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Homomorphic Encryption

Definition (additively homomorphic)

E(m1)⊗ E(m2) ≡ E(m1 ⊕m2).

Applications
Electronic voting
Secure Fonction Evaluation
Private Multi-Party Trust Computation
Private Information Retrieval
Private Searching
. . .
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A partial history of homomorphic cryptosystems

Year Name Security hypothesis Expansion
1982 Goldwasser-Micali quadratic residuosity log2(n)
1994 Benaloh higher residuosity > 2
1998 Naccache–Stern higher residuosity > 2
1998 Okamoto–Uchiyama p-subgroup 3
1999 Paillier composite residuosity 2
2001 Damgård—Jurik composite residuosity d+1

d
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Original cryptosystem [Benaloh 1994]

Key Generation
Choose a block size r and two large primes p and q such that:

I r divides (p − 1).
I r and (p − 1)/r are relatively prime.
I r and q − 1 are relatively prime.
I n = pq, ϕ(n) = (p − 1)(q − 1).

Select y ∈ (Zn)
∗ = {x ∈ Zn : gcd(x ,n) = 1} such that

yϕ(n)/r 6= 1 mod n

The public key is (y , r ,n), and the private key is the two primes p and q.
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Original cryptosystem

Encryption
For m in Zr :

Er (m) = {ymur mod n : u ∈ (Zn)
∗}.

Homomorphic property

Er (m1)× Er (m2) = Er (m1 + m2).
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Original cryptosystem

Decryption

(ymur )(p−1)(q−1)/r = ym(p−1)(q−1)/r u(p−1)(q−1)

= ym(p−1)(q−1)/r mod n.

Find m ∈ Zr such that

(y−mc)(p−1)(q−1)/r = 1 mod n.

→ discrete logarithm to perform in the subgroup of order r of Z∗p.
usual index-calculus methods
efficient algorithm when r is smooth.
p − 1 should still have a large co-factor.
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Example

Parameters
Take n = pq = 241× 179 = 43139, r = 15, y = 27.
r divides p − 1 = 240 X

r and (p − 1)/r = 16 are coprime. X

r and (q − 1) = 2× 89 are coprime. X

y and n are coprime. X

y (p−1)(q−1)/r = 40097 6= 1 mod n. X

Example encryption

24187 = y112r ∈ Er (1)
= y64r ∈ Er (6).
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Analysis of the example

Ambiguous encryption

y5 = 275

= 8
= 4115

= 41r mod n.

→ the cleartext space is now Z5 instead of Z15.
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Receipt-free elections [Benaloh & Tuinstra, 1994]

Presidential Election
Maximum number of ballots < r = 15.
Vote for Nicolas ∈ Er (0)
Vote for Ségolène ∈ Er (1)
Actual result R ∈ Er (11) Ségolène is elected
Computed result R ∈ Er (11) = Er (1) Nicolas is elected
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Private Trust Computation [Dovel et al, 2010]

Problem
n users in a network
each user trusts each other with a given trust value.
Alice wants to know the global trust of the network in Bob.
Maybe Alice will grant Bob access to (critical) ressources based on the
computed value.
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Private Trust Computation [Dovel et al, 2010]

Algorithm
each user splits its trust value t into n − 1 shares:

t = s1 + s2 + . . .+ sn−1 mod r .

each user has a Benaloh keypair with the same parameter r .
a share from each user is given to every other user, encrypted under the
receiving user’s key.
the encrypted values are combined and decrypted locally, then combined
globally.
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Private Trust Computation [Dovel et al, 2010]

Problematic example
the queried user Bob is a newcomer (trust = 0).
Charlie uses a faulty y parameter with rtrue = r/3.
Charlie’s recombined value should have been −1.
Charlie’s actual contribution will be rtrue − 1 ≈ r/3.

Analysis
uses Benaloh’s cryptosystem for a common r .
Naccache–Stern’s cryptosystem could be used instead.
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Secure Card Dealing [Golle 2005]

Online Poker
Need to collaboratively compare m1 and m2 from E(m1) and E(m2).
Encryption performed using Benaloh’s cryptosystem with r = 53.
Not vulnerable to the flaw, with luck (53 is prime).
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Corrected version

Key Generation (recall)
r | (p − 1)

gcd(r , (p − 1)/r) = gcd(r ,q − 1) = 1
yϕ(n)/r 6= 1 mod n

Let g be a generator of the group (Zp)
∗, and since y is coprime with n, let α

be the value in Zp−1 such that y = gα mod p.

Main theorem
The following properties are equivalent:
a) decryption works unambiguously;
b) for all prime factors s of r , we have y (ϕ(n)/s) 6= 1 mod n;
c) α and r are coprime.
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Proof

(c)⇒ (a) (contrapositive)
Assume

ym1ur
1 = ym2ur

2 mod n.

Reducing mod p we get:

gα(m1−m2) = (u2/u1)
r mod p

There exists some β such that

gα(m1−m2) = gβr mod p
α(m1 −m2) = βr mod p − 1
α(m1 −m2) = 0 mod r .

Recall r and α are coprime
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Proof

(a)⇒ (c) (contrapositive)
Assume α and r are not coprime and let s = gcd(α, r), r = sr ′, α = sα′.

y r ′ = gαr ′ mod p

= (gα
′
)r mod p.

y r ′ is an r -th power mod p.
y r ′ is an r -th power mod q.
y r ′ is a valid encryption of 0 and of r ′.
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Proof

(c)⇒ (b) (contrapositive)
Assume that there exists some prime factor s of r such that

y (ϕ(n)/s) = 1 mod n.

Reduce mod p:

α
ϕ(n)

s
= 0 mod p − 1.

So
α
ϕ(n)

s
= (p − 1)

α(q − 1)
s

is a multiple of p − 1 and s divides α(q − 1). Since s does not divide q − 1, s
divides α and α and r are not coprime.
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Proof

(b)⇒ (c) (contrapositive)
Assume α and r are not coprime and denote by s some common prime factor.
Then

y (ϕ(n)/s) = gαϕ(n)/s mod p
= g(α/s)ϕ(n) mod p = 1 mod p.

And by construction of r , s - q − 1 so y (ϕ(n)/s) = 1 mod q.
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Probability of failure

Incorrect condition

yϕ(n)/r 6= 1 mod n⇔ r - α.

Assume that r divides α: α = rα′. So

yϕ(n)/r = gαϕ(n)/r mod p

= (gα
′
)ϕ(n) mod p

= 1 mod p.

Since r divides p − 1, yϕ(n)/r = 1 mod q.
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⇐
Conversely, if yϕ(n)/r = 1 mod n, then

gαϕ(n)/r = 1 mod p

α
ϕ(n)

r
= 0 mod p − 1.

Since r divides p−1 and is coprime with ϕ(n)
r (by definition), we have r | α.
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Probability

Estimating the proportion ρ of faulty y ’s
Incorrect condition on y : r - α.
Proper condition on y : α and r are coprime.

ρ = 1− ϕ(r)
r − 1

= 1− r
r − 1

ϕ(r)
r

= 1− r
r − 1

∏
i

pi − 1
pi

≈ 1−
∏

i

pi − 1
pi
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Probability of error

Practical example

p = 2× (3× 5× 7× 11× 13)× p′ + 1

p′ = 4464804505475390309548459872862419622870251688508955

5037374496982090456310601222033972275385171173585381

3914691524677018107022404660225439441679953592

q = 1005585594745694782468051874865438459560952436544429

5033292671082791323022555160232601405723625177570767

523893639864538140315412108959927459825236754568279.

#p = #q = 512 bits.
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Probability of error

Practical example (cont’d)

gcd(q − 1,p − 1) = 2
r = (3× 5× 7× 11× 13)× p′

ρ = 1− r
r − 1

× 2
3
× 4

5
× 6

7
× 10

11
× 12

13
× p′ − 1

p′

ρ > 61%.
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Consequence of a faulty y

Cleartext space reduction
Let u = gcd(α, r). Then r ′ = r

u . Moreover if r ′ 6= r , this faulty value of y goes
undetected by the initial condition as long as u 6= r .
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Semantic security [Gjøsteen 2005]

DSMP
Let G be an abelian group with subgroups K , H such that G = KH and
K ∩ H = {1}. The Decisional Subgroup Membership Problem is to decide
whether a given g ∈ G is in K or not.

Examples
Goldwasser-Micali
Naccache-Stern
Okamoto-Uchiyama
Paillier:

Eu(m) = (1 + n)mun mod n2

I ciphertext space is G = (Zn2)∗ ' (Zn)
∗ × Zn

I H is the subgroup of order n (generated by g = 1 + n)
I K is the set of the invertible n-th powers mod n2.
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Semantic security [Gjøsteen 2005]

Application to Benaloh’s corrected scheme
G = (Zn)

∗

H the cyclic subgroup of order r of G
K the set of invertible r -th powers in G
the public element y must generate H.

The semantic security of our corrected scheme is therefore equivalent to the
DSMP for K , that is, being able to distinguish r -th powers modulo n.
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Conclusion

A slight change of description caused an error.
Undetected for 16 years.
Used verbatim in several protocol papers, even from last year.
A huge probability of failure for suggested parameters r = 3k .
Quite possibly never implemented.
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