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(Unique) Parallel Decomposition in Process Algebras

Suppose we have a process P .

Are there processes P1, . . . , Pn such that

P = P1| . . . |Pn

where P1, . . . , Pn are “prime”, i.e. cannot be decomposed into
nontrivial processes?
Is this decomposition unique?
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Applications

Provides a normal form
Gives a cancellation result, i.e.

P|Q = P|R ⇒ Q = R

Provides a maximally parallelized version of a given program
Can be used to verify the equivalence of two processes [GM92]
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Previous Results

Unique decomposition results exist
for the Calculus of Communicating Systems (CCS) [Mil89] by
Moller and Milner [MM93, Mol89]:

finite processes w. interleaving or parallel composition w.r.t.
strong bisimilarity
finite processes w. parallel composition w.r.t. weak bisimilarity

for Basic Parallel Processes (BPP) [Chr93]:
normed processes w. interleaving or parallel composition w.r.t.
strong bisimilarity

for ordered monoids by Luttik and van Oostrom:
if the calculus satisfies certain properties, the result for strong
bisimilarity follows directly [LvO05]
can be extended to weak bisimilarity [Lut12]
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The Applied π-Calculus [AF01]

an “impure” variant of the π-Calculus
designed for the verification of cryptographic protocols
features an equational theory to model cryptographic
primitives:

dec(enc(m, k), k) = m

and active substitutions {M/x}, a non-zero element that
exhibits no transitions
allows channel or link passing (sometimes also called mobility)
and scope extrusion
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Channel/Link passing

Consider three parallel processes P , Q and R . P and Q synchronize
using an internal reduction τc :
P|Q|R τc−→ P ′|Q ′|R

P Q

R

x

y τc−→

P ′ Q ′

R

x

y
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Scope extrusion

P Q

R

x

y

scope of y

τc−→

P ′ Q ′

R

x

y

scope of y
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Syntax

Plain processes:
P , Q := plain processes
0 null process
P|Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional (M, N terms)
in(u, x).P message input
out(u,M).P message output
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Syntax Cont’d

Active/extended processes:
A, B , P , Q := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx .A variable restriction
{M/x} active substitution
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Strong Bisimilarity
Weak Bisimilarity

Strong Labeled Bisimilarity

Definition (Strong Labeled Bisimilarity (∼l))

Strong labeled bisimilarity is the largest symmetric relation R on
closed active processes, such that A R B implies:

1 A ≈s B ,
2 if A→ A′, then B → B ′ and A′ R B ′ for some B ′,
3 if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then

B
α−→ B ′ and A′ R B ′ for some B ′.
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Strong Bisimilarity
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Strongly Parallel Prime

Definition (Strongly Parallel Prime)

A closed process P is strongly parallel prime, if
P 6∼l 0 and
for any two closed processes Q and R such that P ∼l Q|R , we
have Q ∼l 0 or R ∼l 0.
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Example 1

Example
Consider the following process:

Pex = νk .νl .νm.νd . ({l/y} |out(c , enc(n, k))|
out(d ,m)|in(d , x).out(c , x))

We can decompose Pex as follows:

Pex ∼l (νl . {l/y})|(νk.out(c , enc(n, k)))|
(νd .(νm.out(d ,m)|in(d , x).out(c , x)))
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Example 2

Example

Consider !P for a process P 6∼l 0.

By definition !P = P|!P , hence !P is not prime.
There is no decomposition into prime factors.
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Existence of Factorization

Theorem (Existence of Factorization)

Any closed normed process P can be expressed as the parallel
product of strong parallel primes, i.e.

P ∼l P1| . . . |Pn

where for all 1 ≤ i ≤ n Pi is strongly parallel prime.

Proof by induction on the norm and the size of the domain.
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Uniqueness of Factorization

Theorem (Uniqueness of Factorization)

The strong parallel factorization of a closed normed process P is
unique (up to ∼l).

Proof idea:
Proof by induction on the norm of P , and inside each case by
induction on the size of the domain
Each prime factor can either perform a transition, or has a
non-empty domain
A transition might not always be norm-reducing since processes
can be infinite, but there is always a norm-reducing one
Suppose the existence of two different factorizations, and show
that this leads to a contradiction
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Uniqueness of Factorization, Proof Cont’d

Four cases: A process with
no transition and empty domain: unique factorization 0.
no transition but non-empty domain: apply a restriction on
part of the domain to hide all factors but one. Exploit the
induction hypothesis
empty domain, but transitions: execute a transition and apply
the induction hypothesis.

Problem: an internal reduction can fuse factors using scope
extrusion.
Solution: Whenever possible, choose a visible transition.
No visible transition ⇒ processes cannot fuse using an internal
reduction, since this would mean they synchronized on a public
channel ⇒ visible transitions exist.

non-empty domain and transitions: combine the above two
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Weak Labeled Bisimilarity

Definition (Weak Labeled Bisimilarity (≈l) [AF01])

(Weak) Labeled Bisimilarity is the largest symmetric relation R on
closed active processes, such that A R B implies:

1 A ≈s B ,
2 if A→ A′, then B →∗ B ′ and A′ R B ′ for some B ′,
3 if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then

B →∗ α−→→∗ B ′ and A′ R B ′ for some B ′.
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Weakly Parallel Prime

Definition (Weakly Parallel Prime)

A closed extended process P is weakly parallel prime, if
P 6≈l 0 and
for any two closed processes Q and R such that P ≈l Q|R , we
have Q ≈l 0 or R ≈l 0.
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Example 3

Example

Consider

P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x))

We have
P → νa.(!in(b, y)|in(a, x)) ≈l !in(b, y)

and
P → νa.(in(a, x).(!in(b, y))) ≈l 0.

Thus P ≈l P|P , hence we have no unique decomposition.
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Existence of Factorization

Theorem (Existence of Factorization)

Any closed finite active process P can be expressed as the parallel
product of parallel primes, i.e.

P ≈l P1| . . . |Pn

where for all 1 ≤ i ≤ n Pi is weakly parallel prime.
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Uniqueness of Factorization

Theorem (Uniqueness of Factorization)

The parallel factorization of a closed finite process P is unique (up
to ≈l).

Proof idea:
Show the following statement: Any closed finite processes P
and Q with P ≈l Q have the same factorization (up to ≈l)
Induction on the sum of the total depth of both factorizations,
and in each case on the size of the domain
Suppose the existence of two different factorizations and show
this leads to a contradiction
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Proof of Uniqueness of Factorization, Cont’d

Same structure as the proof for strong bisimilarity
Problem:

each transition can be simulated using several internal
reductions
can affect several factors, and prime factors could fuse using
scope extrusion

Solution:
choose transitions that decrease the visible depth by exactly
one
A synchronization of two factors uses at least two visible
actions ⇒ the resulting processes cannot be bisimilar any more
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Conclusion and future work

Two unique decomposition results for subsets of the Applied
π-Calculus:

closed finite processes w.r.t. weak labeled bisimilarity
closed normed processes w.r.t. strong labeled bisimilarity

Future work:
Replication (Bang) “!”:

First result by Hirschkoff and Pous [HP10] for a subset of CCS
with top-level replication: seed Q of a process P of least size
(in terms of prefixes) whose number of replicated components
is maximal
Similar result for the Restriction-Free-π-Calculus (i.e. no “ν”)
– full calculus remains an open question

Find an (efficient) algorithm computing the unique
decomposition of a process?
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Thank you for your attention!

Questions?

jannik.dreier@imag.fr
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Summary of results

Type of Process Strong Bisimilarity (∼l) Weak Bisimilarity (≈l)
finite Theorem 5 Theorem 10
normed Theorem 5 Counterexample 9
general Counterexample 4 Counterexample 4
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Depth of processes

Definition (Total Depth)

Let lengtht : (Act ∪ Int)∗ 7→ N be a function where lengtht(ε) = 0
and lengtht(µw) = 1+ lengtht(w). The total depth
|P|t ∈ (N ∪ {∞}) of a closed process P is defined as follows:

|P|t = sup
{
lengtht(w) : P

w−→ P ′ 6→,w ∈ (Act ∪ Int)∗
}
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Norm of a process

Definition (Norm of a Process)

Let lengthn : (Act ∪ Int)∗ 7→ N be a function where lengthn(ε) = 0

and lengthn(µw) =

{
1+ lengthn(w) if µ 6= τc

2+ lengthn(w) if µ = τc
The norm N (P) ∈ (N ∪ {∞}) of a closed process P is defined as
follows:

N (P) = inf
{
lengthn(w) : P

w−→ P ′ 6→,w ∈ (Act ∪ Int)∗
}
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Some properties

P = Q|R implies |P|v = |Q|v + |R|v
P = Q|R implies |P|t = |Q|t + |R|t
P = Q|R implies N (P) = N (Q) +N (R)

|P|v ≤ |P|t
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