Benaloh's Dense Probabilistic Encryption Revisited

Laurent Fousse¹ Pascal Lafourcade² Mohamed Alnuaimi³

Université Grenoble 1, CNRS, Laboratoire Jean Kuntzmann, France Laurent.Fousse@imag.fr

> Université Grenoble 1, CNRS, Verimag, France Pascal.Lafourcade@imag.fr

Global Communication & Software Systems, United Arab Emirates mohamed.alnuaimi@nkc.ae

7th July 2011

[Introduction](#page-2-0)

- [Benaloh's Dense Probabilistic Encryption](#page-5-0)
	- [Original scheme](#page-6-0)
	- [A small problematic example](#page-10-0)
- [Consequences in applications](#page-13-0)
- [Corrected version](#page-19-0)
- ⁵ [A precise analysis of the problem](#page-25-0)
	- [Probability of failure](#page-26-0)
	- [Message space reduction](#page-32-0)

[Introduction](#page-2-0)

- **[Benaloh's Dense Probabilistic Encryption](#page-5-0)** • [Original scheme](#page-6-0) [A small problematic example](#page-10-0)
- [Consequences in applications](#page-13-0)
- [Corrected version](#page-19-0)
- ⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0) [Message space reduction](#page-32-0) $\qquad \qquad \bullet$

Definition (additively homomorphic)

$$
E(m_1)\otimes E(m_2)\equiv E(m_1\oplus m_2).
$$

Applications

- **Electronic voting**
- **Secure Fonction Evaluation**
- **Private Multi-Party Trust Computation**
- **Private Information Retrieval**
- **Private Searching**

 \bullet ...

A partial history of homomorphic cryptosystems

[Introduction](#page-2-0)

- [Original scheme](#page-6-0)
- [A small problematic example](#page-10-0)
- [Consequences in applications](#page-13-0)
- [Corrected version](#page-19-0)
- ⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0) [Message space reduction](#page-32-0) $\qquad \qquad \bullet$

[Introduction](#page-2-0)

[Benaloh's Dense Probabilistic Encryption](#page-5-0) • [Original scheme](#page-6-0)

[A small problematic example](#page-10-0)

[Consequences in applications](#page-13-0)

[Corrected version](#page-19-0)

⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0) [Message space reduction](#page-32-0) $\qquad \qquad \bullet$

Key Generation

- Choose a block size *r* and two large primes *p* and *q* such that:
	- *r* divides (*p* − 1).
	- *r* and $(p 1)/r$ are relatively prime.
	- ^I *r* and *q* − 1 are relatively prime.
	- \triangleright *n* = *pq*, $\varphi(n) = (p 1)(q 1)$.
- Select $y \in (\mathbb{Z}_n)^* = \{x \in \mathbb{Z}_n : \gcd(x, n) = 1\}$ such that

 $y^{\varphi(n)/r} \neq 1$ mod *n*

The public key is (*y*, *r*, *n*), and the private key is the two primes *p* and *q*.

Encryption

For m in \mathbb{Z}_r :

$$
E_r(m)=\{y^mu^r \text{ mod } n: u\in (\mathbb{Z}_n)^*\}.
$$

Homomorphic property

$$
E_r(m_1)\times E_r(m_2)=E_r(m_1+m_2).
$$

Original cryptosystem

Decryption

$$
(ymur)(p-1)(q-1)/r = ym(p-1)(q-1)/ru(p-1)(q-1)= ym(p-1)(q-1)/r mod n.
$$

Find *m* ∈ Z*^r* such that

$$
(y^{-m}c)^{(p-1)(q-1)/r} = 1 \mod n.
$$

- \rightarrow discrete logarithm to perform in the subgroup of order *r* of \mathbb{Z}_p^* .
- usual index-calculus methods
- **e** efficient algorithm when *r* is smooth.
- **•** $p 1$ should still have a large co-factor.

[Introduction](#page-2-0)

[A small problematic example](#page-10-0)

[Consequences in applications](#page-13-0)

[Corrected version](#page-19-0)

⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0) [Message space reduction](#page-32-0) $\qquad \qquad \bullet$

Example

Parameters

- Take $n = pq = 241 \times 179 = 43139$, $r = 15$, $v = 27$.
- **•** *r* divides *p* − 1 = 240
- *r* and $(p-1)/r = 16$ are coprime.
- *r* and $(q 1) = 2 \times 89$ are coprime.
- *v* and *n* are coprime.

•
$$
y^{(p-1)(q-1)/r} = 40097 \neq 1 \mod n
$$
.

Example encryption

$$
24187 = y112r \in Er(1) = y64r \in Er(6).
$$

Ambiguous encryption

$$
y^5 = 27^5
$$

= 8
= 41¹⁵
= 41^r mod *n*.

 \rightarrow the cleartext space is now \mathbb{Z}_5 instead of \mathbb{Z}_{15} .

[Introduction](#page-2-0)

[Benaloh's Dense Probabilistic Encryption](#page-5-0) • [Original scheme](#page-6-0)

[A small problematic example](#page-10-0)

[Consequences in applications](#page-13-0)

- [Corrected version](#page-19-0)
- ⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0)
	- [Message space reduction](#page-32-0)

Presidential Election

- Maximum number of ballots $\langle r = 15 \rangle$
- Vote for Nicolas ∈ *Er*(0)
- Vote for Ségolène ∈ *Er*(1)
- Actual result *R* ∈ *Er*(11) Ségolène is elected
- Computed result *R* ∈ *Er*(11) = *Er*(1) Nicolas is elected

Problem

- *n* users in a network
- each user trusts each other with a given trust value.
- Alice wants to know the global trust of the network in Bob.
- Maybe Alice will grant Bob access to (critical) ressources based on the computed value.

Algorithm

e each user splits its trust value *t* into *n* − 1 shares:

 $t = S_1 + S_2 + \ldots + S_{n-1} \mod r$.

- **e** each user has a Benaloh keypair with the same parameter *r*.
- a share from each user is given to every other user, encrypted under the receiving user's key.
- the encrypted values are combined and decrypted locally, then combined globally.

Problematic example

- \bullet the queried user Bob is a newcomer (trust $= 0$).
- Charlie uses a faulty *y* parameter with $r_{true} = r/3$.
- Charlie's recombined value should have been −1.
- **•** Charlie's actual contribution will be r_{true} 1 ≈ $r/3$.

Analysis

- uses Benaloh's cryptosystem for a common *r*.
- Naccache–Stern's cryptosystem could be used instead.

Online Poker

- Need to collaboratively compare m_1 and m_2 from $E(m_1)$ and $E(m_2)$.
- \bullet Encryption performed using Benaloh's cryptosystem with $r = 53$.
- Not vulnerable to the flaw, with luck (53 is prime).

[Introduction](#page-2-0)

[Benaloh's Dense Probabilistic Encryption](#page-5-0) • [Original scheme](#page-6-0) [A small problematic example](#page-10-0)

[Consequences in applications](#page-13-0)

[Corrected version](#page-19-0)

⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0) [Message space reduction](#page-32-0) $\qquad \qquad \bullet$

Corrected version

Key Generation (recall)

$$
\begin{array}{rcl}\nr & (p-1) \\
\gcd(r, (p-1)/r) & = & \gcd(r, q-1) = 1 \\
y^{\varphi(n)/r} & \neq & 1 \mod n\n\end{array}
$$

Let g be a generator of the group $(\mathbb{Z}_p)^*$, and since y is coprime with n , let α be the value in \mathbb{Z}_{p-1} such that $\mathsf{y} = g^\alpha$ mod $\mathsf{p}.$

Main theorem

The following properties are equivalent:

- a) decryption works unambiguously;
- b) for all prime factors *s* of *r*, we have $y^{(\varphi(n)/s)} \neq 1$ mod *n*;
- c) α and *r* are coprime.

Proof

$(c) \Rightarrow (a)$ (contrapositive)

• Assume

$$
y^{m_1}u_1^r = y^{m_2}u_2^r \bmod n.
$$

Reducing mod *p* we get:

$$
g^{\alpha(m_1-m_2)}=(u_2/u_1)^r \bmod p
$$

• There exists some β such that

$$
g^{\alpha(m_1 - m_2)} = g^{\beta r} \mod p
$$

\n
$$
\alpha(m_1 - m_2) = \beta r \mod p - 1
$$

\n
$$
\alpha(m_1 - m_2) = 0 \mod r.
$$

• Recall r and α are coprime

Proof

$(a) \Rightarrow (c)$ (contrapositive)

Assume α and r are not coprime and let $\bm{s} = \text{gcd}(\alpha, r)$, $r = \bm{s}r'$, $\alpha = \bm{s}\alpha'$.

$$
y^{r'} = g^{\alpha r'} \mod p
$$

= $(g^{\alpha'})^r \mod p$.

•
$$
y^{r'}
$$
 is an *r*-th power mod *p*.

y r 0 is an *r*-th power mod *q*.

 $y^{r'}$ is a valid encryption of 0 and of *r'*.

Proof

$(c) \Rightarrow (b)$ (contrapositive)

Assume that there exists some prime factor *s* of *r* such that

$$
y^{(\varphi(n)/s)}=1 \text{ mod } n.
$$

Reduce mod *p*:

$$
\alpha \frac{\varphi(n)}{s} = 0 \bmod p - 1.
$$

So

$$
\alpha \frac{\varphi(n)}{s} = (p-1) \frac{\alpha(q-1)}{s}
$$

is a multiple of $p - 1$ and *s* divides $\alpha(q - 1)$. Since *s* does not divide $q - 1$, *s* divides α and α and r are not coprime.

 $(b) \Rightarrow (c)$ (contrapositive)

Assume α and *r* are not coprime and denote by *s* some common prime factor. Then

$$
y^{(\varphi(n)/s)} = g^{\alpha \varphi(n)/s} \mod p
$$

= $g^{(\alpha/s)\varphi(n)} \mod p = 1 \mod p$.

And by construction of *r*, *s* ∤ *q* − 1 so $y^{(\varphi(n)/s)} = 1$ mod *q*.

[Introduction](#page-2-0)

- **[Benaloh's Dense Probabilistic Encryption](#page-5-0)** • [Original scheme](#page-6-0) [A small problematic example](#page-10-0)
- [Consequences in applications](#page-13-0)
- [Corrected version](#page-19-0)

⁵ [A precise analysis of the problem](#page-25-0)

- [Probability of failure](#page-26-0)
- • [Message space reduction](#page-32-0)

[Introduction](#page-2-0)

- **[Benaloh's Dense Probabilistic Encryption](#page-5-0)** • [Original scheme](#page-6-0) [A small problematic example](#page-10-0)
- [Consequences in applications](#page-13-0)
- [Corrected version](#page-19-0)
- ⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0) • [Message space reduction](#page-32-0)

Incorrect condition

$$
y^{\varphi(n)/r}\neq 1 \text{ mod } n \Leftrightarrow r \nmid \alpha.
$$

Assume that *r* divides α : $\alpha = r\alpha'$. So

$$
y^{\varphi(n)/r} = g^{\alpha \varphi(n)/r} \mod p
$$

= $(g^{\alpha'})^{\varphi(n)} \mod p$
= 1 mod p.

Since *r* divides $p - 1$, $y^{\varphi(n)/r} = 1$ mod q.

⇐

Conversely, if $y^{\varphi(n)/r} = 1$ mod *n*, then

$$
g^{\alpha\varphi(n)/r} = 1 \mod p
$$

$$
\alpha \frac{\varphi(n)}{r} = 0 \mod p - 1.
$$

Since *r* divides $p-1$ and is coprime with $\frac{\varphi(n)}{r}$ (by definition), we have $r \mid \alpha$.

Probability

Estimating the proportion ρ of faulty *y*'s

- **•** Incorrect condition on *y*: $r \nmid \alpha$.
- Proper condition on *y*: α and *r* are coprime.

$$
\rho = 1 - \frac{\varphi(r)}{r - 1}
$$

=
$$
1 - \frac{r}{r - 1} \frac{\varphi(r)}{r}
$$

=
$$
1 - \frac{r}{r - 1} \prod_{i} \frac{p_i - 1}{p_i}
$$

$$
\approx 1 - \prod_{i} \frac{p_i - 1}{p_i}
$$

Practical example

- $p = 2 \times (3 \times 5 \times 7 \times 11 \times 13) \times p' + 1$
- *p* ⁰ = 4464804505475390309548459872862419622870251688508955 5037374496982090456310601222033972275385171173585381 3914691524677018107022404660225439441679953592
- *q* = 1005585594745694782468051874865438459560952436544429 5033292671082791323022555160232601405723625177570767 523893639864538140315412108959927459825236754568279.

 $\#p = \#q = 512$ bits.

Practical example (cont'd)

$$
\gcd(q-1, p-1) = 2
$$

\n
$$
r = (3 \times 5 \times 7 \times 11 \times 13) \times p'
$$

\n
$$
\rho = 1 - \frac{r}{r-1} \times \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times \frac{10}{11} \times \frac{12}{13} \times \frac{p'-1}{p'}
$$

\n
$$
\rho > 61\%.
$$

[Introduction](#page-2-0)

- **[Benaloh's Dense Probabilistic Encryption](#page-5-0)** • [Original scheme](#page-6-0) [A small problematic example](#page-10-0)
- [Consequences in applications](#page-13-0)
- [Corrected version](#page-19-0)
- ⁵ [A precise analysis of the problem](#page-25-0) • [Probability of failure](#page-26-0)
	- [Message space reduction](#page-32-0)

Cleartext space reduction

Let $u = \gcd(\alpha, r)$. Then $r' = \frac{r}{u}$. Moreover if $r' \neq r$, this faulty value of *y* goes undetected by the initial condition as long as $u \neq r$.

DSMP

Let *G* be an abelian group with subgroups *K*, *H* such that $G = KH$ and *K* ∩ *H* = {1}. The *Decisional Subgroup Membership Problem* is to decide whether a given $g \in G$ is in *K* or not.

Examples

- **Goldwasser-Micali**
- Naccache-Stern
- **Okamoto-Uchiyama**
- Paillier:

$$
E_u(m)=(1+n)^m u^n \bmod n^2
$$

- ► ciphertext space is $G = (\mathbb{Z}_{n^2})^* \simeq (\mathbb{Z}_n)^* \times \mathbb{Z}_n$
- *H* is the subgroup of order *n* (generated by $g = 1 + n$)
- If K is the set of the invertible *n*-th powers mod n^2 .

Application to Benaloh's corrected scheme

- $G = (\mathbb{Z}_n)^*$
- *H* the cyclic subgroup of order *r* of *G*
- *K* the set of invertible *r*-th powers in *G*
- the public element *y* must generate *H*.

The semantic security of our corrected scheme is therefore equivalent to the DSMP for *K*, that is, being able to distinguish *r*-th powers modulo *n*.

- A slight change of description caused an error.
- Undetected for 16 years.
- Used verbatim in several protocol papers, even from last year.
- A huge probability of failure for suggested parameters $r = 3^k$.
- • Quite possibly never implemented.