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Homomorphic Encryption

Definition (additively homomorphic)

E(m1) ® E(mg) = E(m1 D m2).

Applications
@ Electronic voting
@ Secure Fonction Evaluation
@ Private Multi-Party Trust Computation
@ Private Information Retrieval
@ Private Searching
° ...
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A partial history of homomorphic cryptosystems

Year Name Security hypothesis | Expansion
1982 | Goldwasser-Micali | quadratic residuosity log,(n)
1994 Benaloh higher residuosity > 2
1998 Naccache—Stern higher residuosity > 2
1998 | Okamoto—Uchiyama p-subgroup 3
1999 Paillier composite residuosity 2
2001 Damgard—Jurik composite residuosity dfj‘
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Original cryptosystem [Benaloh 1994]

Key Generation

@ Choose a block size r and two large primes p and g such that:
r divides (p — 1).
rand (p — 1)/r are relatively prime.
rand q — 1 are relatively prime.

n=pgq,e(n)=(pP-1)(q-1).
@ Selecty € (Zn)* = {x € Zp : gcd(x, n) = 1} such that

y?(M/" -1 mod n

The public key is (y, r, n), and the private key is the two primes p and q.
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For min Z,:
E.(m)={y™u mod n:ue(Zy)"}

E,(m1) X E,(mz) = E,(m1 =F m2).




Original cryptosystem

Decryption

(ymur)(p%)(qfﬂ/r _ ym(pq)(qq)/ru(pq)(qq)

ym(p_1)(q_1 )/r mod n.

Find m € Z, such that
(y~mc)P=D@=D/" — 1 mod n.

— discrete logarithm to perform in the subgroup of order r of Zj.
usual index-calculus methods

efficient algorithm when r is smooth.

p — 1 should still have a large co-factor.
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‘Parameters
@ Take n=pq =241 x 179 = 43139, r = 15, y = 27.
@ rdividesp—1 =240
@ rand (p—1)/r =16 are coprime.
@ rand (g —1) =2 x 89 are coprime.

@ y and n are coprime.
@ yP—1(a-1)/r = 40097 #1 mod n.

NN NN

24187

y'12" € E/(1)
yb4" € E,(6).




y5 _ 275
= 8
= 41"
= 41" mod n.

— the cleartext space is now Zs instead of Zs.
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Receipt-free elections  [Benaloh & Tuinstra, 1994]

Presidential Election
@ Maximum number of ballots < r = 15.
@ Vote for Nicolas € E,(0)
@ Vote for Ségoléne € E.(1)
@ Actual result R € E/(11) Ségolene is elected
@ Computed result R € E,(11) = E,(1) Nicolas is elected
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Private Trust Computation [Dovel et al, 2010]

Problem
@ nusers in a network
@ each user trusts each other with a given trust value.
@ Alice wants to know the global trust of the network in Bob.

@ Maybe Alice will grant Bob access to (critical) ressources based on the
computed value.
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Private Trust Computation [Dovel et al, 2010]

Algorithm
@ each user splits its trust value t into n — 1 shares:

t=851+S+...+S,_1 mod r.

@ each user has a Benaloh keypair with the same parameter r.

@ a share from each user is given to every other user, encrypted under the
receiving user’s key.

@ the encrypted values are combined and decrypted locally, then combined
globally.
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Private Trust Computation [Dovel et al, 2010]

Problematic example
@ the queried user Bob is a newcomer (trust = 0).
@ Charlie uses a faulty y parameter with ryye = r/3.
@ Charlie’s recombined value should have been —1.
@ Charlie’s actual contribution will be rre — 1 &~ r/3.

Analysis

@ uses Benaloh’s cryptosystem for a common r.
@ Naccache—Stern’s cryptosystem could be used instead.
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Secure Card Dealing [Golle 2005]

Online Poker
@ Need to collaboratively compare my and m, from E(m;) and E(m.).
@ Encryption performed using Benaloh’s cryptosystem with r = 53.
@ Not vulnerable to the flaw, with luck (53 is prime).
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Corrected version

Key Generation (recall)
r| (p=1)

ged(r,(p—1)/r) = gcd(r,g—1)=1
y?(M/" 2 {1 modn

Let g be a generator of the group (Zp)*, and since y is coprime with n, let o
be the value in Z,_¢ such that y = g“ mod p.

Main theorem
The following properties are equivalent:
a) decryption works unambiguously;

b) for all prime factors s of r, we have y(#(1/9) £ 1 mod n;
C) « and r are coprime.
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Proof

(c) = (a) (contrapositive)

@ Assume
y™uf = y™uj mod n.

@ Reducing mod p we get:
g*(™M="™) — (up/uy)" mod p
@ There exists some 3 such that

ga(m1—m2) _ gﬁr mod p
a(m —my) = pBrmodp—1
a(m —mz) = 0modr.

@ Recall r and « are coprime
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Assume « and r are not coprime and let s = gcd(«, r), r = sr’, a = sa’.

/

yr _ gar’ mod p
(g*)" mod p.

@ y" is an r-th power mod p.
@ y" is an r-th power mod g.
@ y" is a valid encryption of 0 and of r’.




Proof

(c) = (b) (contrapositive)
Assume that there exists some prime factor s of r such that

y#(M/%) =1 mod n.

Reduce mod p:

047( ) _—Omodp—1.
So ( ) ( 1)
oa— = (p—1)7

is a multiple of p — 1 and s divides (g — 1). Since s does not divide g — 1, s
divides o« and « and r are not coprime.
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Assume « and r are not coprime and denote by s some common prime factor.
Then

ylen/s) = gev/s mod p
g(a/S)W(") mod p = 1 mod p.

And by construction of r, s g — 1 so y(¥(0/%) = 1 mod q.
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y?/T 21 mod ne rta.
Assume that r divides a: o = ra’. So
y‘P(n)/r — gacp(n)/f mod p

= (9*)7" mod p
1 mod p.

Since r divides p — 1, y#("/" =1 mod q.




=
Conversely, if y#("/" =1 mod n, then

g°?/" = {1 modp
n
a@ = Omodp—1.
Since r divides p— 1 and is coprime with @ (by definition), we have r | . O
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@ Incorrect conditionon y: r { a.
@ Proper condition on y: « and r are coprime.

_ 4 e
po=1 r—1

ro(r)

r—1 r

4 I P:
= r—1

Q
|
—
°
kS




Probability of error

Practical example

p = 2xBx5x7x11x13)xp' +1

p = 4464804505475390309548459872862419622870251688508955
5037374496982090456310601222033972275385171173585381
3914691524677018107022404660225439441679953592

g = 1005585594745694782468051874865438459560952436544429
5033292671082791323022555160232601405723625177570767
523893639864538140315412108959927459825236754568279.

~

#p = #q = 512 bits.
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ged(g—1,p—1)
,

p
p

2
(Bx5x7x11x13)xp
1—Lxgxix§x

r-1 3 5 7
61%.

10 12 p —1

171"
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Let u = gcd(a, r). Then r' = 7. Moreover if r’ # r, this faulty value of y goes
undetected by the initial condition as long as u # r.




Semantic security [Gjosteen 2005]

DSMP

Let G be an abelian group with subgroups K, H such that G = KH and
K N H = {1}. The Decisional Subgroup Membership Problem is to decide
whether a given g € Gis in K or not.

Examples
@ Goldwasser-Micali
@ Naccache-Stern
@ Okamoto-Uchiyama
@ Paillier:
E,(m)= (1 + n)™u" mod n?

ciphertext space is G = (Z,2)* ~ (Zn)* X Zn
H is the subgroup of order n (generated by g = 1 + n)
K is the set of the invertible n-th powers mod r.
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Semantic security [Gjosteen 2005]

Application to Benaloh’s corrected scheme
o G=(Zn)*
@ H the cyclic subgroup of order r of G
@ K the set of invertible r-th powers in G
@ the public element y must generate H.

The semantic security of our corrected scheme is therefore equivalent to the
DSMP for K, that is, being able to distinguish r-th powers modulo n.
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Conclusion

@ A slight change of description caused an error.

@ Undetected for 16 years.

@ Used verbatim in several protocol papers, even from last year.
@ A huge probability of failure for suggested parameters r = 3.
@ Quite possibly never implemented.
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