{ A} \longrightarrow \text{Web}$ {Auction's product information, selling price, order} $^{1/d}$ [M₂], H(M₂, order, 11. T \longrightarrow K : { $M_2, B_{id},$ price, $x, z \oplus w$, paid}^e 12. K \longrightarrow A : { $M_2, B_{id},$ price, $z \oplus w$, paid}^d 13. A \longrightarrow B : { $M_2, B_{id},$ price, paid, product}^d 18 / 40

E-auction

SAFE

- \triangleright OFMC less than 1 s
- \blacktriangleright CL-Atse less than 1 s
- ▶ XOR-ProVerif less than 1 s

Protocol

using Exclusive-Or

J. Bull (1997)

```
X_A: h([A, B, N_A], K_{AS}), [A, B, N<sub>A</sub>]
X_B: h([B, C, N<sub>B</sub>, X<sub>A</sub>], K<sub>BS</sub>), [B, C, N<sub>B</sub>, X<sub>A</sub>]
X_C: h([C, S, N_C, X_B], K_{CS}), [C, S, N_C, X_B]1. A \longrightarrow B : X_A2. B \longrightarrow C : X_B3. C \rightarrow S : X_C4.5 \rightarrow CA, B, K_{AB} \oplus h(N_A, K_{AS}), \{A, B, N_A\}_{K_{AB}}, B, A, K_{AB} \oplush(N_B, K_{BS}), \{B, A, N_B\}_{K_{AB}}, B, C, K_{BC} \oplush(N_B, K_{BS}), \{B, C, N_B\}_{K_{BC}}, C, B, K_{BC} \oplush(N_C, K_{CS}), \{C, B, N_C\}_{K_{BC}}5. C \longrightarrow RA, B, K_{AB} \oplus h(N_A, K_{AS}), \{A, B, N_A\}_{K_{AB}}, B, A, K_{AB} \oplush(N_B, K_{BS}), \{B, A, N_B\}_{K_{AB}}, B, C, K_{BC} \oplush(N_B, K_{BS}), \{B, C, N_B\}_{K_{BC}}6. B \longrightarrow A : A, B, K_{AB} \oplus h(N_A, K_{AS}), \{A, B, N_A\}_{K_{AB}}
```
20 / 40

Result on Bull

Survey attack found

- \triangleright OFMC 0,08 s
- \blacktriangleright CL-Atse 0,08 s
- ▶ XOR-ProVerif CRASH

Analysis

▶ XOR-ProVerif crashes after more that one hour and 400 MB. Why?

Result on Bull

Survey attack found

- \triangleright OFMC 0,08 s
- \blacktriangleright CL-Atse 0,08 s
- ▶ XOR-ProVerif CRASH

Analysis

- ▶ XOR-ProVerif crashes after more that one hour and 400 MB. Why? Due to the exponential algorithm proposed by Kuesters in the number of variables used in Exclusive-Or and the number of constants used in the protocol.
- \blacktriangleright New version: Attack found in $5 + 12 = 17$ seconds.

Corrected Version of Bull

- ▶ OFMC Does not end after 20h
- \triangleright CL-Atse 1h10 s
- ▶ XOR-ProVerif CRASH

OFMC is slower than CL-Atse.

Salary Sum

A,B, C, D : principals PK_A, PK_B, PK_C, PK_D : public keys N_A : nonce S_A , S_B , S_C , S_D : numbers (salaries)

1. A \rightarrow B : A, $\{N_A + S_A\}_{PK_B}$ 2. B \longrightarrow C : B, $\{N_A + S_A + S_B\}_{PK_C}$ 3. C \rightarrow D : C, $\{N_A + S_A + S_B + S_C\}_{PK_D}$ 4. D \rightarrow A : D, $\{N_A + S_A + S_B + S_C + S_D\}_{PK_A}$ 5. A \rightarrow B.C.D : $S_A + S_B + S_C + S_D$

Protocol

using Exclusive-Or

Salary Sum

UNSAFE, new attack

- 1. $A \longrightarrow B$: $A, \{N_A \oplus S_A\}_{P K_B}$ 2. $B \longrightarrow I$: $B, \{N_A \oplus S_A \oplus S_B\}_{PK_1}$ 3. I(B) \longrightarrow C : B, { $N_A \oplus S_A \oplus S_B$ } p_{K_C} 4. $C \longrightarrow I$: $C, \{N_A \oplus S_A \oplus S_B \oplus S_C\}_{P K}$ Hence *I* deduces S_C
	- \triangleright OFMC 0.45 s
	- \triangleright CL-Atse 11 min 16 s
	- ► XOR-ProVerif: ProVerif does not end after 6h
	- rian new version : attack in $1 s + 11 s = 12 s$

Protocol

using Exclusive-Or

Gong's Mutual Authentication Protocol (1989)

 $A, B, S:$ principals N_A, N_B, N_S : fresh numbers P_A, P_B : Passwords K : fresh symmetric key $(K = f_1(N_S, N_A, B, P_A))$ H_A , H_B : message $(H_A = f_2(N_S, N_A, B, P_A)$ and $H_B = f_3(N_S, N_A, B, P_A))$ f_1, f_2, f_3, g : hash functions (message,message,message,message \longrightarrow message) 1. $A \longrightarrow B$: A, B, N_A 2. B \longrightarrow S : A, B, N_A, N_B 3. S \rightarrow B : $N_S, f_1(N_S, N_B, A, P_B) \oplus K, f_2(N_S, N_B, A, P_B) \oplus$ $H_4, f_3(N_5, N_B, A, P_B) \oplus H_B, g(K, H_4, H_B, P_B)$ 4. B \longrightarrow A : N_S , H_B 5. A \longrightarrow B : H_A

Protocol

using Exclusive-Or

Gong

SAFE

- \triangleright OFMC 19 s
- \triangleright CL-Atse 1 min 34 s
- ▶ XOR-ProVerif Does not end ("out of global stack" for the conversion)

Protocol

using Exclusive-Or

Exclusive-Or Summary

W. Diffie and M. Hellman (1978)

A,B: principals P:prime number G:primitive root N_A , N_B : nonces

 $1.$ $\mathsf{A}\longrightarrow\mathsf{B}$: \quad $P,$ $G,$ (G^{N_A}) mod P $2.$ $\,\mathsf{B}\longrightarrow \mathsf{A}$: \quad $(\,\mathsf{G}^{\mathsf{N}_{\mathcal{B}}})$ mod P

Diffie Hellmann

UNSAFE

- \triangleright OFMC less than 1 s
- \blacktriangleright CL-Atse less than 1 s
- ▶ XOR-ProVerif less than 1 s

Protocol

using Diffie-Hellman

M. Steiner, G. Tsudik, and M. Waidner (1996) IKA

 A, B, C : principals N_A, N_B, N_C : nonces G : primitive root

1. A \longrightarrow B : G, G^{N_A} 2. B \longrightarrow C : $G^{N_B}, G^{N_A}, (G^{N_A})^{N_B}$ 3. C \longrightarrow A,B : $(G^{N_B})^{N_C}$, $(G^{N_A})^{N_C}$

IKA

UNSAFE

- ▶ OFMC less than 1 s
- \blacktriangleright CL-Atse less than 1 s
- \triangleright XOR-ProVerif 3s + 1s = 4s

Protocol

using Diffie-Hellman

Diffie-Hellman Summary

Outline

[Tools](#page-16-0)

[Protocol](#page-18-0) [using Exclusive-Or](#page-20-0) [using Diffie-Hellman](#page-36-0)

[Conclusion & Perspective](#page-41-0)

Conclusion

- ▶ Usually same attacks with OFMC, CL-Atse, and XOR-ProVerif or DH-ProVerif.
- ▶ Attack most of the time identical to those of the survey (except for Salary Sum and TMN)

Conclusion for Exclusive-Or

- \triangleright OFMC terminates it is globally faster that CL-Atse.
- ► But for protocols using a large number of Exclusive-Or operations, e.g. for instance in the Bull's protocol, OFMC does not terminates whereas CL-Atse does.
- \triangleright the number of Exclusive-Or used in a protocol is the parameter which increases verification time.
- ▶ If the number of variables and constants is not too large ProVerif is very efficient and faster that Avispa tools.

Conclusion for Diffie-Hellman

All protocols were analyzed quickly by all the tools. This confirms the polynomial complexity of DH-ProVerif and the fact that this equational theory is less complex than Exclusive-Or.

Conclusion

- ▶ Automatic verification is necessary.
- \triangleright Tool are very helpful for design and verification.
- \triangleright Use your favorite tool.
- \triangleright Modeling of a protocol is quite tricky.
- \triangleright Know the limitations of the tool and what you are checking.

Next

- ▶ Others Protocols
- \triangleright Others properties
- ▶ Others Tools: Maude NPA, TA4SP, new OFMC (Open source Fixedpoint Model-Checker v.2009)

First Results

- ▶ New OFMC change only few seconds our results
- ▶ TA4SP is "slow" and often return "UNCONCLUSIVE"
- ▶ Maud is slower than all the other dedicated tools

Thank you for your attention

Questions ?