Benaloh's Dense Probabilistic Encryption Revisited

Laurent Fousse ¹ Pascal Lafourcade² Mohamed Alnuaimi³

Université Grenoble 1, CNRS, Laboratoire Jean Kuntzmann, France Laurent.Fousse@imag.fr

> Université Grenoble 1, CNRS, Verimag, France Pascal.Lafourcade@imag.fr

Global Communication & Software Systems, United Arab Emirates

mohamed.alnuaimi@nkc.ae

7th July 2011

Introduction

- 2 Benaloh's Dense Probabilistic Encryption
 - Original scheme
 - A small problematic example
- 3 Consequences in applications
- 4 Corrected version
- 5 A precise analysis of the problem
 - Probability of failure
 - Message space reduction

Introduction

- Benaloh's Dense Probabilistic Encryption
 Original scheme
 - A small problematic example
- 3 Consequences in applications
- 4 Corrected version
- A precise analysis of the problem
 Probability of failure
 Measure appear reduction
 - Message space reduction

Definition (additively homomorphic)

$$E(m_1)\otimes E(m_2)\equiv E(m_1\oplus m_2).$$

Applications

- Electronic voting
- Secure Fonction Evaluation
- Private Multi-Party Trust Computation
- Private Information Retrieval
- Private Searching

• . . .

A partial history of homomorphic cryptosystems

Year	Name	Security hypothesis	Expansion
1982	Goldwasser-Micali	quadratic residuosity	$\log_2(n)$
1994	Benaloh	higher residuosity	> 2
1998	Naccache–Stern	higher residuosity	> 2
1998	Okamoto–Uchiyama	<i>p</i> -subgroup	3
1999	Paillier	composite residuosity	2
2001	Damgård—Jurik	composite residuosity	$\frac{d+1}{d}$

Introduction

2 Benaloh's Dense Probabilistic Encryption

- Original scheme
- A small problematic example

3 Consequences in applications

- 4 Corrected version
- A precise analysis of the problem
 Probability of failure
 Maccourse undustion
 - Message space reduction

Introductior

Benaloh's Dense Probabilistic Encryption Original scheme

A small problematic example

- 3 Consequences in applications
- 4 Corrected version
- A precise analysis of the problem
 Probability of failure
 Macage appear reduction
 - Message space reduction

Key Generation

- Choose a block size r and two large primes p and q such that:
 - ▶ *r* divides (*p* − 1).
 - r and (p-1)/r are relatively prime.
 - > r and q 1 are relatively prime.
 - $n = pq, \varphi(n) = (p-1)(q-1).$
- Select $y \in (\mathbb{Z}_n)^* = \{x \in \mathbb{Z}_n : \gcd(x, n) = 1\}$ such that

 $y^{\varphi(n)/r} \neq 1 \mod n$

The public key is (y, r, n), and the private key is the two primes p and q.

Encryption

For *m* in \mathbb{Z}_r :

$$E_r(m) = \{y^m u^r \bmod n : u \in (\mathbb{Z}_n)^*\}.$$

Homomorphic property

$$E_r(m_1) \times E_r(m_2) = E_r(m_1 + m_2).$$

Original cryptosystem

Decryption

$$(y^m u^r)^{(p-1)(q-1)/r} = y^{m(p-1)(q-1)/r} u^{(p-1)(q-1)}$$

= $y^{m(p-1)(q-1)/r} \mod n.$

• Find $m \in \mathbb{Z}_r$ such that

$$(y^{-m}c)^{(p-1)(q-1)/r} = 1 \mod n.$$

- \rightarrow discrete logarithm to perform in the subgroup of order r of \mathbb{Z}_p^* .
- usual index-calculus methods
- efficient algorithm when r is smooth.
- *p* 1 should still have a large co-factor.

Introductior

- A small problematic example
- Consequences in applications
- 4 Corrected version
- A precise analysis of the problem
 Probability of failure
 Macage appear reduction
 - Message space reduction

Example

Parameters

- Take $n = pq = 241 \times 179 = 43139$, r = 15, y = 27.
- *r* divides *p* − 1 = 240
- r and (p-1)/r = 16 are coprime.
- r and $(q-1) = 2 \times 89$ are coprime.
- y and n are coprime.

•
$$y^{(p-1)(q-1)/r} = 40097 \neq 1 \mod n$$
.

Example encryption

$$\begin{array}{rcl} 24187 & = & y^1 1 2^r \in E_r(1) \\ & = & y^6 4^r \in E_r(6). \end{array}$$

Ambiguous encryption

$$y^5 = 27^5$$

= 8
= 41¹⁵
= 41^r mod *n*

 \rightarrow the cleartext space is now \mathbb{Z}_5 instead of \mathbb{Z}_{15} .

Introduction

Benaloh's Dense Probabilistic Encryption Original scheme

A small problematic example

3 Consequences in applications

- 4 Corrected version
- A precise analysis of the problem
 Probability of failure
 - Message space reduction

Presidential Election

- Maximum number of ballots < *r* = 15.
- Vote for Nicolas $\in E_r(0)$
- Vote for Ségolène $\in E_r(1)$
- Actual result $R \in E_r(11)$
- Computed result $R \in E_r(11) = E_r(1)$

Ségolène is elected Nicolas is elected

Problem

- n users in a network
- each user trusts each other with a given trust value.
- Alice wants to know the global trust of the network in Bob.
- Maybe Alice will grant Bob access to (critical) ressources based on the computed value.

Algorithm

• each user splits its trust value t into n - 1 shares:

 $t = s_1 + s_2 + \ldots + s_{n-1} \mod r.$

- each user has a Benaloh keypair with the same parameter r.
- a share from each user is given to every other user, encrypted under the receiving user's key.
- the encrypted values are combined and decrypted locally, then combined globally.

Problematic example

- the queried user Bob is a newcomer (trust = 0).
- Charlie uses a faulty y parameter with $r_{true} = r/3$.
- Charlie's recombined value should have been -1.
- Charlie's actual contribution will be $r_{true} 1 \approx r/3$.

Analysis

- uses Benaloh's cryptosystem for a common r.
- Naccache-Stern's cryptosystem could be used instead.

[Golle 2005]

Online Poker

- Need to collaboratively compare m_1 and m_2 from $E(m_1)$ and $E(m_2)$.
- Encryption performed using Benaloh's cryptosystem with r = 53.
- Not vulnerable to the flaw, with luck (53 is prime).

Introduction

Benaloh's Dense Probabilistic Encryption Original scheme A small problematic example

A small problematic example

3 Consequences in applications

Corrected version

- A precise analysis of the problem
 Probability of failure
 Maccase appear reduction
 - Message space reduction

Corrected version

Key Generation (recall)

 $r \mid (p-1)$ gcd(r,(p-1)/r) = gcd(r,q-1) = 1 $y^{\varphi(n)/r} \neq 1 \mod n$

Let *g* be a generator of the group $(\mathbb{Z}_p)^*$, and since *y* is coprime with *n*, let α be the value in \mathbb{Z}_{p-1} such that $y = g^{\alpha} \mod p$.

Main theorem

The following properties are equivalent:

- a) decryption works unambiguously;
- b) for all prime factors *s* of *r*, we have $y^{(\varphi(n)/s)} \neq 1 \mod n$;
- c) α and *r* are coprime.

Proof

(contrapositive)

Assume

 $(c) \Rightarrow (a)$

$$y^{m_1}u_1^r = y^{m_2}u_2^r \mod n.$$

• Reducing mod *p* we get:

$$g^{lpha(m_1-m_2)}=(u_2/u_1)^r mod p$$

• There exists some β such that

$$g^{\alpha(m_1-m_2)} = g^{\beta r} \mod p$$

$$\alpha(m_1-m_2) = \beta r \mod p - 1$$

$$\alpha(m_1-m_2) = 0 \mod r.$$

• Recall r and α are coprime

Proof

 $(a) \Rightarrow (c)$

(contrapositive)

Assume α and r are not coprime and let $s = gcd(\alpha, r), r = sr', \alpha = s\alpha'$.

$$egin{array}{r'} &=& g^{lpha r'} egin{array}{r} {
m mod} \ p \ &=& (g^{lpha'})^r egin{array}{r} {
m mod} \ p \ p \end{array}$$

•
$$y^{r'}$$
 is an *r*-th power mod *p*.

• $y^{r'}$ is an *r*-th power mod *q*.

• $y^{r'}$ is a valid encryption of 0 and of r'.

Proof

 $(c) \Rightarrow (b)$

(contrapositive)

Assume that there exists some prime factor *s* of *r* such that

$$y^{(\varphi(n)/s)} = 1 \mod n.$$

Reduce mod p:

$$lpha rac{arphi(n)}{s} = 0 \mod p - 1.$$

So

$$\alpha \frac{\varphi(n)}{s} = (p-1) \frac{\alpha(q-1)}{s}$$

is a multiple of p - 1 and s divides $\alpha(q - 1)$. Since s does not divide q - 1, s divides α and α and r are not coprime.

$(b) \Rightarrow (c)$

(contrapositive)

Assume α and r are not coprime and denote by s some common prime factor. Then

$$y^{(\varphi(n)/s)} = g^{\alpha\varphi(n)/s} \mod p$$

= $g^{(\alpha/s)\varphi(n)} \mod p = 1 \mod p$

And by construction of *r*, $s \nmid q - 1$ so $y^{(\varphi(n)/s)} = 1 \mod q$.

Introduction

- Benaloh's Dense Probabilistic Encryption
 Original scheme
 A small problematic example
- 3 Consequences in applications
- 4 Corrected version

5 A precise analysis of the problem

- Probability of failure
- Message space reduction

Introduction

- Benaloh's Dense Probabilistic Encryption
 Original scheme
 A small problematic example
- 3 Consequences in applications
- 4 Corrected version
- A precise analysis of the problem
 Probability of failure
 Message space reduction

Incorrect condition

$$y^{\varphi(n)/r} \neq 1 \mod n \Leftrightarrow r \nmid \alpha.$$

Assume that *r* divides α : $\alpha = r\alpha'$. So

Since *r* divides p - 1, $y^{\varphi(n)/r} = 1 \mod q$.

\Leftarrow

Conversely, if $y^{\varphi(n)/r} = 1 \mod n$, then

$$g^{\alpha\varphi(n)/r} = 1 \mod p$$

$$\alpha \frac{\varphi(n)}{r} = 0 \mod p - 1.$$

Since *r* divides p-1 and is coprime with $\frac{\varphi(n)}{r}$ (by definition), we have $r \mid \alpha$.

Probability

Estimating the proportion ρ of faulty y's

- Incorrect condition on *y*: $r \nmid \alpha$.
- Proper condition on y: α and r are coprime.

$$P = 1 - \frac{\varphi(r)}{r - 1}$$

$$= 1 - \frac{r}{r - 1} \frac{\varphi(r)}{r}$$

$$= 1 - \frac{r}{r - 1} \prod_{i} \frac{p_{i} - 1}{p_{i}}$$

$$\approx 1 - \prod_{i} \frac{p_{i} - 1}{p_{i}}$$

Practical example

- $p = 2 \times (3 \times 5 \times 7 \times 11 \times 13) \times p' + 1$
- p' = 4464804505475390309548459872862419622870251688508955 50373744969820904563106012220339722753851711735853813914691524677018107022404660225439441679953592

#p = #q = 512 bits.

Practical example (cont'd)

$$gcd(q-1, p-1) = 2$$

$$r = (3 \times 5 \times 7 \times 11 \times 13) \times p'$$

$$\rho = 1 - \frac{r}{r-1} \times \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times \frac{10}{11} \times \frac{12}{13} \times \frac{p'-1}{p'}$$

$$\rho > 61\%.$$

Introduction

- Benaloh's Dense Probabilistic Encryption
 Original scheme
 A small problematic example
- 3 Consequences in applications
- 4 Corrected version
- A precise analysis of the problem
 Probability of failure
 - Message space reduction

Cleartext space reduction

Let $u = \text{gcd}(\alpha, r)$. Then $r' = \frac{r}{u}$. Moreover if $r' \neq r$, this faulty value of y goes undetected by the initial condition as long as $u \neq r$.

[Gjøsteen 2005]

DSMP

Let *G* be an abelian group with subgroups *K*, *H* such that G = KH and $K \cap H = \{1\}$. The *Decisional Subgroup Membership Problem* is to decide whether a given $g \in G$ is in *K* or not.

Examples

- Goldwasser-Micali
- Naccache-Stern
- Okamoto-Uchiyama
- Paillier:

$$E_u(m) = (1+n)^m u^n \bmod n^2$$

- ciphertext space is $G = (\mathbb{Z}_{n^2})^* \simeq (\mathbb{Z}_n)^* \times \mathbb{Z}_n$
- *H* is the subgroup of order *n* (generated by g = 1 + n)
- *K* is the set of the invertible *n*-th powers mod n^2 .

[Gjøsteen 2005]

Application to Benaloh's corrected scheme

- $G = (\mathbb{Z}_n)^*$
- *H* the cyclic subgroup of order *r* of *G*
- K the set of invertible r-th powers in G
- the public element *y* must generate *H*.

The semantic security of our corrected scheme is therefore equivalent to the DSMP for K, that is, being able to distinguish *r*-th powers modulo *n*.

- A slight change of description caused an error.
- Undetected for 16 years.
- Used verbatim in several protocol papers, even from last year.
- A huge probability of failure for suggested parameters $r = 3^k$.
- Quite possibly never implemented.