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Automated Security Proofs for Almost-Universal Hash for MAC verification

Motivation and Background

Why make automated provers for crytpo?

• People make mistakes

• Mistakes in security proof of crypto protocols are bad

• Reinforce our trust in their security

• Can lead to automated protocol synthesis
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Motivation and Background

Message Authentication Code

Purpose: ensure integrity and authenticity of messages

What is a MAC?

• MAC : key × {0, 1}∗ → tag

• With (m, tag), receiver computes tag ′ = MAC (k ,m) and
accepts the message as authentic if tag = tag ′

Examples: CBC-MAC, HMAC, PMAC, VMAC, UMAC ...

Applications

• Authenticity

• IND-CCA security (encrypt-then-mac construction)

• Building block for many other cryptographic protocols
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Motivation and Background

MAC Security

ExpMAC :

• Sample k
R← {0, 1}η.

• (m∗, tag)
R← AMAC(k,·)(η)

• if MAC (k ,m∗) = tag and A never queried m∗ to its
MAC (k , ·) oracle, return 1, else return 0

Definition

AdvUNF
A (η) = Pr [ExpMAC = 1]

A MAC is existentially unforgeable if AdvUNF
A (η) is negligible.
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Motivation and Background

Our Approach

Automatically proving security of cryptographic primitives

1 Modeling security properties

2 Defining a language

3 Building an Hoare Logic

4 Proving the security

For

• Asymmetric Encryption [CDELL08]

• Symmetric Encryption Modes [GLLS09]

• Block cipher and hash-based MACs [ESORICS2013]
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Motivation and Background

Hoare Logic [H69]

Set of rules (Ri ) : {P} cmd {Q}

(R5){P0} c1 {Q0}
(R2){P1} c2 {Q2}, where P1 ⊆ Q0

...
(R8){Pn} cn {Qn} ?
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Motivation and Background

Challenges with MACs

• Security property harder to model

• MACs are deterministic

• Common prefixes cause repeated queries to the block cipher

⇒ We need fundamentally new trick

⇒ Analyze collisions using 2 simultaneous executions
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Our Strategy and Model

Outline
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

Security Proofs of MACs

Usual method for proving MAC security

• Pseudo-random functions are good MACs

⇒ prove that the compressing part of the MAC is an
almost-universal hash function

⇒ combine that almost-universal hash with a mixing step to get
a PRF
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

Our Strategy

Two Step Strategy

• Hoare logic to prove ‘front-end’ is almost-universal
• empty list of block cipher queries at the beginning
• consider two simultaneous executions of the code
• examine probability of collisions between intermediate values

• List of possible ‘mixing steps’
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

DMAC (CBC-MAC variant)

Example

c1 := m1;
for i = 2 to n do:

zi := ci−1 ⊕mi

ci := E(zi );
tag := E ′(cn);
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

HMAC

Example

z1 := k‖m1;
c1 := H(z1);
for i = 2 to n do:;

zi := ci−1‖mi

ci := H(zi )
z ′ := k ′||cn;
tag := H(z ′);
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

Almost-universal hash function [CW79]

Definition

A hash function family {Hk}k∈{0,1}η is an almost-universal hash
function family if for any two messages m0,m1 ∈ {0, 1}∗,

Pr[Hk(m0) = Hk(m1)] is negligible,

where the probability is taken over the choice of the key.
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

Grammar

c ::= x := ρi (y) | x := E(y) | x := H(y) | x := y ⊕ z | x := y‖z |
x := y | for x = i to j do: cx | c1; c2
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

Generic Hash

Definition

A generic hash function M is represented by
HashM(m1| . . . |mp, cp) : var ~x ; cmd

HashCBC (m1|m2|m3, c3) :
var z1, z2, z3;
c1 := E(m1);
z2 := c1 ⊕m2;
c2 := E(z2);
z3 := c2 ⊕m3;
c3 := E(z3);
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Our Strategy and Model

Semantics of the Programming Language

[[x := E(y)]](S ,S ′, E,H,LE ,LH) =
(S{x 7→ E(S(y))}, S ′{x 7→ E(S ′(y))}, E,H,LE ∪ {S(y), S ′(y)},LH)

[[x := H(y)]](S, S ′, E,H,LE ,LH) =
(S{x 7→ H(S(y))},S ′{x 7→ H(S ′(y))}, E,H,LE ,LH ∪ {S(y), S ′(y)})

[[x := y ]](S, S ′, E,H,LE ,LH) = (S{x 7→ S(y)}, S ′{x 7→ S ′(y)}, E,H,LE ,LH)
[[x := y ⊕ z]](S , S ′, E,H,LE ,LH) =

(S{x 7→ S(y)⊕ S(z)},S ′{x 7→ S ′(y)⊕ S ′(z)}, E,H,LE ,LH)
[[x := y ||z]](S, S ′, E,H,LE ,LH) =

(S{x 7→ S(y)||S(z)}, S ′{x 7→ S ′(y)||S ′(z)}, E,H,LE ,LH)
[[x := ρ(i , y)]](S, S ′, E,H,LE ,LH) =

(S{x 7→ ρ(i , S(y))}, S ′{x 7→ ρ(i ,S ′(y))}, E,H,LE ,LH)

[[for l = p to q do: [cmdl ]]]γ =

{
[[cmdq ]] ◦ [[cmdq−1]] ◦ . . . ◦ [[cmdp ]]γ if p ≤ q
γ otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Predicates

Predicates

Equal(x , y): the probability that S(x) 6= S ′(y) is negligible.

Unequal(x , y): the probability that S(x) = S ′(y) is negligible.

E(E ; x ;V ): the probability that the value of x is either in LE or
in V is negligible.

H(H, x ;V ): the probability that the value of x is either in LH or
in V is negligible.

Empty: that the probability that LE contains an element is
negligible.

Indis(x ;V ;V ′): the value of x is indistinguishable from a random
value given the values of the variables in V in this
execution and the values of the variables in V ′ from
the parallel execution.
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Predicates

Proving that Generic Hash is Almost-Universal

Theorem

A generic hash P(m1‖ . . . ‖mn, c : var ~x ; cmd) is an
almost-universal hash function if for all n, {(init)} cmd {UNIV (n)}
holds:(

n−1∧
i=1

Unequal(cn, ci ) ∧
n∧

i=1

Equal(mi ,mi )

)
∨

n∧
i=1

Unequal(cn, ci )
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Hoare Logic

Outline
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Hoare Logic

Some of our 40 Rules

XOR
(X4) {Equal(y , y) ∧ Unequal(z , z)} x := y ⊕ z

{Unequal(x , x)} if y 6= z

Concatenation

(C6) {Indis(y ;V ,LH;V ′)} x := y‖z {H(H, x ;V )}

Assignment

(A1) {true} x := mi {(Equal(mi ,mi ) ∧ Equal(x , x))∨
Unequal(x , x)}
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Hoare Logic

Some of our 40 Rules

Block Cipher

(B1) {Empty} x := E(mi )
{(Unequal(x , x) ∧ Indis(x ; Var,LE ,LH; Var))∨

(Equal(mi ,mi ) ∧ Equal(x , x)∧
Indis(x ; Var,LE ,LH; Var− x))}

(B2) {E(E ; y ; ∅) ∧ Unequal(y , y)} x := E(y)
{Indis(x ; Var,LE ,LH; Var)}

(B3) {E(E ; y ; ∅) ∧ Equal(y , y)} x := E(y)
{Indis(x ; Var,LE ,LH; Var− x) ∧ Equal(x , x)}
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Hoare Logic

Example: CBC-MAC

(Init) {Empty}
c1 := E(m1); (B1) {(Unequal(c1, c1) ∧ Indis(c1; Var,LE ,LH; Var))∨

(Equal(m1,m1) ∧ Equal(c1, c1) ∧
Indis(c1; Var,LE ,LH; Var− c1))}

z2 := c1 ⊕m2; (G5)(X2) {(Indis(c1; Var− z2,LE ,LH; Var) ∧
Indis(z2; Var− c1,LE ,LH; Var))∨

(G1)(X1) (Equal(m1,m1) ∧ Indis(c1; Var− z2,LE ,LH; Var− c1 − z2) ∧
Unequal(z2, z2) ∧ Indis(z2; Var− c1,LE ,LH; Var− c1 − z2))∨

(Equal(m1,m1) ∧ Equal(m2,m2) ∧ Equal(z2, z2) ∧
Indis(c1; Var− z2,LE ,LH; Var− c1 − z2) ∧
Indis(z2; Var− c1,LE ,LH; Var− c1 − z2))}

c2 := E(z2) (B2)(B4) {(Indis(c1; Var− z2,LH; Var) ∧
Indis(c2; Var,LE ,LH; Var))∨

(G1) (Equal(m1,m1) ∧ Indis(c1; Var− z2,LH; Var− c1 − z2) ∧
Indis(c2; Var,LE ,LH; Var))∨

(B3) (Equal(m1,m1) ∧ Equal(m2,m2) ∧
Indis(c1; Var− z2,LH; Var− c1 − z2) ∧
Indis(c2; Var,LE ,LH; Var− c2))}
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Hoare Logic

Example: CBC-MAC

(Init) {Empty}
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(G1) (Equal(m1,m1) ∧ Indis(c1; Var− z2,LH; Var− c1 − z2) ∧
Indis(c2; Var,LE ,LH; Var))∨

(B3) (Equal(m1,m1) ∧ Equal(m2,m2) ∧
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Hoare Logic

Implementation

• Go through program from beginning to end, applying every
rule possible at each step

• Lots of unnecessary predicates and to many OR clauses
⇒ Predicate filter

• Discovery of loop invariants
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Hoare Logic

Predicate Filter

Theorem

Predicates on variables that do not appear in what is left of the
program and that do not imply any term in UNIV (n) are not
necessary to obtain a proof.

• Heuristic: the term
∧n−1

i=1 Unequal(cn, ci ) from UNIV (n) will
be implied by Indis(cn; ∅; {c1, . . . , cn−1}).
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Hoare Logic

Invariants of for loops

Block Cipher

(F1) {ψ(p − 1)} for l = p to q do: [cmdl ] {ψ(q)} provided
{ψ(l − 1)} cmdl {ψ(l)} for p ≤ l ≤ q

• express formula as φ0(l)

• find φ1(l), φ2(l) and φ3(l) such that
{φ0(l − 1)} cmdl {φ1(l)},
{φ1(l − 1)} cmdl {φ2(l)},
{φ2(l − 1)} cmdl {φ3(l)}

• extrapolate!
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Hoare Logic

Several Options for Mixing Steps

Prop

• MAC1(m) = E(hi (m)) is a secure MAC with key sk = (i , E).

• MAC2(m) = G(l‖hi (m)) is a secure MAC with key sk = (i , k).

• MAC3(m) ={
E1(hi (m

′)), m′ = pad(m) if m’s length is not a multiple of η
E2(hi (m)) if m’s length is a multiple of η

is a secure MAC with key sk = (i , E1, E2).

• MAC4(m) ={
E(hE(m′)⊕ k1), m′ = pad(m) if m’s length is not a multiple of η
E(hE(m)⊕ k2) if m’s length is a multiple of η

is a secure MAC with key sk = (E , k1, k2)
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Automated Security Proofs for Almost-Universal Hash for MAC verification

Hoare Logic

Mixing Steps

4 Options for Mixing Steps

• DMAC uses MAC1, HMAC uses MAC2

• ECBC and FCBC use MAC3

• XCBC and PMAC use MAC4
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Conclusion

Summary

Method for automatically proving security of MACs

1 Modeling security properties

2 Defining a language

3 Building an Hoare Logic

4 Proving the security

Filter that removes unnecessary predicates.
Heuristics for invariant generation for loop.

Prototype (∼2000 lines OCaml)

http://www.infsec.cs.uni-saarland.de/~gagne/

macChecker/macChecker.html
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Prototype (∼2000 lines OCaml)

http://www.infsec.cs.uni-saarland.de/~gagne/

macChecker/macChecker.html

32 / 1

http://www.infsec.cs.uni-saarland.de/~gagne/macChecker/macChecker.html
http://www.infsec.cs.uni-saarland.de/~gagne/macChecker/macChecker.html


Automated Security Proofs for Almost-Universal Hash for MAC verification

Conclusion

Summary

Method for automatically proving security of MACs

1 Modeling security properties

2 Defining a language

3 Building an Hoare Logic

4 Proving the security

Filter that removes unnecessary predicates.
Heuristics for invariant generation for loop.

Prototype (∼2000 lines OCaml)

http://www.infsec.cs.uni-saarland.de/~gagne/

macChecker/macChecker.html

32 / 1

http://www.infsec.cs.uni-saarland.de/~gagne/macChecker/macChecker.html
http://www.infsec.cs.uni-saarland.de/~gagne/macChecker/macChecker.html


Automated Security Proofs for Almost-Universal Hash for MAC verification

Conclusion

Future Works

• Make our prototype more user-friendly (SOON!)

• Integration of mixing step in the logic

• IND-CCA and authenticated encryption

• Better treatment of tweakable block ciphers

• Interaction or integration of our prototype with existing tools.
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Thanks for your Attention

Questions ?
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