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Administrative Informations

Where & When

2 days of 6h00

I 13 Novembre 2018

I 4 Décembre 2018

pascal.lafourcade@uca.fr
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Instructor Information (II)

Research in:

Information Security, Formal Verification, Cryptographic Proto-
cols, Rewriting, Unification, Equational Theories, Constraints:

I e-voting, e-auction

I Group protocols

I Wireless communications

I Tools, Automatic verification

I Design protocols, cryptosystems ...
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What is this course about?

A presentation to basics and essential notions, techniques in
cryptography.

I Not a course on cryptography,

I Not a complete course on security.

Security touches many domains:

I cryptography,

I mathematics,

I operating system,

I networking,

I economics,

I policy and law ...
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Content

I Motivation, Historic, Asymetric: RSA ElGamal

I Symetric DES, AES, Modes, Hash

I Signature, MAC, ECC, Security Notions

I Protocols, PKI

1. Side Channel

2. Password

3. Secret Sharing

4. ZPK
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Reading

Some recommended book:

I “The handbook of applied cryptography” by Alfred J.
Menezes, Paul C. van Oorschot and Scott A. Vanstone.
www.cacr.math.uwaterloo.ca/hac/index.html

I Jonathan Katz and Yehuda Lindell “Introduction to
modern cryptography”

www.cacr.math.uwaterloo.ca/hac/index.html
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More books

I Bruce Schneier “Applied cryptography”,

I Matt Bishop “Computer Security: Art and Science”,

I Douglas Stinson “Cryptography: Theory and Practice”,

I Simon Singh“The Code Book: The Secret History of Codes
and Code Breaking”.

I Pierre Barthélemy et Robert Rolland - Cryptographie -
Principe et mises en oeuvre (2012)

I Exercices et problèmes de cryptographie Damien Vergnaud
(2012)

I Théorie des codes : compression, cryptage, correction (2007)
Jean-Guillaume Dumas et al

I Cryptographie, théorie et pratique Douglas Stinson, Serge
Vaudenay
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Outline
Presentation

Un peu de cryptographie

History of Cryptography

Classical Asymmetric Encryptions

Classical Symetric Encryptions

Efail

LFSR

Hash Functions and MAC

Signature

FHE

Elliptic Curves

Partial and Full Homomorphic Encryption

IBE :Boneh/Franklin

IBE: Sakai-Kasahara

SPHF
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Clef symétrique

chiffrement déchiffrement

Clef symétrique Clef symétrique

Exemples

I César, Vigenère

I One Time Pad (OTP) c = m ⊕ k

I Data Encryption Standard (DES) 1976

I Advanced Encryption Strandard (AES) 2001
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Communications téléphoniques
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Chiffrement à clef publique

Exemples

I RSA (Rivest Shamir Adelmman 1977): c = me mod n

I ElGamal (1981) : c ≡ (g r , hr ·m)
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Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

DVD 4,7 G.B Blu-Ray 25 GB

Schemes encrypt decrypt encrypt decrypt

RSA 2048(1) 22 min 24 h 115 min 130 h
RSA 1024(1) 21 min 10 h 111 min 53 h

AES CTR(2) 20 sec 20 sec 105 sec 105 sec
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ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group
generator g of (Z/pZ)∗ and a ∈ (Z/(p − 1)Z)∗.

Public key: (p, g , h), where h = ga mod p.

Private key: a

Encryption: Bob chooses r ∈R (Z/(p − 1)Z)∗ and computes
(u, v) = (g r ,Mhr )

Decryption: Given (u, v), Alice computes M ≡p
v
ua

Justification: v
ua = Mhr

g ra ≡p M

Remarque: re-usage of the same random r leads to a security flaw:

M1h
r

M2hr
≡p

M1

M2

Practical Inconvenience: Cipher is twice as long as plain text.
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Fonction de Hachage (SHA-256, SHA-3)

Propriétés de résitance

I Pré-image

I Seconde Pré-image

I Collision

I Unkeyed Hash function: Integrity

I Keyed Hash function (Message Authentication Code):
Authentification
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I Collision

I Unkeyed Hash function: Integrity

I Keyed Hash function (Message Authentication Code):
Authentification



14/213

Fonction de Hachage (SHA-256, SHA-3)

Propriétés de résitance
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MD5, MD4 and RIPEMD Broken

MD5(james.jpg)= e06723d4961a0a3f950e7786f3766338

MD5(barry.jpg) = e06723d4961a0a3f950e7786f3766338

How to Break MD5 and Other Hash Functions, by Xiaoyun Wang,
et al.

MD5 : Average run time on P4 1.6ghz PC: 45 minutes
MD4 and RIPEMD : Average runtime on P4 1.6ghz: 5 seconds
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SHA-1 broken in 2017 shattered.io

M. Stevens, P. Karpman, E. Bursztein, A. Albertini, Y. Markov

shattered.io
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Signature

RSA: md mod n
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Information hiding

SECRET
WRITING

CRYPTOGRAPHY

STEGANOGRAPHY
(hidden)

(scrambled)

SUBSTITUTION

TRANSPOSITION

CODE
(replace words)

CIPHER
(replace letters)

I Cryptology: the study of secret writing.

I Steganography: the science of hiding messages in other
messages.

I Cryptography: the science of secret writing.
Note: terms like encrypt, encode, and encipher are often
(loosely and wrongly) used interchangeably



23/213

Slave
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Mono-alphabetic substitution ciphers

I Simplest kind of cipher. Idea over 2,000 years old.

I Let K be the set of all permutations on the alphabet A.
Define for each e ∈ K an encryption transformation Ee on
strings m = m1m2 · · ·mn ∈M as

Ee(m) = e(m1)e(m2) · · · e(mn) = c1c2 · · · cn = c .

I To decrypt c , compute the inverse permutation d = e−1 and

Dd(c) = d(c1)d(c2) · · · d(cn) = m .

I Ee is a simple substitution cipher or a mono-alphabetic
substitution cipher.



25/213

Substitution cipher examples

I KHOOR ZRUOG

= HELLO WORLD
Caesar cipher: each plaintext character is replaced by the
character three to the right modulo 26.

I Zl anzr vf Nqnz = My name is Adam
ROT13: shift each letter by 13 places.
Under Unix: tr a-zA-Z n-za-mN-ZA-M.

I 2-25-5 2-25-5 = BYE BYE
Alphanumeric: substitute numbers for letters.

How hard are these to cryptanalyze? Caesar? General?
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(In)security of substitution ciphers

I Key spaces are typically huge. 26 letters  26! possible keys.

I Trivial to crack using frequency analysis (letters, digraphs...)

I Frequencies for English based on data-mining books/articles.
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How to break a monoalphabetic cipher

I Guess the target language

I Count letter frequencies in the cryptogram C

I Match cryptogram’s frequencies with language’s frequencies

I Use the partially decrypted message to correct errors.
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Homophonic substitution ciphers

I To each a ∈ A, associate a set H(a) of strings of t symbols,
where H(a), a ∈ A are pairwise disjoint. A homophonic
substitution cipher replaces each a with a randomly chosen
string from H(a). To decrypt a string c of t symbols, one
must determine an a ∈ A such that c ∈ H(a). The key for the
cipher is the sets H(a).

Example:

A = {a, b}, H(a) = {00, 10}, and H(b) = {01, 11}. The
plaintext ab encrypts to one of 0001, 0011, 1001, 1011.

Rational: makes frequency analysis more difficult.
Cost: data expansion and more work for decryption.
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Polyalphabetic substitution ciphers

I Idea (Leon Alberti): conceal distribution using family of
mappings.

I A polyalphabetic substitution cipher is a block cipher with
block length t over alphabet A where:
I the key space K consists of all ordered sets of t permutations

over A, (p1, p2, . . . , pt).
I Encryption of m = m1 · · ·mt under key e = (p1, · · · , pt) is

Ee(m) = p1(m1) · · · pt(mt).
I Decryption key for e is d = (p−1

1 , · · · p−1
t ).
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Example: Vigenère ciphers

I Key given by sequence of numbers e = e1, . . . , et , where

pi (a) = (a + ei ) mod n

defining a permutation on an alphabet of size n.

I Example: English (n = 26), with k = 3,7,10

m = THI SCI PHE RIS CER TAI NLY NOT SEC URE

then

Ee(m) = WOS VJS SOO UPC FLB WHS QSI QVD VLM XYO
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One-time pads (Vernam cipher)

I A one-time pad is a cipher defined over {0, 1}. Message
m1 · · ·mn is encrypted by a binary key string k1 · · · kn.

Ek1···kn(m1 · · ·mn) = (m1 ⊕ k1) · · · (mn ⊕ kn)

Dk1···kn(c1 · · · cn) = (c1 ⊕ k1) · · · (cn ⊕ kn)

I Example:

m = 010111
k = 110010

c = 100101

I Since every key sequence is equally likely, so is every plaintext!
Unconditional (information theoretic) security, if key isn’t
reused!

I Moscow–Washington communication previously secured this
way.

I Problem?

Securely exchanging and synchronizing long keys.
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Transposition ciphers

I For block length t, let K be the set of permutations on
{1, . . . , t}. For each e ∈ K and m ∈M

Ee(m) = me(1)me(2) · · ·me(t) .

I The set of all such transformations is called a transposition
cipher.

I To decrypt c = c1c2 · · · ct compute
Dd(c) = cd(1)cd(2) · · · cd(t), where d is inverse permutation.

I Letters unchanged so frequency analysis can be used to reveal
if ciphertext is a transposition. Decrypt by exploiting
frequency analysis for diphthongs, tripthongs, words, etc.
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Example: transposition ciphers

I C = Aduaenttlydhatoiekounletmtoihahvsekeeeleeyqonouv

A n d i n t h e e n

d t h e l o v e y o

u t a k e i s e q u

a l t o t h e l o v

e y o u m a k e

Table defines a permutation on 1, ..., 50.

I Idea goes back to Greek Scytale: wrap belt spirally around
baton and write plaintext lengthwise on it.



33/213

Example: transposition ciphers

I C = Aduaenttlydhatoiekounletmtoihahvsekeeeleeyqonouv

A n d i n t h e e n

d t h e l o v e y o

u t a k e i s e q u

a l t o t h e l o v

e y o u m a k e

Table defines a permutation on 1, ..., 50.

I Idea goes back to Greek Scytale: wrap belt spirally around
baton and write plaintext lengthwise on it.



33/213

Example: transposition ciphers

I C = Aduaenttlydhatoiekounletmtoihahvsekeeeleeyqonouv

A n d i n t h e e n

d t h e l o v e y o

u t a k e i s e q u

a l t o t h e l o v

e y o u m a k e

Table defines a permutation on 1, ..., 50.

I Idea goes back to Greek Scytale: wrap belt spirally around
baton and write plaintext lengthwise on it.



34/213

Composite ciphers

I Ciphers based on just substitutions or transpositions are not
secure

I Ciphers can be combined. However . . .
I two substitutions are really only one more complex

substitution,
I two transpositions are really only one transposition,
I but a substitution followed by a transposition makes a new

harder cipher.

I Product ciphers chain
substitution-transposition combinations.

I Difficult to do by hand
 invention of cipher machines.
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ENIGMA

Three-rotor German military Enigma machine
Dayly keys are used and stored in a book.
There are 10114 possibilities for one cipher.

Other German Tricks

A space was omitted or replaced by an X. The X was generally
used as point or full stop. They replaced the comma by Y and
the question sign by UD. The combination CH, as in ”Acht”
(eight) or ”Richtung” (direction) were replaced by Q (AQT,
RIQTUNG).
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Kerchoff’s Principle

In 1883, a Dutch linguist Auguste Kerchoff von Nieuwenhof stated
in his book “La Cryptographie Militaire” that:

“the security of a crypto-system must be totally dependent on the
secrecy of the key, not the secrecy of the algorithm.”

Author’s name sometimes spelled Kerckhoff
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Shannon’s Principle 1949

Confusion

The purpose of confusion is to make the relation between the
key and the ciphertext as complex as possible.

Ciphers that do not offer much confusion (such as Vigenere cipher)
are susceptible to frequency analysis.

Diffusion

Diffusion spreads the influence of a single plaintext bit over
many ciphertext bits.

The best diffusing component is substitution (homophonic)

Principle

A good cipher design uses Confusion and Diffusion together
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Symmetric vs Asymmetric Encryption

encryption

encryption

symmetric key

public key secret key

decryption

decryption

Asymmetric Encryption (RSA, Elgamal ...)

Symmetric Encryption (DES, AES)
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Comparison

I Size of the key

I Complexity of computation (time, hardware, cost ...)

I Number of different keys ?

I Key distribution

I Signature only possible with asymmetric scheme
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Computational cost of encryption

2 hours of video (assumes 3Ghz CPU)

DVD 4,7 G.B Blu-Ray 25 GB

Schemes encrypt decrypt encrypt decrypt

RSA 2048(1) 22 min 24 h 115 min 130 h
RSA 1024(1) 21 min 10 h 111 min 53 h

AES CTR(2) 20 sec 20 sec 105 sec 105 sec
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One-way function and Trapdoor

Definition

A function is One-way, if :

I it is easy to compute

I its inverse is hard to compute :

Pr[m
r← {0, 1}∗; y := f (m) : f (A(y , f )) = y ]

is negligible.

Trapdoor:

I Inverse is easy to compute given an additional information (an
inverse key e.g. in RSA).
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Integer Factoring

→ Use of algorithmically hard problems.

Factorization

I p, q 7→ n = p.q easy (quadratic)

I n = p.q 7→ p, q difficult
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RSA

RSA function n = pq, p and q primes.
e: public exponent

I x 7→ xe mod n easy (cubic)

I y = xe 7→ x mod n difficult
x = yd where d = e−1 mod φ(n)

Soundness

Assume n = pq, gcd(e, φ(n)) = 1 and d = e−1 mod φ(n).
cd = mde = m.mkφ(n) mod n
According to the Fermat Little Theorem ∀x ∈ (Z/nZ)∗, xφ(n) =
1
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Example RSA

Example

I p = 61 (destroy this after computing E and D)

I q = 53 (destroy this after computing E and D)

I n = pq = 3233 modulus (give this to others)

I e = 17 public exponent (give this to others)

I d = 2753 private exponent (keep this secret!)
Your public key is (e, n) and your private key is d .
encrypt(T ) = (T e) mod n = (T 17) mod 3233
decrypt(C ) = (Cd) mod n(C 2753) mod 3233

I encrypt(123) = 12317 mod 3233
= 337587917446653715596592958817679803 mod 3233
= 855

I decrypt(855) = 8552753 mod 3233
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Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000

Modulus Operations
(bits) (log2)

512 58

1024 80

2048 111

4096 149

8192 156

≈ 260 years

→ Can be used for RSA too.
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ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group
generator g of (Z/pZ)∗ and a ∈ (Z/(p − 1)Z)∗.

Public key: (p, g , h), where h = ga mod p.

Private key: a

Encryption: Bob chooses r ∈R (Z/(p − 1)Z)∗ and computes
(u, v) = (g r ,Mhr )

Decryption: Given (u, v), Alice computes M ≡p
v
ua

Justification: v
ua = Mhr

g ra ≡p M

Remarque: re-usage of the same random r leads to a security flaw:

M1h
r

M2hr
≡p

M1

M2

Practical Inconvenience: Cipher is twice as long as plain text.
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Example ElGamal Encryption Scheme

g = 2, p = 5, a = 3
Calculer h ?
h = 23 mod 5 = 8 mod 5 = 3
r = 2 et m = 4
Calculer c ?
g r = 22 mod 5 = 4 mhr = 4× (32) mod 5 = 4× 9 mod 5 = 36
mod 5
c = (4, 1)
Déchiffrer c = (4, 1) ?
m = 1

43 = 1
64 = 4

car 64× 4 = 256 mod 5 = 1
1

64 = 1
4 = 4

car 4× 4 = 16 mod 5 = 1
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Example ElGamal Encryption Scheme

Key generation: Alice chooses a prime number p and a group
generator g of (Z/pZ)∗ and a ∈ (Z/(p − 1)Z)∗.

Private key: a = 2

Public key: (p, g , h) = (6, 2, 4),
where 4 = h = ga mod p = 22 mod 6 .

Encryption: Bob encrypts M = 5 using 3 = r ∈R (Z/(p − 1)Z)∗

(u, v) = (g r ,Mhr ) = (23 mod 6, 5× 43 mod 6) = (2, 2)

Decryption: Given (u, v), Alice computes M ≡p
v
ua

Justification: v
ua = 2

22 = 2
4 = 5

since 2× 5 mod 6 = 10 mod6 = 4
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Cramer-Shoup Cryptosystem

I Proposed in 1998 by Ronald Cramer and Victor Shoup

I First efficient scheme proven to be IND-CCA2 in standard
model.

I Extension of Elgamal Cryptosystem.

I Use of a collision-resistant hash function

Ronald Cramer and Victor Shoup. ”A practical public key
cryptosystem provably secure against adaptive chosen ciphertext
attack.” in proceedings of Crypto 1998, LNCS 1462.
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Key Generation

I G a cyclic group of order q with two distinct, random
generators g1, g2

I Pick 5 random values (x1, x2, y1, y2, z) in {0, . . . , q − 1}
I c = g x1

1 g x2
2 , d = g y1

1 g y2
2 , h = g z

1

I Public key: (c , d , h), with G , q, g1, g2

I Secret key: (x1, x2, y1, y2, z)
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Encryption of m ∈ G with (G , q, g1, g2, c , d , h)

I Pick a random k ∈ {0, . . . , q − 1}
I Calculate: u1 = gk

1 , u2 = gk
2

I e = hkm

I α = H(u1, u2, e)

I v = ckdkα

I Ciphertext: (u1, u2, e, v)
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Decryption of (u1, u2, e, v) with (x1, x2, y1, y2, z)

I Compute α = H(u1, u2, e)

I Verify ux1
1 ux2

2 (uy1
1 uy2

2 )α = v

I m = e/(uz1)

It works because

uz1 = gkz
1 = hk

m = e/hk

And because

v = ckdkα = (g x1
1 g x2

2 )k(g y1
1 g y2

2 )kα

ux1
1 ux2

2 (uy1
1 uy2

2 )α = gkx1
1 gkx2

2 (gky1
1 gky2

2 )α
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Symetric Encryption

Two kinds of symetric encryption:

I block cipher (fixed plaintext size) DES AES

I stream cipher (unlimited plaintext size) RC4, E0, Crypto-1

To encrypt and to decrypt the same secrete key K is used !
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Data Encryption Standard, (call in 1973)

Lucifer designed in 1971 by Horst Feistel at IBM.

I Block cipher, encrypting 64-bit blocks
Uses 56 bit keys
Expressed as 64 bit numbers (8 bits parity checking)

DESP

K

C
64

56

I First cryptographic standard.
I 1977 US federal standard (US Bureau of Standards)
I 1981 ANSI private sector standard
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DES — overall form

I 16 rounds Feistel cipher + key-scheduler.

I Key scheduling algorithm derives subkeys Ki

from original key K .

I Initial permutation at start, and inverse
permutation at end.

I f consists of two permutations and an
s-box substitution.

Li+1 = Ri and Ri+1 = Li ⊕ f (Ri ,Ki )
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DES — Subkey generation

First, produce two subkeys K1 and K2:

K1 = P8(LS1(P10(key)))

K2 = P8(LS2(LS1(P10(key))))

where P8, P10, LS1 and LS2 are bit substitution operators.

I P10 : 10 bits to 10 bits
3 5 2 7 4 10 1 9 8 6

I P8 : 10 bits to 8 bits
6 3 7 4 8 5 10 9

I LS1 (”left shift 1 bit” on 5 bit words) : 10 bits to 10 bits
2 3 4 5 1 7 8 9 10 6

I LS2 (”left shift 2 bit” on 5 bit words) : 10 bits to 10 bits
3 4 5 1 2 8 9 10 6 7
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DES — Before round subkey

Each half of the key schedule state is rotated left by a number of
places.

# Rds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Left 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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DES — 1 round

L i−1 R i−1

P−Box Permutation

Left Shift Left Shift

S−Box Substitution

Compression Permutation

Expansion Permutation

RL i i

32 48

28

i−1K

K i

(b1b6, b2b3b4b5), Cj represents the binary value in the row b1b6

and column b2b3b4b5 of the Sj box.
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S-Boxes: S1, S2, S3, S4

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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S-Boxes: S5, S6, S7 and S8

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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Permutation P

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25
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Decryption DES

Use inverse sequence key.

I IP(C ) = IP(IP−1(R16||L16)

I L′0 = R16 and R ′0 = L16

L′1 = R ′0 = L16 = R15

R ′1 = L′0 ⊕ f (R ′0,K
′
0)

R ′1 = R16 ⊕ f (L16,K15)

R ′1 = R16 ⊕ f (R15,K15)

R ′1 = L15

Recall Li+1 = Ri and Ri+1 = Li ⊕ f (Ri ,Ki )
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Property of DES

DES exhibits the complementation property, namely that

EK (P) = C ⇔ EK (P) = C

where x is the bitwise complement of x . EK denotes encryption
with key K . Then P and C denote plaintext and ciphertext blocks
respectively.
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Anomalies of DES

I Existence of 6 pairs of semi-weak keys: Ek1(Ek2(x)) = x .
I 0x011F011F010E010E and 0x1F011F010E010E01
I 0x01E001E001F101F1 and 0xE001E001F101F101
I 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
I 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
I 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
I 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1
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Security of DES

I No security proofs or reductions known
I Main attack: exhaustive search

I 7 hours with 1 million dollar computer (in 1993).
I 7 days with $10,000 FPGA-based machine (in 2006).

I Mathematical attacks
I Not know yet.
I But it is possible to reduce key space from 256 to 243 using

(linear) cryptanalysis.

I To break the full 16 rounds, differential cryptanalysis requires
247 chosen plaintexts (Eli Biham and Adi Shamir).

I Linear cryptanalysis needs 243 known plaintexts (Matsui, 1993)
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Triple DES

I Use three stages of encryption instead of two.

I Compatibility is maintained with standard DES (K2 = K1).

I No known practical attack
⇒ brute-force search with 2112 operations.
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Advanced Encryption Standard

I Block cipher, approved for use by US Government in 2002.
Very popular standard, designed by two Belgian
cryptographers Daemen et Rijmen en 1997, standard 2000.

I Block-size = 128 bits, Key size = 128, 192, or 256 bits.

I Uses various substitutions and transpositions + key
scheduling, in different rounds.

I Algorithm believed secure. Only attacks are based on side
channel analysis, i.e., attacking implementations that
inadvertently leak information about the key.

Key Size Round Number

128 10

192 12

256 14
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AES: High-level cipher algorithm

I KeyExpansion using Rijndael’s key schedule

I Initial Round: AddRoundKey
I Rounds:

1. SubBytes: a non-linear substitution step where each byte is
replaced with another according to a lookup table.

2. ShiftRows: a transposition step where each row of the state is
shifted cyclically a certain number of steps.

3. MixColumns: a mixing operation which operates on the
columns of the state, combining the four bytes in each column

4. AddRoundKey: each byte of the state is combined with the
round key; each round key is derived from the cipher key using
a key schedule.

I Final Round (no MixColumns)

1. SubBytes
2. ShiftRows
3. AddRoundKey
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AES: SubBytes

SubBytes: a non-linear substitution step where each byte is
replaced with another according to a lookup table.
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AES: ShiftRows

ShiftRows: a transposition step where each row of the state is
shifted cyclically a certain number of steps.
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AES: MixColumns

MixColumns: a mixing operation which operates on the columns of
the state, combining the four bytes in each column
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AES: AddRoundKey

AddRoundKey: each byte of the state is combined with the round
key; each round key is derived from the cipher key using a key
schedule.
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Key Schedule

Values of rci in hexadecimal
i 1 2 3 4 5 6 7 8 9 10

rci 01 02 04 08 10 20 40 80 1B 36

Round constant rconi =
[
rci 0016 0016 0016

]
where rci is:

rci =


1 if i = 1

2 · rci−1 if i > 1 and rci−1 < 8016

(2 · rci−1)⊕ 11B16 if i > 1 and rci−1 ≥ 8016

Equivalently: rci = x i−1, where the bits of rci are treated as the
coefficients of an element of GF(2)[x]/(x8 + x4 + x3 + x + 1),
rc10 = 3616 = 001101102 represents the polynomial
x5 + x4 + x2 + x .
AES uses up to rcon10 for AES-128 (as 11 round keys are needed),
up to rcon8 for AES-192, and up to rcon7 for AES-256.
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Key Schedule

RotWord as a one-byte left circular shift:
RotWord(

[
b0 b1 b2 b3

]
) =

[
b1 b2 b3 b0

]
SubWord as an application of the AES S-box.
SubWord(

[
b0 b1 b2 b3

]
) =

[
S(b0) S(b1) S(b2) S(b3)

]
Then for i = 0 . . . 4R − 1 Wi =
Ki if i < N

Wi−N ⊕ RotWord(SubWord(Wi−1))⊕ rconi/N if i ≥ N and i ≡ 0 (mod N)

Wi−N ⊕ SubWord(Wi−1) if i ≥ N > 6, and i ≡ 4 (mod N)

Wi−N ⊕Wi−1 otherwise.
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Key Schedule
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AES: Attacks

Not yet efficient Cryptanalysis on complete version, but Niels
Ferguson proposed in 2000 an attack on a versopn with 7 rounds
and 128 bits key.
But
Marine Minier, Raphael C.-W. Phan, Benjamin Pousse:
Distinguishers for Ciphers and Known Key Attack against Rijndael
with Large Blocks. AFRICACRYPT 2009: 60-76
Samuel Galice, Marine Minier: Improving Integral Attacks Against
Rijndael-256 Up to 9 Rounds. AFRICACRYPT 2008: 1-15
Side channel attacks using on optimized version (2005)

I Timing.

I Cache Default.

I Electric Consumptions.

I ..

There exists algebraic attacks ...
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Related Key Differential Cryptanalysis

X

C C’

X’

ENC

K

ENC

K’

δK

δC ?

δX

Principle

A picks X , δX , δK , obtains C = f (K ,X ) and C ′ = f (K ⊕
δK ,X ⊕ δX ), and determines if f is a random function or a
given block cipher

Problem: Finding δX , δK , δC such that (δX , δK → δC ) with a
high probability
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IDEA: International Data Encryption Algorithm 1991

Designed by Xuejia Lai and James Massey of ETH Zurich.
IDEA uses a message of 64-bit blocks and a 128-bit key,

Key schedule

I K1 to K6 for the first round are taken directly as the first
6 consecutive blocks of 16 bits.

I This means that only 96 of the 128 bits are used in each
round.

I 128 bit key undergoes a 25 bit rotation to the left, i.e.
the LSB becomes the 25th LSB.
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IDEA

Notation

I Bitwise eXclusive OR (denoted with a blue ⊕).

I Addition modulo 216 (denoted with a green �).

I Multiplication modulo 216+1, where the all-zero word
(0x0000) is interpreted as 216 (denoted by a red �).
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IDEA
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IDEA

After the eight rounds comes a final ”half round”.

The best attack which applies to all keys can break IDEA reduced
to 6 rounds (the full IDEA cipher uses 8.5 rounds) Biham, E. and
Dunkelman, O. and Keller, N. ”A New Attack on 6-Round IDEA”.

• Blowfish, invented by Schneier to be fast, compact, easy to
implement, and to have variable key length (up to 448 bits),
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IDEA

After the eight rounds comes a final ”half round”.

The best attack which applies to all keys can break IDEA reduced
to 6 rounds (the full IDEA cipher uses 8.5 rounds) Biham, E. and
Dunkelman, O. and Keller, N. ”A New Attack on 6-Round IDEA”.

• Blowfish, invented by Schneier to be fast, compact, easy to
implement, and to have variable key length (up to 448 bits),
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Others Symmetric Encryption Schemes

Blowfish, Serpent, Twofish, 3-Way, ABC, Akelarre, Anubis, ARIA,
BaseKing, BassOmatic, BATON, BEAR and LION, C2, Camellia,
CAST-128, CAST-256, CIKS-1, CIPHERUNICORN-A,
CIPHERUNICORN-E, CLEFIA, CMEA, Cobra, COCONUT98,
Crab, CRYPTON, CS-Cipher, DEAL, DES-X, DFC, E2, FEAL,
FEA-M, FROG, G-DES, GOST, Grand Cru, Hasty Pudding Cipher,
Hierocrypt, ICE, IDEA, IDEA NXT, Intel Cascade Cipher, Iraqi,
KASUMI, KeeLoq, KHAZAD, Khufu and Khafre, KN-Cipher,
Ladder-DES, Libelle, LOKI97, LOKI89/91, Lucifer, M6, M8,
MacGuffin, Madryga, MAGENTA, MARS, Mercy, MESH,
MISTY1, MMB, MULTI2, MultiSwap, New Data Seal, NewDES,
Nimbus, NOEKEON, NUSH, Q, RC2, RC5, RC6, REDOC, Red
Pike, S-1, SAFER, SAVILLE, SC2000, SEED, SHACAL, SHARK,
Skipjack, SMS4, Spectr-H64, Square, SXAL/MBAL, TEA, Treyfer,
UES, Xenon, xmx, XTEA, XXTEA, Zodiac.
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MITM : DOUBLE DES

C = ENCk2(ENCk1(P))
P = DECk1(DECk2(C ))
Brute force attaque : 2k1 ∗ 2k2 = 2k1+k2

DECk2(C ) = DECk2(ENCk2 [ENCk1(P)])
DECk2(C ) = ENCk1(P)
Hence, the attacker can compute :

I ENCk1(P) for all values of k1

I DECk2(C ) for all possible values of k2,

for a total of 2k1 + 2k2
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Electronic Book Code (ECB)

Each block of the same length is encrypted separately using the
same key K . In this mode, only the block in which the flipped bit
is contained is changed. Other blocks are not affected.
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ECB Encryption Algorithm

algorithm EK (M)
if (|M| mod n 6= 0 or |M| = 0) then return FAIL
Break M into n-bit blocks M[1] . . .M[m]
for i = 1 to m do C [i ] = EK (M[i ])
C = C [1] . . .C [m]
return C
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ECB Decryption Algorithm

algorithm DK (C )
if (|C | mod n 6= 0 or |C | = 0) then return FAIL
Break C into n-bit blocks C [1] . . .C [m]
for i = 1 to m do M[i ] = DK (C [i ])
M = M[1] . . .M[m]
return M
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Cipher-block chaining (CBC)

If the first block has index 1, the mathematical formula for CBC
encryption is

Ci = EK (Pi ⊕ Ci−1),C0 = IV

while the mathematical formula for CBC decryption is

Pi = DK (Ci )⊕ Ci−1,C0 = IV

CBC has been the most commonly used mode of operation.
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The cipher feedback (CFB)

A close relative of CBC:

Ci = EK (Ci−1)⊕ Pi

Pi = EK (Ci−1)⊕ Ci

C0 = IV
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Output feedback (OFB)

Because of the symmetry of the XOR operation, encryption and
decryption are exactly the same:

Ci = Pi ⊕ Oi

Pi = Ci ⊕ Oi

Oi = EK (Oi−1)

O0 = IV
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ECB vs Others
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EFAIL 13 may 2018

A vulnerability in the OpenPGP and S/MIME technologies
Recall:

I S/MIME: Secure/Multipurpose Internet Mail Extensions

I PGP: Prety Good Privacy

Even the emails collected years ago can be leaked !
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EFAIL: Principle

1. Attacker intercepts encrypted emails sent to the victim.

2. Attaker change the body of the victim’s encryp[ted email and
send it to the victim

3. The victim decrypts the email

4. Extract the plaintext through an URL

5. Attacker read plaintexts
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EFAIL : https://efail.de/

Modified email sends to the victim

Mail client will decrypt and see the following

It just sends the cleartext to the intruder !

https://efail.de/
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EFAIL: CBC Gadget

(a) Intruder knows green plaintext then deducs (b)

(c)
Modify IV to inject PC0 and PC1
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EFAIL: Prevention

I No decryption in email client

I Disable HTML rendering

I Patch

I Upload OpenPGP and S/MIME Standard
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Linear Feedback Shift Register

S
(t)
`−1 S

(t)
`−2 S

(t)
1 S

(t)
0

c1 c2
. . .

. . .

. . .

. . .

. . .

. . .

c`−1 c`

I Length of the register is `, s(0) is the seed

I ∀ci ∈ {0, 1}

∀t ≥ 0, s
(t+1)
`−1 =

∑̀
i=1

ci s
(t)
`−i

Shift : s
(t+1)
i = s

(t)
i+1,∀i , 0 ≤ i ≤ `− 2
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Example

Seed s(0) = 0010 and c1 = 1 c2 = 0 c3 = 1 and c4 = 0

0 0 1 0

1 0 1 01

s
(1)
3 = (s

(0)
3 · c1)⊕ (s

(0)
2 · c2)⊕ (s

(0)
1 · c3)⊕ (s

(0)
0 · c4)

= (0 · 1)⊕ (0 · 0)⊕ (1 · 1)⊕ (0 · 0)

= 1
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Example first output bit

c1 = 1 c2 = 0 c3 = 1 and c4 = 0

s
(1)
2 = s

(0)
3 , s

(1)
1 = s

(0)
2 , and s

(1)
0 = s

(0)
1

1 0 0 1 0

1 0 1 0
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Definitions

Period

A serie (sn)n∈N is periodic of perido p if sn+p = s + n, ∀n.

Retroaction polynomial

p(X ) ∈ F2[X ]:

p(X ) = 1 +
∑̀
i=1

ciX
i
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A5/1 used for GSM in Europe 1994

Red bits are used to determine the majority amont 3 values.
Winner registers are shift.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Output

x19 + x18 + x17 + x14 + 1

x22 + x21 + 1

x23 + x22 + x21 + x8 + 1
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Attack on A5/1

I 1997, Golic attack in 240.16

I 2000, Alex Biryukov, Adi Shamir and David Wagner : few
minutes with 2 minutes of plain communication (using in total
300 Go data, in 248 steps).

I 2000 Eli Biham et Orr Dunkelman attack in 239.91 with 220.8

bits fo data.

I Improvement by Maximov et al for one minute of computation
and few clear secands of plain communication.
Maximov, Alexander; Thomas Johansson; Steve Babbage
(2004). ”An Improved Correlation Attack on A5/1”. Selected
Areas in Cryptography 2004: 1–18.
Barkan, Elad; Eli Biham (2005). ”Conditional Estimators: An
Effective Attack on A5/1”. Selected Areas in Cryptography
2005: 1–19.

I 13 December 2013, with Snowden affirmations, NSA can
listen GSM communications
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RC4 by Ron Rivest in 1987

”Rivest Cipher 4” or ”Ron’s Code” is a stream cipher used in TLS
(Transport Layer Security) and WEP (Wired Equivalent Privacy).

I The key-scheduling algorithm (KSA)

I The pseudo-random generation algorithm (PRGA)
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KSA use a key of length between 40 – 128 bits

I Array ”S” is initialized to the identity permutation.

I 256 iterations with mixes of bytes of the key at the same time.

j := 0

for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256

swap values of S[i] and S[j]

endfor
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Pseudo-Random Generation Algorithm (PRGA)

i := 0; j := 0;

while GeneratingOutput:

i := (i + 1) mod 256

j := (j + S[i]) mod 256

swap values of S[i] and S[j]

K := S[(S[i] + S[j]) mod 256]

output K
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Recent attacks on RC4

I Fluhrer, Mantin and Shamir attack 2001

I Klein’s attack 2005

I John Leyden (2013-09-06). ”That earth-shattering NSA
crypto-cracking: Have spooks smashed RC4?”

I “Fresh revelations from whistleblower Edward Snowden suggest that
the NSA can crack TLS/SSL connections, the widespread
technology securing HTTPS websites and virtual private networks
(VPNs).”

I “ Attack relies on statistical flaws in the keystream generated by the
RC4 algorithm. It relies on getting a victim to open a web page
containing malicious JavaScript code that repeatedly tries to log
into Google’s Gmail, for example. This allows an attacker to get
hold of a bulk of traffic needed to perform cryptanalysis.”

Nadhem AlFardan, Dan Bernstein, Kenny Paterson, Bertram
Poettering and Jacob Schuldt. ”On the Security of RC4 in TLS”.
Royal Holloway University of London. Retrieved March 13, 2013.
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RC4 bad

int main (int argc , char * argv []) {

unsigned char S [256] , c;

unsigned char key [] = KEY;

int klen = strlen ( key );

int i,j,k;

/* Init S[] */

for (i =0; i <256; i++)

S[i] = i;

/* Scramble S[] with the key */

j = 0;

for (i =0; i <256; i++) {

j = (j+S[i]+ key [i% klen ]) % 256;

S[i] ^= S[j];

S[j] ^= S[i];

S[i] ^= S[j];

}

/* Generate the keystream and cipher the input stream */

i = j = 0;

while ( read (0, &c, 1) > 0) {

i = (i +1) % 256;

j = (j+S[i]) % 256;

S[i] ^= S[j];

S[j] ^= S[i];

S[i] ^= S[j];

c ^= S[(S[i]+S[j]) % 256];

write (1, &c, 1);

}}
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RC4 Good

int main (int argc , char * argv []) {

unsigned char S [256] , c;

unsigned char key [] = KEY;

int klen = strlen ( key );

int i,j,k;

/* Init S[] */

for (i =0; i <256; i++)

S[i] = i;

/* Scramble S[] with the key */

j = 0;

for (i =0; i <256; i++) {

j = (j+S[i]+ key [i% klen ]) % 256;

k = S[i];

S[i] = S[j];

S[j] = k;

}

/* Generate the keystream and cipher the input stream */

i = j = 0;

while ( read (0, &c, 1) > 0) {

i = (i +1) % 256;

j = (j+S[i]) % 256;

k = S[i];

S[i] = S[j];

S[j] = k;

c ^= S[(S[i]+S[j]) % 256];

write (1, &c, 1);

}}
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Swap

Classical way (using temporary variable)

tmp = a

a = b

b = tmp

Without but with + or XOR

a = a+b

b = a-b

a = a-b

a = a^b

b = a^b

a = a^b
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Swap

The buggy adaptation

S[i] = S[i]^S[j]

S[j] = S[i]^S[j]

S[i] = S[i]^S[j]

because when i = j , we have

S[i] = S[i]^S[i]

S[i] = S[i]^S[i]

S[i] = S[i]^S[i]

I instead of exchanging a value with itself, we set it to 0

I the RC4 state fills up with 0

I the bitstream quickly degrades to a sequence of 0

I encryption does not happen anymore
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“Classifications” of Hash Functions

Unkeyed Hash function

I Modification Code Detection (MDC)

I Data integrity

I Fingerprints of messages

I Other applications

Keyed Hash function

I Message Authentication Code (MAC)

I Password Verification in uncrypted password-image files.

I Key confirmation or establishment

I Time-stamping

I Others applications
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Hash Functions

A hash function H takes as input a bit-string of any finite length
and returns a corresponding ’digest’ of fixed length.

h : {0, 1}∗ → {0, 1}n

H(Alice) =

Definition (Pre-image resistance (One-way) OWHF)

Given an output y , it is computationally infeasible to compute
x such that

h(x) = y
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Properties of hash functions

2nd Pre-image resistance (weak-collision resistant) CRHF

Given an input x , it is computationally infeasible to compute x ′

such that
h(x ′) = h(x)

Collision resistance (strong-collision resistant)

It is computationally infeasible to compute x and x ′ such that

h(x) = h(x ′)
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Basic construction of hash functions
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Basic construction of hash functions
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Basic construction of hash functions (Merkle-Damg̊ard)

f : {0, 1}m → {0, 1}n

1. Break the message x to hash in blocks of size m − n:

x = x1x2 . . . xt

2. Pad xt with zeros as necessary.

3. Define xt+1 as the binary representation of the bit length of x .

4. Iterate over the blocks:

H0 = 0n

Hi = f (Hi−1||xi )
h(x) = Ht+1
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Basic construction of hash functions

Theorem

If the compression function f is collision resistant, then the
obtained hash function h is collision resistant.
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Hash functions based on (MDC) block ciphers
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MD5 by Ron Rivest in 1991

For each 512-bit block of plaintext

Ki denotes a 32-bit constant, different for each operation Addition
denotes addition modulo 232.
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MD5 by Ron Rivest in 1991

There are four possible functions F; a different one is used in each
round:

I F (B,C ,D) = (B ∧ C ) ∨ (¬B ∧ D)

I G (B,C ,D) = (B ∧ D) ∨ (C ∧ ¬D)

I H(B,C ,D) = B ⊕ C ⊕ D

I I (B,C ,D) = C ⊕ (B ∨ ¬D)
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MD5 Cryptanalysis
I In 1993, Den Boer and Bosselaers gave a ”pseudo-collision” two

different initialization vectors of compression function which
produce an identical digest.

I In 1996, Dobbertin announced a collision of the compression
function of MD5.

I 17 August 2004, collisions for the full MD5 by Xiaoyun Wang,
Dengguo Feng, Xuejia Lai, and Hongbo Yu.

I On 1 March 2005, Arjen Lenstra, Xiaoyun Wang, and Benne de
Weger demonstrated construction of two X.509 certificates with
different public keys and the same MD5 hash value.

I A few days later, Vlastimil Klima able to construct MD5 collisions
in a few hours on a single notebook computer.

I On 18 March 2006, Klima published an algorithm that can find a
collision within one minute on a single notebook computer, using a
method he calls tunneling.

I On 24 December 2010, Tao Xie and Dengguo Feng announced the
first published single-block (512 bit) MD5 collision.
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SHA-1
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List of Hash Functions

Algorithm Output size Internal state size Block size Length size Word size Collision
HAVAL 256/.../128 256 1024 64 32 Yes

MD2 128 384 128 No 8 Almost
MD4 128 128 512 64 32 Yes
MD5 128 128 512 64 32 Yes

PANAMA 256 8736 256 No 32 Yes
RadioGatún Arbitrarily long 58 words 3 words No 1-64 No

RIPEMD 128 128 512 64 32 Yes
RIPEMD 128/256 128/256 512 64 32 No
RIPEMD 160/320 160/320 512 64 32 No

SHA-0 160 160 512 64 32 Yes
SHA-1 160 160 512 64 32 With flaws

SHA-256/224 256/224 256 512 64 32 No
SHA-512/384 512/384 512 1024 128 64 No

Tiger(2) 192/160/128 192 512 64 64 No
WHIRLPOOL 512 512 512 256 8 No
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SHA-3 Zoo
64 Submissions, 54 selected,

1. * BLAKE Jean-Philippe Aumasson

2. Blue Midnight Wish Svein Johan Knapskog

3. CubeHash Daniel J. Bernstein preimage

4. ECHO Henri Gilbert

5. Fugue Charanjit S. Jutla

6. * Grøstl Lars R. Knudsen

7. Hamsi Özgül Küçk̈

8. * JH Hongjun Wu preimage

9. * Keccak The Keccak Team

10. Luffa Dai Watanabe

11. Shabal Jean-François Misarsky

12. SHAvite-3 Orr Dunkelman

13. SIMD Gaëtan Leurent

14. * Skein Bruce Schneier
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SHA-3 = Keccak (sponge + compression)

Authors

I Guido Bertoni (Italy) of STMicroelectronics,

I Joan Daemen (Belgium) of STMicroelectronics,

I Michaël Peeters (Belgium) of NXP Semiconductors, and

I Gilles Van Assche (Belgium) of STMicroelectronics.
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SHA-3 = Keccak

h : {1, 0}∗ → {1, 0}n

I MD5: n = 128 (Ron Rivest, 1992)

I SHA-1: n = 160 (NSA, NIST, 1995)

I SHA-2: n ∈ {224, 256, 384, 512} (NSA, NIST, 2001)

I SHA-3: n is arbitrary (NSA, NIST, 2012)
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SHA-3 = Keccak is a sponge based hash

H(P0|P1| . . . |Pi ) = Z0|Z1| . . . |Zl

b = r + c

I r bits of rate

I c bits of capacity (security parameter)
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Inside Keccak

I 7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
I ... from toy over lightweight to high-speed ...
I SHA-3 instance: r = 1088 and c = 512

I permutation width: 1600
I security strength 256: post-quantum sufficient

I Lightweight instance: r = 40 and c = 160
I permutation width: 200
I security strength 80: same as (initially expected from) SHA-1
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SHA-3 = Keccak f Setting
Defined for word of size, w = 2l bits (if l = 6 64-bit words )
State is 5× 5× w array of bits (a[i][j][k])

I state = 5× 5 lanes , each containing 2l bits

I ( 5× 5)-bit slices, 2l of them
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SHA-3 = Keccak

The basic block permutation function consists of 12 + 2× l
iterations of following sub-rounds.

1. step Θ

2. step ρ

3. step π

4. step χ

5. step ι
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Keccak Θ

1. Compute the parity of each of the 5-bit columns

2. ⊕ the sum of a[x-1][][z] and of a[x+1][][z-1] into a[x][y][z].

a[i ][j ][k]⊕ = parity(a[0..4][j − 1][k])⊕ parity(a[0..4][j + 1][k − 1])
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Keccak ρ

Bitwise rotate each of the 25 words by a different rotation.

a[0][0] is not rotated, and for all 0 ≤ t < 24
a[i ][j ][k] = a[i ][j ][k − (t + 1)(t + 2)/2], where(
i
j

)
=

(
3 2
1 0

)t (
0
1

)
.
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Keccak π

Permute the 25 words in a fixed pattern.

a[i ][j ] = a[j ][2i + 3j ]
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Keccak χ

Bitwise combine along rows, using a = a⊕ (¬b&c).

a[i ][j ][k]⊕ = ¬a[i ][j + 1][k]&a[i ][j + 2][k]

This is the only non-linear operation in SHA-3.
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Keccak ι

Exclusive-or a round constant into one word of the state.

I In round n, for 0 ≤ m ≤ l , a[0][0][2m − 1] is exclusive-ORed
with bit m + 7n of a degree-8 LFSR (Linear Feedback Shift
Register) sequence.

This breaks the symmetry that is preserved by the other
sub-rounds.



148/213

Why Keccak
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MAC based on block ciphers
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DMAC (CBC-MAC variant)

Example

c1 := m1;
for i = 2 to n do:

zi := ci−1 ⊕mi

ci := E(zi );
tag := E′(cn);
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HMAC

Example

z1 := k‖m1;
c1 := H(z1);
for i = 2 to n do:;

zi := ci−1‖mi

ci := H(zi )
z ′ := k ′||cn;
tag := H(z ′);
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Signature Primitives

I Key Generation

I Signature

I Verification
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RSA Signature

RSA Encryption

I Public key (n, e) and private key d s.t ed = 1 mod φ(n)

I Encryption: me mod n

I Decryption: cd mod n

RSA Signature

I Public key (n, e) and private key d s.t ed = 1 mod φ(n)

I Signature: σ = md mod n

I Verification: σe = m mod n
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Unforgeability

I Existential forgery (existential unforgeability, EUF): Forge at
leat one couple (m, σ)

I Selective forgery (selective unforgeability, SUF): m is imposed
by the challenger before the attack.

I Universal forgery (universal unforgeability, UUF): for any
message.
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Exercice RSA

Show that RSA signature is not EUF :

σ(m1) · σ(m2) = σ(m1 ·m2)

Hence m′ = m1 ·m2 where σ(m′) = σ(m1 ·m2)
To avoid that we need to hash the messages before signing them.
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Blind Signature

RSA Encryption

I Public key (n, e) and private key d s.t ed = 1 mod φ(n)

I Encryption: me mod n and Decryption: cd mod n

A→ S : {m}pk
A→ S : Sign({m}pk , skS)

Sign({m}pk , skS) = {Sign(m, skS)}pk

RSA Blind Signature

A→ S : {m}pk = me mod n
A→ S : Sign({m}pk , skS) = (me)d

(me)d = Sign({m}pk , skS) = {Sign(m, skS)}pk = (md)e
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Signature in Practice
Signature over large file is not so efficient : HASH-and-SIGN

Standards

I PKCS#1 v1.5: no security proof.

I PKCS#1 v2.1: PSS proposed in 1996 by Bellare et
Rogaway
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Elgamal Signature

Key generation

I Randomly choose a secret key x with 1 < x < p − 1

I Compute y = g x mod p

I The public key is (p, g , y)

I The secret key is x
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Elgamal Signature

Signature generation

I Choose a random k st, 1 < k < p − 1 and
gcd(k , p − 1) = 1

I Compute r ≡ gk (mod p)

I Compute s ≡ (H(m)− xr)k−1 (mod p − 1)
Then the pair (r , s) is the digital signature of m.
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Elgamal Signature

Verification of signature (r , s) of a message m

I 0 < r < p and 0 < s < p − 1.

I gH(m) ≡ y r r s (mod p)
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Elgamal Signature Correctness

H(m) ≡ xr + sk (mod p − 1)
Hence Fermat’s little theorem implies

gH(m) ≡ g xrgks (1)

≡ (g x)r (gk)s (2)

≡ (y)r (r)s (mod p). (3)

(4)

Next: Elliptic Curve DSA
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DSA : Digital Signature Algorithm

DSS (Digital Signature Standard by Kravitz) adopted in 1993
(FIPS 1186) by NIST.

Key Generation

I Choose random x , where 0 < x < q

I Choose g , a number whose multiplicative order modulo p
is q.

I Calculate y = g x mod p

I Public key is (p, q, g , y)

I Private key is x
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DSA :

Let H be the hashing function and m the message

Signature

I Generate a random value k where 0 < k < q

I Calculate r =
(
gk mod p

)
mod q

I Calculate s = k−1 (H (m) + xr) mod q
The signature is (r , s)
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DSA :

Verification of (r , s) with m

I Reject the signature if 0 < r < q or 0 < s < q is not
satisfied.

I Calculate w = s−1 mod q

I Calculate u1 = H (m) · w mod q

I Calculate u2 = r · w mod q

I Calculate v = ((gu1yu2) mod p) mod q
The signature is valid if v = r
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DSA : Correctness
If g = h(p − 1)/q mod p it follows that gq = hp − 1 = 1 mod p
by Fermat’s little theorem. Since g > 1 and q is prime, g must
have order q. The signer computes s = k−1(H(m) + xr) mod q

k ≡ H(m)s−1 + xrs−1

≡ H(m)w + xrw (mod q)

Since g has order q (mod p) we have

gk ≡ gH(m)wg xrw

≡ gH(m)wy rw

≡ gu1yu2 (mod p)

r = (gk mod p) mod q

= (gu1yu2 mod p) mod q

= v
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Pairing

Pairing

Let G1,G2 be two additive cyclic groups of prime order q, and
GT another cyclic group of order q written multiplicatively. A
pairing is a map: e : G1×G2 → GT , which satisfies the following
properties:

Bilinearity : ∀a, b ∈ F ∗q , ∀P ∈ G1,Q ∈ G2 : e (aP, bQ) =

e (P,Q)ab

Non-degeneracy e 6= 1

Computability There exists an efficient algorithm to compute
e
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Boneh-Lynn-Shacham 2004

I Key generation : x ← [0, r − 1]. Pprivate key is x , Public key,
g x

I Signing : h = H(m), σ = hx

I Verification : e(σ, g) = e(H(m), g x)
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Chameleon Hashing (Hugo Krawczyk and Tal Rabin 1997

Properties

I Anyone that knows the public key can compute the
associated hash function.

I For those who don’t know the trap do or the function is
collision resistant.

I However the holder of the trap door information can easil
find collisions for every given input.
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Chameleon Hashing

Let p and q be two primes, such that p = kq + 1
Private key x and public key y = g x

Cham − hash(m, r) = gmy r

Verification : check equality
Collision :
Cham − hash(m, r) = gmy r = Cham − hash(m′, r ′) = gm′

y r
′

finding r ′ such that m + rx = m′ + xr ′
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Chameleon Signature
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FHE, 2009, G. Gentry

Rivest et al. 1978 “Can we perform any operation on encrypted
data without decrypting the data.”

∀f , f ({m1}k , . . . , {mp}k) = {g(m1, . . . ,mp)}k
Partial Homomorphic Encryption: Elgamal, RSA, Paillier,
Naccache-Stern ...
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DGHV encryption scheme

I Secret key is p, an odd number in [2η−1, 2η[, where η is the
so-called security parameter.

I m ∈ {0, 1}
I Encryption:

c = q · p + 2 · r + m

where q is a large random number (q ≈ η3) and r a small
random number (r ≈ 2

√
η), such that 2 · r ≥ p/2.

I Decryption:
m = (c mod p) mod 2

This encryption scheme is somewhat homomorphic for addition
and multiplication (verifying this is a feasible exercise for high
school students), hence for all boolean function f .
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Homomorphic properties

if c0 = q0 · p + 2 · r0 + m0 and c1 = q1 · p + 2 · r1 + m1 then

I c0 + c1 = p · (q0 + q1) + 2 · (r0 + r1) + m0 + m1

I c0·c1 = p·(c1q0+c0q1+q0q1)+2·(2r0r1+r1m0+r0m1)+m0·m1
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Introduction

y2 = x3 + ax + b

E (K ) = {(x , y) such that y2 = x3 + ax + b} plus an extra point
“at infinite”
Weierstrass form if ∆ = −16(4a3 + 27b2) 6= 0 (if K is not of
characteristic 2 or 3).
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Laws

Theorem

I Addition law on E (K )
I Associativity: (P1 + P2) + P3 = P1 + (P2 + P3)
I Commutativity: P1 + P2 = P2 + P1

I Neutral element is ∞: P +∞ = P
I Inverse: Given P on E , there exists P ′ on E with

P + P ′ =∞ (usually denoted −P)

I Three aligned points sum to neutral element often
denoted zero
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Laws
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Addition

P + R + Q = 0⇒ R = −(P + Q)

R + S + 0 = 0⇒ R = −S
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“Elliptic Discrete Logarithm”

Hard Problem

Finding k, given P and Q = kP. is computationally intractable
for large values of k .
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Cryptosystem: ECDH

Alice’s key is (dA,QA) where QA = dAG .

DH like Protocol

1. Alice sends QA,G to Bob.

2. Bob computes k = dBQA.

3. Bob sends to Alice QB

4. Alice computes k = dAQB .
The shared key is xk (the x coordinate of the point).

The number calculated by both parties is equal, because
k = dAQB = dAdBG = dBdAG = dBQA = k .
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ECDSA (Digital Signature Algorithm) I

Alice private key dA and a public key QA (where QA = dAG ).

Signature generation algorithm

1. Calculate e = HASH(m), where HASH is a cryptographic
hash function, such as SHA-1.

2. Select a random integer k from [1, n − 1].

3. Calculate r = x1( mod n), where (x1, y1) = kG .
If r = 0, go back to step 2.

4. Calculate s = k−1(e + rdA)( mod n).
If s = 0, go back to step 2.

5. The signature is the pair (r , s).
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ECDSA (Digital Signature Algorithm) II

Signature verification algorithm

1. Verify that r and s are integers in [1, n − 1].
If not, the signature is invalid.

2. Calculate e = HASH(m), where HASH is the same
function used in the signature generation.

3. Calculate w = s−1( mod n).

4. Calculate u1 = ew( mod n) and u2 = rw( mod n).

5. Calculate (x1, y1) = u1G + u2QA.

6. The signature is valid if r = x1( mod n), invalid
otherwise.
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ECDSA (Digital Signature Algorithm)

s = k−1(e + rdA)( mod n)

Hence
k = s−1(e + rdA)( mod n) = w(e + rdA) = we +wrdA = u1 + u2dA
since w = s−1, u1 = we and u2 = wr

(x1, y1) = u1G + u2QA

Hence (x1, y1) = u1G + u2dAG = kG
because QA = dAG and k = u1 + u2dA
We conclude that r = x1( mod n) by construction.
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Rivest Adleman Dertouzos 1978

“Going beyond the storage/retrieval of encrypted data by
permitting encrypted data to be operated on for interesting
operations, in a public fashion?”
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Partial Homomorphic Encryption

Definition (additively homomorphic)

E (m1)⊗ E (m2) ≡ E (m1 ⊕m2).

Applications

I Electronic voting
I Secure Fonction Evaluation
I Private Multi-Party Trust Computation
I Private Information Retrieval
I Private Searching
I Outsourcing of Computations (e.g., Secure Cloud

Computing)
I Private Smart Metering and Smart Billing
I Privacy-Preserving Face Recognition
I . . .
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Brief history of partially homomorphic cryptosystems

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)

Year Name Security hypothesis Expansion
1977 RSA factorization

1982 Goldwasser - Micali quadratic residuosity log2(n)

1994 Benaloh higher residuosity > 2

1998 Naccache - Stern higher residuosity > 2

1998 Okamoto - Uchiyama p-subgroup 3

1999 Paillier composite residuosity 2

2001 Damgaard - Jurik composite residuosity d+1
d

2005 Boneh - Goh - Nissim ECC Log

2010 Aguilar-Gaborit-Herranz SIVP integer lattices

Expansion factor is the ration ciphertext over plaintext.
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Scheme Unpadded RSA

If the RSA public key is modulus m and exponent e, then the
encryption of a message x is given by

E(x) = xe mod m

E(x1) · E(x2) = xe1 x
e
2 mod m

= (x1x2)e mod m

= E(x1 · x2)
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Scheme ElGamal

In the ElGamal cryptosystem, in a cyclic group G of order q with
generator g , if the public key is (G , q, g , h), where h = g x and x is
the secret key, then the encryption of a message m is
E(m) = (g r ,m · hr ), for some random r ∈ {0, . . . , q − 1}.

E(m1) · E(m2) = (g r1 ,m1 · hr1)(g r2 ,m2 · hr2)

= (g r1+r2 , (m1 ·m2)hr1+r2)

= E(m1 ·m2)
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Fully Homomorphic Encryption

Enc(a, k) ∗ Enc(b, k) = Enc(a ∗ b, k)

Enc(a, k) + Enc(b, k) = Enc(a + b, k)

f (Enc(a, k),Enc(b, k)) = Enc(f (a, b), k)

Fully Homomorphic encryption

I Craig Gentry (STOC 2009) using lattices

I Marten van Dijk; Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan using integer

I Craig Gentry; Shai Halevi. ”A Working Implementation
of Fully Homomorphic Encryption”

I · · ·
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Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : x0 = q0 · p
Secret key sk = p

Encryption of m ∈ {0, 1}

c = q · p + 2 · r + m

where q is a large random and r a small random.

Decryption of c

m = (c mod p) mod 2
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Simple SHE: SGHV Scheme [vDGHV10]

Public error-free element : x0 = q0 · p
Secret key sk = p

Encryption of m ∈ {0, 1}

c = q · p + 2 · r + m

where q is a large random and r a small random.

Decryption of c

m = (c mod p) mod 2
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Limitations

I Efficiency: HEtest: A Homomorphic Encryption Testing
Framework (2015)
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Boneh/Franklin

Using Weil pairing over elliptic curves and finte fields.

Phases

1. Setup

2. Extract

3. Encryption

4. Decryption
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Setup

Private Key Generator

Let G1 (with generator P) and G2 two public groups with paring
e.

I a random private master-key Km = s ∈ Z∗q,

I a public key Kpub = sP,

I a public hash function H1 : {0, 1}∗ → G ∗1 ,

I a public hash function H2 : G2 → {0, 1}n

I M = {0, 1}n and C = G ∗1 × {0, 1}
n
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Extract

How to create the public key for ID ∈ {0, 1}∗

I QID = H1 (ID)

I the private key dID = sQID which is given to the user.
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Encryption

Let Kpub be the PKG’s public key

How to compute c the cipher of m ∈M

I QID = H1 (ID) ∈ G ∗1 ,

I choose random r ∈ Z∗q,

I compute gID = e (QID ,Kpub) ∈ G2

I set c = (rP,m ⊕ H2 (g r
ID))

Kpub is independent of the recipient’s ID.
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Decryption

Given c = (u, v) ∈ C,

m = v ⊕ H2 (e (dID , u))
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Correctness

The encrypting entity uses H2 (g r
ID), while for decryption,

H2 (e (dID , u)) is applied.

H2 (e (dID , u)) = H2 (e (sQID , rP))

= H2 (e (QID ,P)rs)

= H2 (e (QID , sP)r )

= H2 (e (QID ,Kpub)r )

= H2 (g r
ID)

The security is based on Bilinear Diffie-Hellman Problem (BDH).
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Key Generation

The PKG has

I master secret z where 1 < z < q,

I public key Z = [z ].P

Generation of the private key

KU , for the user with identity IDU as follows:

KU = [
1

z + H1(IDU)
].P
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Encryption

To encrypt a non-repeating message M with identity, IDU and Z .

Encryption

I Create: id = H1(IDU)

I The sender generates r using r = H1(M||id)

I Generate
R = [r ].([id ].P + Z )

I Create the masked message:

S = M⊕ H2(g r )

I The encrypted output is: (R, S)
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Decryption

To decrypt a message encrypted to IDU , the receiver requires the
private key, KU from the PKG and the public value Z .

Decryption of (R,S)

I Compute id = H1(IDU)

I Compute: w = e(R,KU)

I M = S ⊕ H2(w)

I Verification r = H1(M||id), and only accept the message
if: [r ].([id ].P + Z ) ≡ R
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Correctness

w = e(R,KU)

= e([r ].([id ].P + Z ),KU)

= e([r ].([id ].P + [z ].P),KU)

= e([r(id + z)].P,KU)

= e([r(id + z)].P, [
1

(id + z)
].P)

= e(P,P)
r(id+z)
(id+z)

= g r

As a result:

S ⊕ H2(w) = (M⊕ H2(g r ))⊕ H2(w) = M
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Smooth Projective Hash Funciton : SPHF
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Application of SPHF : Honest Verifier ZPK
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SPHF
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Elgamal additif

I Secret key: s

I Public key: h = g .s

I Encrypt M: c = (u, v) = (g .r , g .r + M)

I Decrypt : M = v − u.s
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SPHF Elgamal CS02

Language of ciphertexts of M = 0

L = {cipherofElgamaladditive}

I Hashing key: hk = (α, β)

I Projection key: hp = α.g + β.h

I Hash value: H = α.u + β.u

I Porjection hash value: H ′ = hp.r
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Thank you for your attention.

Questions ?


	Presentation
	Un peu de cryptographie
	History of Cryptography
	Classical Asymmetric Encryptions
	Classical Symetric Encryptions
	DES
	3-DES
	AES
	IDEA
	Meet-in-the-middle Attack
	ECB
	CBC
	CFB
	OFB

	Efail
	LFSR
	Hash Functions and MAC
	MACs

	Signature
	FHE
	Elliptic Curves
	Partial and Full Homomorphic Encryption
	IBE :Boneh/Franklin
	IBE: Sakai-Kasahara
	SPHF

