Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen

X. Bultel¹ J. Dreier² J-G. Dumas³ P. Lafourcade¹

¹LIMOS, University Clermont Auvergne, France

²Université de Lorraine, LORIA, Nancy, France

³LJK, Université Grenoble Alpes, Grenoble, France

FUN'16, 9th June 2016, Sardinia

ZKP for Akari et al.

Zero-Knowledge proof of knowledge

Completeness

		Å
Prover knows		Verifier knows
a solution <i>s</i> of P		the problem P
	bla bla	

Soundness

Å

Prover does not know a solution *s* of P

Verifier knows the problem P

Zero-Knowledge

anything about s

Origins of ZKP

• Introduced by S. Goldwasser, S. Micali, and C. Rackoff in 1985.

• O. Goldreich, S. Micali, and A. Wigderson 1991: Polynomial ZKP for every problem in NP under the existence of one-way functions.

Related Works

R. Gradwohl, M. Naor, B. Pinkas, and G. N. Rothblum (FUN'07) Physical (using cards) ZKP for Sudoku.

5	3			7				
6			1	9	5			
	9	4					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			8
				8			7	9

bla bla bla...

bla bla bla?

bla bla bla!

accept or reject

Contributions

Physical Zero-Knowledge Proofs for 4 NP-complete games:

Takuzu

Akari

KenKen

Kakuro

Zero-Knowledge Proofs and Logical Games
Zero-Knowledge proofs
Related Works

- Akari
 - Rules for Akari
 - ZKP Protocol

3 Kakuro

- Rules for Kakuro
- ZKP Protocol
- Extension to KenKen

4 Conclusion

GOAL: Place lights on the white cells on the grid such that 3 constraints are respected

	4			
			1	
0		0		

A light \bigcirc illuminates the whole row and column up to a black cell.

		\bigcirc		
	4			
			1	
0		0		

• Two lights cannot illuminate each other

• All cells are illuminated !

• Numbers in black cells = adjacent lights

	\bigcirc			
\bigcirc	4	\bigcirc		
	\bigcirc		1	\bigcirc
0		0		
			\bigcirc	

X.Bultel et al.

Prover Commitment

	4			
			1	
0		0		

Prover commitment:

• use the empty grid, empty cards and \bigcirc cards.

Prover Commitment

Prover commitment:

- use the empty grid, empty cards and \bigcirc cards.
- put a packet of **identical** cards on each white cell according to the solution.

WB Verification (1/3)

Numbers in black cells = adjacent lights

Numbers in black cells = adjacent lights

For each black cell with number x:

pick one card in all adjacent white cells and shuffle them.

Numbers in black cells = adjacent lights

For each black cell with number x:

pick one card in all adjacent white cells and shuffle them.

V checks that there is exactly $x \bigcirc$ cards.

WBM Verification (2/3)

No two lights see each other $\Leftrightarrow \underline{At \text{ most}}$ one \bigcirc by row/column.

BA Verification (2/3)

No two lights see each other \Leftrightarrow <u>At most</u> one \bigcirc by row/column. For each row/column, take one card per cell and shuffle them.

• case 1, empty cards: *P* adds a \bigcirc card

• case 1, empty cards: P adds a \bigcirc card \rightarrow exactly 1 \bigcirc

- case 1, empty cards: P adds a \bigcirc card \rightarrow exactly 1 \bigcirc
- case 2, one \bigcirc : *P* adds an empty card

- case 1, empty cards: P adds a \bigcirc card \rightarrow exactly 1 \bigcirc
- case 2, one \bigcirc : *P* adds an empty card \rightarrow exactly $1 \bigcirc$

V checks that there is exactly one \bigcirc card.

ZKP for Akari et al.

Verification (3/3)

All cells are illuminated \Leftrightarrow For each cell, <u>at least</u> one \bigcirc in its row and column.

(BA) Verification (3/3)

All cells are illuminated \Leftrightarrow For each cell, <u>at least</u> one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.

Werification (3/3)

All cells are illuminated \Leftrightarrow For each cell, <u>at least</u> one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.

• case 1, one \bigcirc : *P* adds a \bigcirc card

Werification (3/3)

All cells are illuminated \Leftrightarrow For each cell, <u>at least</u> one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.

• case 1, one \bigcirc : *P* adds a \bigcirc card \rightarrow exactly 2 \bigcirc

Verification (3/3)

All cells are illuminated \Leftrightarrow For each cell, <u>at least</u> one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.

- case 1, one \bigcirc : *P* adds a \bigcirc card \rightarrow exactly 2 \bigcirc
- case 2, two : *P* adds an empty card

R Verification (3/3)

All cells are illuminated \Leftrightarrow For each cell, <u>at least</u> one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.

- case 1, one \bigcirc : *P* adds a \bigcirc card \rightarrow exactly 2 \bigcirc
- case 2, two \bigcirc : *P* adds an empty card \rightarrow exactly 2 \bigcirc

Verification (3/3)

All cells are illuminated \Leftrightarrow For each cell, <u>at least</u> one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.

- case 1, one \bigcirc : *P* adds a \bigcirc card \rightarrow exactly 2 \bigcirc
- case 2, two \bigcirc : *P* adds an empty card \rightarrow exactly 2 \bigcirc

V checks that there is exactly two \bigcirc cards.

I Zero-Knowledge Proofs and Logical Games

- Zero-Knowledge proofs
- Related Works

Akari

- Rules for Akari
- ZKP Protocol

3 Kakuro

- Rules for Kakuro
- ZKP Protocol
- Extension to KenKen

4 Conclusion

- Digits from 1 to 9.
- Triangular cell = sum of digits in the row/column
- A number can appear only once per row/column.

Using black and red cards.

To represent a number x put in an envelope:

- 9 x black cards
- x red cards

• Draw an empty grid

Commitment:

- Draw an empty grid
- On each empty cell: put 4 identical envelopes encoding the digit

Commitment:

- Draw an empty grid
- On each empty cell: put 4 identical envelopes encoding the digit
- On each triangular cell: put envelopes encoding all missing digits in the row/column

Commitment:

 $\times 7$ for 3, 4, 5, 6, 7, 8 and 9

A number appears only once per row/column

• For each row/column, pick an envelope per cell plus the envelopes on the triangular cell.

A number appears only once per row/column

- For each row/column, pick an envelope per cell plus the envelopes on the triangular cell.
- Shuffle and open them.

A number appears only once per row/column

- For each row/column, pick an envelope per cell plus the envelopes on the triangular cell.
- Shuffle and open them.
- Verify that all numbers between 1 and 9 appear exactly once.

The sum per row and per column corresponds to the number in the triangular cell

- Randomly picks one envelope per cell in the row/column.
- Opens (face down) the content of each envelope and shuffle it.
- Check that red cards corresponds to the number given in the triangular cell.

+ 6	- 1		^{+ 6} 3	^{- 1}	2
	* 18		1	* 18	3
			2	3	1

- Addition: similar to Kakuro.
- Multiplication: addition of the exponent of each prime factors.

$$9\times 6 = (2^0 3^2) \times (2^1 3^1) = 2^{0+1} 3^{2+1} = 54$$

• Substraction/division: finding the maximum.

Conclusion

Physical Zero-Knowledge Proofs for:

More Games !

Conclusion

Physical zero-knowledge mechanisms for several constraints:

- At least/most one occurence of a symbol in a row/column.
- Equality of the number of 1 and 0 per row/column.
- Result of the addition/substraction of cells.
- Result of the multiplication/division of cells.
- Number of adjacent symbol.
- All rows/columns are different.
- No k consecutive identical symbols.

Thank you for your attention.

Questions?

Goal: fill the grid with 0's and 1's

- Each row/column has exactly the same number of 1's and 0's
- Each row/column is unique
- In each row/column there can be no more than 2 identical numbers next to each other: 110010, but 110001

0	1	1	0
1	0	0	1
0	0	1	1
1	1	0	0