Brandt's Fully Private Auction Protocol Revisited

Jannik Dreier¹, Jean-Guillaume Dumas², Pascal Lafourcade¹

¹Verimag and ²Laboratoire Jean Kuntzmann (LJK), Université Grenoble 1, CNRS, FRANCE

Africacrypt, Cairo, Egypt
June 23, 2013

Challenges in e-Auctions

- Competing parties:
 - Bidders/Buyers

Seller

• Auctioneer

• Many possible mechanisms: English, Dutch, Sealed Bid, ...

e-Auctions: Security Requirements

Fairness

Verifiability

Non-Repudiation

Non-Cancellation

Security Requirements

Privacy

Receipt-Freeness

Anonymity

Coercion-Resistance

1 Introduction

- 2 Brandt's Fully Private Auction Protocol
- 3 Analysis & Results
- **4** Conclusion

- 1 Introduction
- 2 Brandt's Fully Private Auction Protocol
- 3 Analysis & Results
- 4 Conclusion

Protocol by Brandt [Bra06]

- Completely distributed protocol, no authorities
- Distributed homomorphic n-out-of-n threshold ElGamal encryption
- Bidders compute function f where $f_{ij} = 1$ if bidder i won at price j, $f_{ij} \neq 1$ otherwise.
- Each bidder i only learns "his" f_{ij} , i.e. only if he won or lost
- Zero-Knowledge Proofs (ZKP) to protect against misbehaving parties

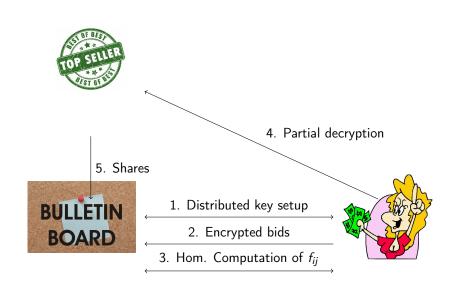
1. Distributed key setup

- 1. Distributed key setup
 - 2. Encrypted bids

- 1. Distributed key setup
 - 2. Encrypted bids
- 3. Hom. Computation of f_{ij}

4. Partial decryption

- 1. Distributed key setup
 - 2. Encrypted bids
- 3. Hom. Computation of f_{ij}



4. Partial decryption

5. Shares

- 1. Distributed key setup
 - 2. Encrypted bids
- 3. Hom. Computation of f_{ii}
 - 6. Missing shares for f_{ii}

For a public constant $Y \neq 1$:

$$b_{aj} = egin{cases} Y & ext{if } j = bid_a \\ 1 & ext{otherwise} \end{cases}$$

Example: $bid_1 = 3$, $bid_2 = 1$ and $bid_3 = 2$. Then

$$b_1 = \begin{pmatrix} b_{1,4} \\ b_{1,3} \\ b_{1,2} \\ b_{1,1} \end{pmatrix} = \begin{pmatrix} 1 \\ Y \\ 1 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ Y \end{pmatrix}, b_3 = \begin{pmatrix} 1 \\ 1 \\ Y \\ 1 \end{pmatrix}$$

Definition:

$$\tilde{f}_{ij}(X) = \left(\overbrace{\prod_{h=1}^{n} \prod_{d=j+1}^{k} X_{hd}}^{\text{bigger prices, all bidders}} \right) \cdot \left(\overbrace{\prod_{d=1}^{j-1} X_{id}}^{\text{lower prices, same bidder}} \right) \cdot \left(\overbrace{\prod_{h=1}^{i-1} X_{hj}}^{\text{ties using index}} \right), \ f_{ij} = \left(\tilde{f}_{ij}(b) \right)^{r_{i,j}}$$

Hence:

- 1 Introduction
- ② Brandt's Fully Private Auction Protocol
- 3 Analysis & Results
- 4 Conclusion

Attacking Privacy

- Observation: If $r_{ij} = 1$ for all i and j, then f is injective and efficiently invertible (proof in the paper).
- r_{ii} is jointly chosen by the bidders
- If malleable proofs of knowledge are used, a malicious bidder can set $r_{ii}=1$
- Allows the seller to invert f and obtain all bidders' private bids

When computing

$$\gamma_{ij}^{\mathsf{a}} = \left(ilde{f}_{ij}(lpha) \right)^{m_{ij}^{\mathsf{a}}}$$
 and $\delta_{ij}^{\mathsf{a}} = \left(ilde{f}_{ij}(eta)
ight)^{m_{ij}^{\mathsf{a}}}$,

wait until all other bidders published their γ^a_{ii} and δ^a_{ii} . Submit

$$\gamma_{ij}^{\omega} = \left(ilde{f}_{ij}(lpha)
ight) \cdot \left(\prod_{k
eq \omega} \gamma_{ij}^k
ight)^{-1} ext{ and } \delta_{ij}^{\omega} = \left(ilde{f}_{ij}(eta)
ight) \cdot \left(\prod_{k
eq \omega} \delta_{ij}^k
ight)^{-1}.$$

Then
$$r_{ij} = \sum_{a} m^a_{ij} = 1 - \sum_{a \neq \omega} m^a_{ij} + \sum_{a \neq \omega} m^a_{ij} = 1.$$

Proof of Knowledge of x:

	Peggy	Victor
Secret :	X	
Public :	$g, v = g^x$	g
	$z = g^r - $ $\leq $ $s = r + c \cdot x - $	2: c c
Check :		$g^s \stackrel{?}{=} z \cdot v^c$

Proof of Knowledge of x:

$$g^s = g^{r+c \cdot x} = g^r \cdot g^{x \cdot c} = z \cdot v^c$$

Proof of Knowledge of (1 - x) using Proof of Knowledge of x:

Peggy Mallory Victor

Secret:
$$x$$

Public: $g, v = g^x$ $g, w = gv^{-1} = g^{1-x}$ g

$$z = g^r \frac{1: z}{2: c} \Rightarrow y = z^{-1} \frac{1': y}{2: c} \Rightarrow c$$

$$z = r + c \cdot x \frac{3: s}{3: s} \Rightarrow u = c - s \frac{3': u}{3: s} \Rightarrow u = c -$$

Proof of Knowledge of (1 - x) using Proof of Knowledge of x:

Peggy Mallory Victor

Secret:
$$x$$

Public: $g, v = g^x$ $g, w = gv^{-1} = g^{1-x}$ g

$$z = g^r \frac{1: z}{2: c} y = z^{-1} \frac{1': y}{2': c} c$$

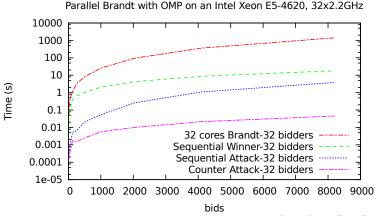
$$s = r + c \cdot x \frac{3: s}{3: s} u = c - s \frac{3': u}{3: s} c$$

Check: $g^s \stackrel{?}{=} z \cdot v^c$ $g^u \stackrel{?}{=} y \cdot w^c$

$$g^{u} = g^{c-s} = g^{c-r-c \cdot x} = g^{-r+(1-x) \cdot c} = g^{-r} \cdot g^{(1-x) \cdot c} = y \cdot w^{c}$$

How to invert *f*

- Bug in the $\mathcal{O}(nk^2)$ algorithm in the paper, corrected version in $\mathcal{O}(n^2k^2)$ in technical report [DDL12]
- With optimizations in $\mathcal{O}(nk)$
- Prototype implementation:



Privacy, second attack

Exploit the lack of authentication:

- Target one bidder
- Impersonate all other bidders
- Resubmit the targeted bidder's bid as their bids
- Impersonate the seller
- Obtain winning price=targeted bidder's bid

Verifiability:

- No authentication of the bids, hence no verification who actually submitted the bids
- $r_{ij} = 0$ implies $f_{ij} = 1$, hence several "winners" possible
- Partial decryption phase: Need to prove the use of the correct key, otherwise "nobody wins"

Other attacks

- Non-repudiation: Lack of authentication
- Fairness: An attacker can impersonate all bidders, hence controlling winner and winning price.

How to fix the protocol

Countermeasures against the identified issues:

- Use of non-interactive or non-malleable zero-knowledge proofs
- Authentication of all messages
- Bidders need to prove that the value x_a they use to decrypt is the same they used to generate their public key
- When computing the γ^a_{ij} and δ^a_{ij} the bidders can check if the product is equal to one if yes, they restart the protocol using different keys and random values

- 1 Introduction
- ② Brandt's Fully Private Auction Protocol
- 3 Analysis & Results
- 4 Conclusion

Conclusion

- Analyzed Brandt's Fully Private Auction Protocol
- Completely distributed protocol designed for high privacy
- However: No authentication of the messages
- Attacks on Verifiability, Privacy, Fairness and Non-Repudiation
- Malleable ZKPs allow for an efficient attack on privacy
- Corner cases can lead to unexpected results, but are detectable
- Proposed four simple fixes

Thank you for your attention!

Questions?

jannik.dreier@imag.fr

How to obtain full privacy in auctions. *International Journal of Information Security*, 5:201–216, 2006.

Let \mathbb{G}_q be a multiplicative subgroup of order q, prime, and g a generator of the group. We consider that $i,h\in\{1,\ldots,n\}$, $j,bid_a\in\{1,\ldots,k\}$ (where bid_a is the bid chosen by the bidder with index a), $Y\in\mathbb{G}_q\setminus\{1\}$. More precisely, the n bidders execute the following five steps of the protocol:

Mey Generation

Each bidder a, whose bidding price is bid_a among $\{1, \ldots, k\}$ does the following:

- chooses a secret $x_a \in \mathbb{Z}/q\mathbb{Z}$
- chooses randomly m_{ij}^a and $r_{aj} \in \mathbb{Z}/q\mathbb{Z}$ for each i and j.
- publishes $y_a = g^{x_a}$ and proves the knowledge of y_a 's discrete logarithm.
- using the published y_i then computes $y = \prod_{i=1}^n y_i$.

1 Bid Encryption

Each bidder a

• sets $b_{aj} = \begin{cases} Y & \text{if } j = bid_a \\ 1 & \text{otherwise} \end{cases}$

and proves its correctness.

- publishes $\alpha_{aj} = b_{aj} \cdot y^{r_{aj}}$ and $\beta_{aj} = g^{r_{aj}}$ for each j.
- proves that for all j, $\log_g(\beta_{aj})$ equals $\log_y(\alpha_{aj})$ or $\log_y\left(\frac{\alpha_{aj}}{Y}\right)$, and that $\log_y\left(\frac{\prod_{j=1}^k\alpha_{aj}}{Y}\right) = \log_g\left(\prod_{j=1}^k\beta_{aj}\right)$.

2 Outcome Computation

• Each bidder a computes and publishes for all i and j: $\gamma_{ij}^a = \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k \alpha_{hd} \right) \cdot \left(\prod_{d=1}^{j-1} \alpha_{id} \right) \cdot \left(\prod_{h=1}^{i-1} \alpha_{hj} \right) \right)^{m_{ij}^a}$ $\delta_{ij}^a = \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k \beta_{hd} \right) \cdot \left(\prod_{d=1}^{j-1} \beta_{id} \right) \cdot \left(\prod_{h=1}^{i-1} \beta_{hj} \right) \right)^{m_{ij}^a}$

1 Outcome Decryption

• Each bidder a sends $\phi^a_{ij} = (\prod_{h=1}^n \delta^h_{ij})^{x_a}$ for each i and j to the seller and proves its correctness. After having received all values, the seller publishes ϕ^h_{ij} for all i, j, and $h \neq i$.

Winner determination

- Everybody can now compute $v_{aj}=rac{\prod_{i=1}^n \gamma_{aj}^i}{\prod_{i=1}^n \phi_{si}^i}$ for each j.
- If $v_{aw} = 1$ for some w, then the bidder a wins the auction at price p_w .

