Defining Privacy for Weighted Votes, Single and Multi-Voter Coercion

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

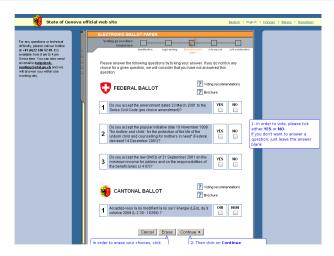
Université Grenoble 1, CNRS, Verimag, France

European Symposium on Research in Computer Security (ESORICS), Pisa, Italy
September 11, 2012

Internet voting

Available in

- Estonia
- France
- Switzerland
-



Security Requirements

Fairness

Verifiability

Eligibility

Correctness

Security Requirements

Pi Pocoint Fronness

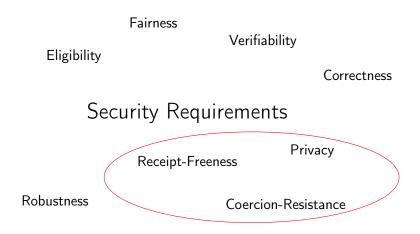
Privacy

Receipt-Freeness

Coercion-Resistance

Robustness

Security Requirements



Defining Vote-Privacy [Swap-Privacy (SwP)]

Classical definition (e.g. [?, ?, ?]): Observational equivalence between two situations where two voters swap votes.

Alice Bob

Vote
$$A$$
 B
 \approx_I

Vote B A

Alice Bob Result
$$66\%$$
 34%

Vote A B \approx_I

Vote B A

Alice Bob Result
$$66\%$$
 34%

Vote A B 66% A, 34% B \approx_I

Vote B A 34% A, 66% B

Alice Bob Result 66% 34%

Vote
$$\boxed{A}$$
 \boxed{B} 66% A, 34% B \approx_I \neq

Vote \boxed{B} \boxed{A} 34% A, 66% B

Still: Some privacy is possible!

Alice Bob Carol Result 50% 25% 25%

Vote A B B

Vote B A A

Still: Some privacy is possible!

Still: Some privacy is possible!

Still: Some privacy is possible!

Plan

- Introduction
- 2 Defining Privacy
- 3 Defining Receipt-Freeness
- 4 Defining Coercion-Resistance
- Conclusion

Plan

- Introduction
- 2 Defining Privacy
- 3 Defining Receipt-Freeness
- 4 Defining Coercion-Resistance
- Conclusion

Alice Bob
$$\cdots$$
 Result

Vote V_1^A V_2^A \cdots Result 1

Vote V_1^B V_2^B \cdots Result 2

Alice Bob
$$\cdots$$
 Result

Vote V_1^A V_2^A \cdots Result 1

 \vdots

Vote V_1^B V_2^B \cdots Result 2

Alice Bob
$$\cdots$$
 Result

Vote V_1^A V_2^A \cdots Result 1

 \leftarrow $?$

Vote V_1^B V_2^B \cdots Result 2

Alice Bob
$$\cdots$$
 Result

Vote V_1^A V_2^A \cdots Result 1

 \approx_I \Leftarrow $\frac{?}{=}$

Vote V_1^B V_2^B \cdots Result 2

Alice Bob Carol Result
$$50\%$$
 25% 25%

Vote A B B 50% A, 50% B

Which Result A B B 50% A, 50% B B A A 50% A, 50% B

Alice Bob Carol Result
$$50\%$$
 25% 25%

Vote A B B 50% A, 50% B \approx_I \Leftarrow $\frac{?}{=}$

Vote B A A \approx_I \approx_I

The Applied Pi Calculus [?]

Syntax

```
P. Q. R :=
                                 processes
                                 null process
  P|Q
                                 parallel composition
  1P
                                 replication
  \nu n.P
                                 name restriction ("new")
  if M = N then P else Q
                                 conditional
  in(u, x).P
                                 message input
  out(u, x).P
                                 message output
  \{M/_X\}
                                 substitution
```

Modeling Voting Protocols

Definition (Voting Process)

A voting process is a closed process

$$\nu \tilde{n}.(V\sigma_{id_1}\sigma_{\nu_1}|\ldots|V\sigma_{id_n}\sigma_{\nu_n}|A_1|\ldots|A_l)$$

where

- \tilde{n} is a set of restricted names,
- \bullet σ_{id_i} is a substitution assigning the identity to a voter process,
- σ_{v_i} specifies the vote and
- \bullet A_i are the election authorities which are required to be honest.

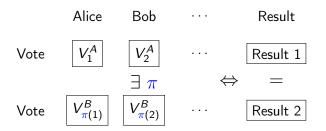
Vote-Privacy (VP) in the Applied Pi Calculus

Definition (Vote-Privacy (VP))

A voting protocol ensures Vote-Privacy (VP) if for any two instances $VP_A = \nu \tilde{n}.(V\sigma_{id_1}\sigma_{v_1^A} \mid \ldots \mid V\sigma_{id_n}\sigma_{v_n^A} \mid A_1 \mid \ldots \mid A_l)$ and $VP_B = \nu \tilde{n}.(V\sigma_{id_1}\sigma_{v_1^B} \mid \ldots \mid V\sigma_{id_n}\sigma_{v_n^B} \mid A_1 \mid \ldots \mid A_l)$ we have

$$VP_A|_{res} \approx_I VP_B|_{res} \Rightarrow VP_A \approx_I VP_B.$$

Link to existing definitions: Equality of Votes (EQ)



Link to existing definitions, cont'd

Theorem (Equivalence of Privacy Definitions)

If a protocol respects Equality of Votes (EQ), then Vote-Privacy (VP) and Swap-Privacy (SwP) are equivalent:

$$SwP \stackrel{EQ}{\longleftrightarrow} VP$$

Case Study

Eliasson and Zúquete [?]: different versions of Fujioka et al. [?] implementing weighted votes, for example using multiple ballots per voter. Manual proof to show that

$$VP_A|_{res} \approx_l VP_B|_{res} \Rightarrow \sum_{i=1}^n V_i^A * w_i = \sum_{i=1}^n V_i^B * w_i.$$

ProVerif [?] to establish the following, which gives (VP).

$$\sum_{i=1}^{n} V_i^A * w_i = \sum_{i=1}^{n} V_i^B * w_i \Rightarrow VP_A \approx_I VP_B$$

Plan

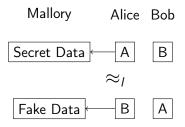
- Introduction
- 2 Defining Privacy
- 3 Defining Receipt-Freeness
- 4 Defining Coercion-Resistance
- Conclusion

Existing Definition: Swap-Receipt-Freeness (SwRF) [?]

Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.

Existing Definition: Swap-Receipt-Freeness (SwRF) [?]

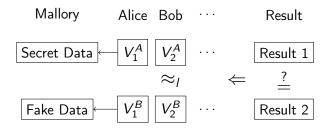
Again: Observational equivalence between two situations, but Alice tries to create a receipt or a fake.



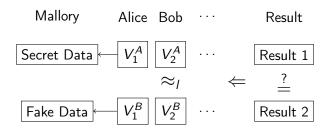
Single-Voter Receipt Freeness (SRF)

Mallory Alice Bob \cdots Result $V_1^A \ V_2^A \ \cdots$ Result 1 $\approx_I \leftarrow \frac{?}{=} \ V_1^B \ V_2^B \ \cdots$ Result 2

Single-Voter Receipt Freeness (SRF)

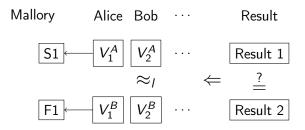


Single-Voter Receipt Freeness (SRF)

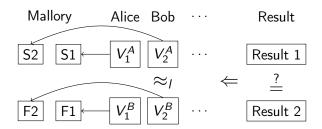


If a protocol respects (EQ), then (SRF) and (SwRF) are equivalent.

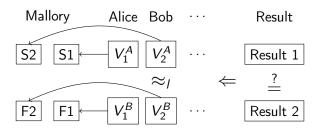
Multi-Voter Receipt Freeness (MRF)



Multi-Voter Receipt Freeness (MRF)

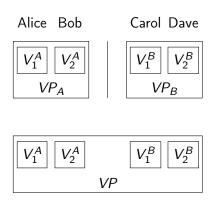


Multi-Voter Receipt Freeness (MRF)

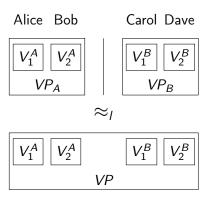


Multi-Voter Receipt Freeness (MRF) implies Single-Voter Receipt Freeness (SRF).

Link between (SRF) and (MRF): Modularity (Mod)



Link between (SRF) and (MRF): Modularity (Mod)



Alice Bob
$$\cdots$$
 Result

Vote V_1^A V_2^A \cdots Result 1

Vote V_1^B V_2^B \cdots Result 2

Alice Bob
$$\cdots$$
 Result

Vote $V_1^A \mid V_2^A \mid \cdots$ Result 1

 $\forall i \ V_i^A = V_i^B$

Vote $V_1^B \mid V_2^B \mid \cdots$ Result 2

Alice Bob
$$\cdots$$
 Result

Vote V_1^A V_2^A \cdots Result 1

 $\forall i \ V_i^A = V_i^B \implies$

Vote V_1^B V_2^B \cdots Result 2

Alice Bob
$$\cdots$$
 Result

Vote V_1^A V_2^A \cdots Result 1

 $\forall i \ V_i^A = V_i^B \implies =$

Vote V_1^B V_2^B \cdots Result 2

Alice Bob
$$\cdots$$
 Result

Vote $V_1^A \ V_2^A \ \cdots$ Result 1

 $\forall i \ V_i^A = V_i^B \Rightarrow =$

Vote $V_1^B \ V_2^B \ \cdots$ Result 2

Equality of Votes (EQ) implies Correctness (Cor).

Link between (SRF) and (MRF) cont'd

Theorem (Equivalence of Single- and Multi-Voter Coercion)

If a protocol is modular and correct, Single-Voter Receipt Freeness and Multi-Voter Receipt Freeness are equivalent.

$$Cor, Mod$$

$$SRF \longleftarrow MRF$$

Case Study

Protocol by Okamoto [?]:

- (SwRF) shown before [?].
- We prove (EQ) and (Mod)
- and obtain Multi-Voter Receipt Freeness (MRF):

Plan

- Introduction
- 2 Defining Privacy
- 3 Defining Receipt-Freeness
- 4 Defining Coercion-Resistance
- Conclusion

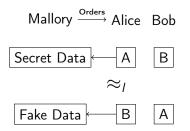
Existing Definition: Swap-Coercion-Resistance (SwCR) [?]

Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.

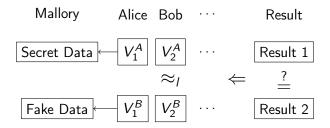


Existing Definition: Swap-Coercion-Resistance (SwCR) [?]

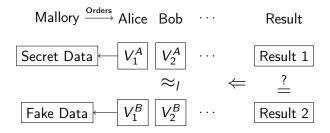
Observational equivalence between two situations, but Alice is under control by Mallory or only pretends to be so.



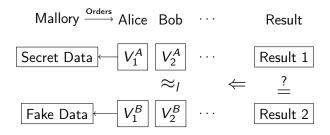
Single-Voter Coercion-Resistance (SCR)



Single-Voter Coercion-Resistance (SCR)



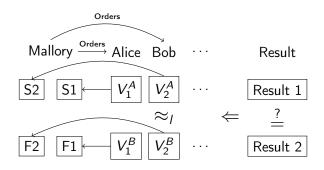
Single-Voter Coercion-Resistance (SCR)



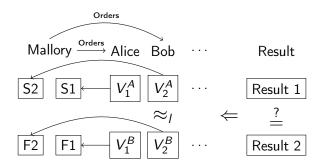
If a protocol respects (EQ), then (SCR) and (SwCR) are equivalent.

Multi-Voter Coercion-Resistance (MCR)

Multi-Voter Coercion-Resistance (MCR)



Multi-Voter Coercion-Resistance (MCR)

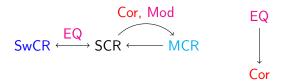


If a protocol is modular and correct, Single-Voter Coercion-Resistance and Multi-Voter Coercion-Resistance are equivalent.

Case Study

Bingo Voting [?]:

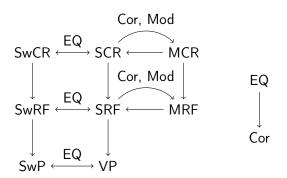
- (SwCR) shown before [?].
- We prove (EQ) and (Mod)
- and obtain Multi-Voter Coercion-Resistance (MCR):



Plan

- Introduction
- 2 Defining Privacy
- 3 Defining Receipt-Freeness
- 4 Defining Coercion-Resistance
- 6 Conclusion

Relations among the notions



Conclusion

- Generalized definition for weighted votes
- Definition of Single- and Multi-Voter Receipt-Freeness and Coercion
- Proofs of Equivalence
- Case studies:
 - Variant of Fujioka et al. [?]: Vote-Privacy (VP)
 - Okamoto [?]: Multi-Voter Receipt Freeness (MRF)
 - Bingo Voting [?]: Multi-Voter Coercion-Resistance (MCR)

Thank you for your attention!

Questions?

Cryptographic Primitives

- Commitments: open(commit(v, r), r) = v
- Signatures: checksign(sign(x, sk(Y)), pk(Y)) = ok
- Blind signatures: unblind(sign(blind(x, r), key), r) = sign(x, r)

Protocol Description [?]

The protocol is split into three phases:

- Eligibility Check
- Voting
- Counting

Authorities:

- Administrator
- Collector

Assumptions:

Anonymous channel to the collector

Bob

Administrator

Bob

Administrator

$$sign(blind(commit(B, r_1^B), r_2^B), sk(B)), Identity(B)$$

Bob

Administrator

$$sign(blind(commit(B, r_1^B), r_2^B), sk(B)), Identity(B)$$

$$sign(blind(commit(B, r_1^B), r_2^B), sk(Ad))$$

Bob Administrator

$$sign(blind(commit(B, r_1^B), r_2^B), sk(B)), Identity(B)$$

$$sign(blind(commit(B, r_1^B), r_2^B), sk(Ad))$$

$$\mathsf{sign}(\mathsf{commit}(\mathit{V}, \mathit{r}_1^\mathit{B}), \, \mathsf{sk}(\mathsf{Ad}))$$

Voting Phase

Alice Collector

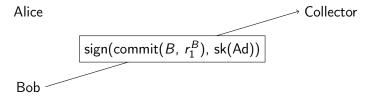
Bob

Voting Phase

Alice
$$\longrightarrow$$
 sign(commit(A, r_1^A), sk(Ad)) \longrightarrow Collector

Bob

Voting Phase



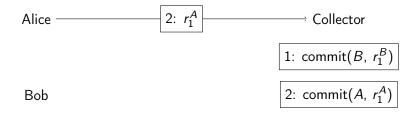
Alice

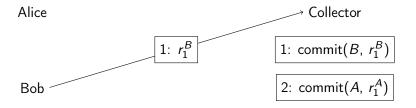
Bob

Collector

1: commit(B, r_1^B)

2: commit(A, r_1^A)





Alice

Bob

