Security Models Lecture 3 Passive Intruder

Pascal Lafourcade

2020-2021

1 Logical Attacks

- 1 Logical Attacks
- 2 Diffie-Hellman

- 1 Logical Attacks
- 2 Diffie-Hellman
- 3 Needham Schroeder

- 1 Logical Attacks
- 2 Diffie-Hellman
- 3 Needham Schroeder
- 4 Dolev Yao's Intruder

- 1 Logical Attacks
- 2 Diffie-Hellman
- 3 Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions

- 1 Logical Attacks
- 2 Diffie-Hellman
- 3 Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality

- 1 Logical Attacks
- 2 Diffie-Hellman
- 3 Needham Schroeder
- 4 Dolev Yao's Intruder
- **5** Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

Outline

- 1 Logical Attacks
- 2 Diffie-Hellman
- 3 Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

Attacks

Logical Attacks Perfect cryptography Computational vs symbolic

Simple Example

Replay message

Examples of kinds of attack

- Man-in-the-middle (or parallel sessions) attack: pass messages through to another session $A \leftrightarrow I \leftrightarrow B$.
- Replay (or freshness) attack: record and later re-introduce a message or part.
- Reflection attack: send transmitted information back to originator.
- Oracle attack: take advantage of normal protocol responses as encryption and decryption "services".
- Type flaw (confusion) attack: substitute a different type of message field (e.g. a key vs. a name).

Outline

- 1 Logical Attacks
- 2 Diffie-Hellman
- Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

The Diffie-Hellman protocol

g, p are public parameters.

$$(g^y)^x \mod p = k = g^{xy} \mod p = (g^x)^y \mod p$$

Man-in-the-middle attack

Outline

- 1 Logical Attacks
- Diffie-Hellman
- 3 Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

Messages Abstraction

- Names: A, B or Alice, Bob, ...
- Nonces: N_A. Fresh data.
- Keys: K and inverse keys K⁻¹
- Asymmetric Encryption: $\{M\}_{K_A}$
- Symmetric Encryption: $\{M\}_{K_{AB}}$.
- Message concatenation: $\langle M_1, M_2 \rangle$.

Example: $\{\langle A \oplus N_B, K_{AB} \rangle\}_{K_B}$.

Question

Question

Question

Question

Question

• Is N_B a shared secret between A et B?

Answer

• In 1995, G.Lowe find an attack 17 years after its publication!

Lowe Attack on the Needham-Schroeder

so-called "Man in the middle attack"

Needham-Schroeder corrected by Lowe 1995

Question

• This time the protocol is secure?

Type flaw attacks

- A message consists of a sequence of sub-messages. Examples: a principal's name, a nonce, a key, ...
- Messages sent as bit strings. No type information.
 1011 0110 0010 1110 0011 0111 1010 0000
- Type flaw is when A → B: M and B accepts M as valid but parses it differently. I.e., B interprets the bits differently than A.
- Example: two 16-bit nonces {N_A, N_B} could be mistaken as a 32-bit shared key.
 Let's consider several examples from actual protocols.

Type Flaw Attack on the Needham-Schroeder-Lowe

Otway-Rees

```
1 A \to B : (M, A, B, (N_A, M, A, B)_{Kas})

2 B \to S : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})

3 S \to B : (M, (N_A, Kab)_{Kas}, (N_B, Kab)_{Kbs})

4 B \to A : (M, (N_A, Kab)_{Kas})
```

where M is the session-identifier.

Otway-Rees

```
1 A \to B : (M, A, B, (N_A, M, A, B)_{Kas})

2 B \to S : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})

3 S \to B : (M, (N_A, Kab)_{Kas}, (N_B, Kab)_{Kbs})

4 B \to A : (M, (N_A, Kab)_{Kas})
```

where M is the session-identifier.

Otway-Rees

```
1 \ A \rightarrow B : (M, A, B, (N_A, M, A, B)_{Kas})
```

 $2 B \rightarrow S : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})$

 $3 S \rightarrow B : (M,(N_A,Kab)_{Kas},(N_B,Kab)_{Kbs})$

 $A B \rightarrow A : (M, (N_A, Kab)_{Kas})$

where M is the session-identifier.

$$1 A \rightarrow B : (M, A, B, (N_A, M, A, B)_{Kas})$$

Otway-Rees

```
1 A \to B : (M, A, B, (N_A, M, A, B)_{Kas})
2 B \to S : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})
3 S \to B : (M, (N_A, Kab)_{Kas}, (N_B, Kab)_{Kbs})
4 B \to A : (M, (N_A, Kab)_{Kas})
```

where M is the session-identifier.

```
\begin{array}{l}
1 \ A \to B : (M, A, B, (N_A, M, A, B)_{Kas}) \\
2 \ B \to I(S) : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})
\end{array}
```

Otway-Rees

```
1 A \rightarrow B : (M, A, B, (N_A, M, A, B)_{Kas})

2 B \rightarrow S : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})

3 S \rightarrow B : (M, (N_A, Kab)_{Kas}, (N_B, Kab)_{Kbs})

4 B \rightarrow A : (M, (N_A, Kab)_{Kas})
```

where M is the session-identifier.

```
 \begin{array}{l} 1 \ A \to B : \ (M,A,B,(N_A,M,A,B)_{Kas}) \\ 2 \ B \to I(S) : \ (M,A,B,(N_A,M,A,B)_{Kas},(N_B,M,A,B)_{Kbs}) \\ 3 \ I(S) \to B : \ (M,(N_A,M,A,B)_{Kas},(N_B,M,A,B)_{Kbs}) \\ \text{Kab} = (M,A,B) \end{array}
```

Otway-Rees

```
1 A \to B : (M, A, B, (N_A, M, A, B)_{Kas})

2 B \to S : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})

3 S \to B : (M, (N_A, Kab)_{Kas}, (N_B, Kab)_{Kbs})

4 B \to A : (M, (N_A, Kab)_{Kas})
```

where M is the session-identifier.

```
 \begin{array}{c} 1 \ A \to B : \ (M,A,B,(N_A,M,A,B)_{Kas}) \\ 2 \ B \to I(S) : \ (M,A,B,(N_A,M,A,B)_{Kas},(N_B,M,A,B)_{Kbs}) \\ 3 \ I(S) \to B : \ (M,(N_A,M,A,B)_{Kas},(N_B,M,A,B)_{Kbs}) \\ \text{Kab} = (M,A,B) 4 \ B \to A : \ (M,(N_A,M,A,B)_{Kas}) \end{array}
```

Otway-Rees

```
1 A \to B : (M, A, B, (N_A, M, A, B)_{Kas})

2 B \to S : (M, A, B, (N_A, M, A, B)_{Kas}, (N_B, M, A, B)_{Kbs})

3 S \to B : (M, (N_A, Kab)_{Kas}, (N_B, Kab)_{Kbs})

4 B \to A : (M, (N_A, Kab)_{Kas})
```

where M is the session-identifier.

```
 \begin{array}{l} 1 \ A \to B : \ (M,A,B,(N_A,M,A,B)_{Kas}) \\ 2 \ B \to I(S) : \ (M,A,B,(N_A,M,A,B)_{Kas},(N_B,M,A,B)_{Kbs}) \\ 3 \ I(S) \to B : \ (M,(N_A,M,A,B)_{Kas},(N_B,M,A,B)_{Kbs}) \\ \text{Kab} = (M,A,B) 4 \ B \to A : \ (M,(N_A,M,A,B)_{Kas}) \end{array}
```

Another Type Flaw Attack: Yahalom Protocol

Yahalom

```
egin{array}{l} 1 \ A 
ightarrow B : (A, N_A) \ 2 \ B 
ightarrow S : (B, (A, N_A, N_B)_{Kbs}) \ 3 \ S 
ightarrow A : ((B, Kab, N_A, N_B)_{Kas}, (A, Kab, N_B)_{Kbs}) \ 4 \ A 
ightarrow B : ((A, Kab, N_B)_{Kbs}, (N_B)_{Kab}) \ \end{array}
```

Another Type Flaw Attack: Yahalom Protocol

Yahalom

```
egin{array}{ll} 1 \ A 
ightarrow B : \ (A, N_A) \ 2 \ B 
ightarrow S : \ (B, (A, N_A, N_B)_{Kbs}) \ 3 \ S 
ightarrow A : \ ((B, Kab, N_A, N_B)_{Kas}, (A, Kab, N_B)_{Kbs}) \ 4 \ A 
ightarrow B : \ ((A, Kab, N_B)_{Kbs}, (N_B)_{Kab}) \ \end{array}
```

```
\begin{array}{l}
1 \ I(A) \to B : (A, N_A) \\
2 \ B \to I(S) : (B, (A, N_A, N_B)_{Kbs}) \\
4 \ I(A) \to B : ((A, N_A, N_B)_{Kbs}, (N_B)_{N_A})
\end{array}
```

Another Type Flaw Attack: Woo Lam Protocol

Woo Lam

```
1 A \rightarrow B : (A)
2 B \rightarrow A : (N_B)
3 A \rightarrow B : (A, B, N_B)_{Kas}
```

4 $B \rightarrow S$: $(A, B, (A, B, N_B)_{Kas})_{Kbs}$

 $5 S \rightarrow B : (A, B, N_B)_{Kbs}$

Woo Lam

```
1 A \rightarrow B : (A)2 B \rightarrow A : (N_B)
```

$$2D \rightarrow A \cdot (NB)$$

3 A
$$\rightarrow$$
 B : $(A, B, N_B)_{Kas}$

4
$$B \rightarrow S$$
: $(A, B, (A, B, N_B)_{Kas})_{Kbs}$

$$5 S \rightarrow B : (A, B, N_B)_{Kbs}$$

$$1 I(A) \rightarrow B : (A)$$

Woo Lam

```
1 A \rightarrow B : (A)
```

$$2 B \rightarrow A : (N_B)$$

3
$$A \rightarrow B$$
 : $(A, B, N_B)_{Kas}$

4
$$B \rightarrow S$$
: $(A, B, (A, B, N_B)_{Kas})_{Kbs}$

5
$$S \rightarrow B$$
 : $(A, B, N_B)_{Kbs}$

$$1 I(A) \rightarrow B : (A)$$
$$2 B \rightarrow I(A) : (N_B)$$

Woo Lam

```
1 A \rightarrow B : (A)
2 B \rightarrow A : (N_B)
3 A \rightarrow B : (A, B, N_B)_{Kas}
4 B \rightarrow S : (A B (A B A)
```

4 $B \rightarrow S$: $(A, B, (A, B, N_B)_{Kas})_{Kbs}$

 $5 S \rightarrow B : (A, B, N_B)_{Kbs}$

```
\begin{array}{l} 1 \ I(A) \rightarrow B : \ (A) \\ 2 \ B \rightarrow I(A) : \ (N_B) \\ 3 \ I(A) \rightarrow B : \ (N_B) \\ \text{instead of } (A, B, N_B)_{Kas} \end{array}
```

Woo Lam

```
1 A \rightarrow B : (A)
2 B \rightarrow A : (N_B)
3 A \rightarrow B : (A, B, N_B)_{Kas}
A B \rightarrow S : (A, B, (A, B, N_B)_{Kas})_{Kbs}
```

 $5 S \rightarrow B : (A, B, N_B)_{Kbs}$

```
1 I(A) \rightarrow B : (A)
2 B \rightarrow I(A) : (N_B)
3 I(A) \rightarrow B : (N_R)
instead of (A, B, N_B)_{Kas} A B \rightarrow I(S) : (A, B, N_B)_{Kbs}
```

Woo Lam

```
1 A \rightarrow B : (A)
2 B \rightarrow A : (N_B)
3 A \rightarrow B : (A, B, N_B)_{Kas}
```

4 $B \rightarrow S$: $(A, B, (A, B, N_B)_{Kas})_{Kbs}$

5 $S \rightarrow B$: $(A, B, N_B)_{Kbs}$

```
1 I(A) \to B : (A)

2 B \to I(A) : (N_B)

3 I(A) \to B : (N_B)

instead of (A, B, N_B)_{Kas} A B \to I(S) : (A, B, N_B)_{Kbs}

5 I(S) \to B : (A, B, N_B)_{Kbs}
```

Questions?

How can we find such attacks?

- Models for Protocols
- Models for Properties
- Theories
- Dedicated Techniques
- Tools
 - Automatic
 - Semi-automatic

Why is it difficult to verify such protocols?

- Messages: Size not bounded
- Nonces: Arbitrary number
- Channel: Insecure
- Intruder: Unlimited capabilities
- Instances: Unbounded numbers of principals
- Interleaving: Unlimited applications of the protocol.

TMN Protocol: Distribution of a fresh symmetric key

[Tatebayashi, Matsuzuki, Newmann 89]:

Osiris retrieves N_I :

Attack on TMN Protocol [Simmons'94]

With homomorphic encryption $\{a\}_k \oplus \{b\}_k = \{a \oplus b\}_k$

Buto Learns:

Outline

- 1 Logical Attacks
- Diffie-Hellman
- 3 Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

The Intruder is the Network (Worst Case)

Intruder Capabilities (Dolev-Yao Model 80's)

- Encryption, Decryption with a key
- Pairing, Projection.

Dolev-Yao 1982

- Intruder controls the network and can:
 - intercept messages
 - modify messages
 - block messages
 - generate new messages
 - insert new messages
- Perfect cryptography:
 - Abstraction with terms algebra
 - Decryption only if inverse key is known
- Protocol has
 - Arbitrary number of principals
 - Arbitrary number of parallel sessions
 - Messages with arbitrary size

Proof System

A **sequent** is an expression of the form $T \vdash u$.

Definition

A **proof** of a sequent $T \vdash u$ is a tree whose nodes are labeled by either sequents or expressions of the form " $v \in T$ ", such that:

- Each leaf is labeled by an expression of the form $v \in T$, and each non-leaf node is labeled by an sequent.
- Each node labeled by a sequent $T \vdash v$ has n children labeled by $T \vdash s_1, \ldots, T \vdash s_n$ such that there is an instance of an inference rule with conclusion $T \vdash_E v$ and **hypotheses** $T \vdash s_1, \ldots, T \vdash s_n$.
- The **root** of the tree is labeled by $T \vdash u$.

A **subproof** of a proof P is a subtree of P.

Notions for Proof System

Definition

- Size of a proof P of T ⊢ u is denoted by |P|, is the number of nodes in the proof.
- A proof P of T ⊢ u is minimal if there does not exist a proof P' of T ⊢ u such that |P'| < |P|.

Dolev-Yao Deduction System

Deduction System : $T_0 \vdash^? s$

(A)
$$\frac{u \in T_0}{T_0 \vdash u}$$

(UL)
$$\frac{T_0 \vdash \langle u, v \rangle}{T_0 \vdash \mu}$$

(P)
$$\frac{T_0 \vdash u \quad T_0 \vdash v}{T_0 \vdash \langle u, v \rangle}$$

(UR)
$$\frac{T_0 \vdash \langle u, v \rangle}{T_0 \vdash v}$$

(C)
$$\frac{T_0 \vdash u \quad T_0 \vdash v}{T_0 \vdash \{u\}_v}$$

(D)
$$\frac{T_0 \vdash \{u\}_{\nu} \qquad T_0 \vdash \nu}{T_0 \vdash u}$$

Example:
$$T_0 \vdash^? s$$

Example

$$\mathcal{T}_0 = \{k, \{b\}_c, \langle a, \{c\}_k \rangle \}$$
 and $s = b$

Example: $T_0 \vdash^? s$

Example

$$T_{0} = \{k, \{b\}_{c}, \langle a, \{c\}_{k} \rangle\} \text{ and } s = b$$

$$(D) \frac{(A) \frac{\{b\}_{c} \in T_{0}}{T_{0} \vdash \{b\}_{c}} (D) \frac{(UR) \frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \{c\}_{k}}}{T_{0} \vdash c} (A) \frac{k \in T_{0}}{T_{0} \vdash k}}{T_{0} \vdash c}$$

Exercise:
$$T_0 \vdash^? s$$

Is it possible from T_0 to deduce s

- $T_0 = \{a, k\}$ and $s = \langle a, \{a\}_k \rangle$
- $T_0 = \{a, k\}$ and $s = \langle b, \{k\}_a \rangle$
- $T_0 = \{\{k\}_a, b\}$ and $s = \langle \{b\}_{\{k\}_a}, \{k\}_a \rangle$
- $T_0 = \{\langle a, \{k\}_a \rangle\}$ and $s = \{\langle a, \{k\}_a \rangle\}_k$

Outline

- 1 Logical Attacks
- 2 Diffie-Hellman
- Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

Main Results

In general security problem undecidable [DLMS'99, AC'01]

Bounded number of session ⇒ Decidability [AL'00, RT'01]

Undecidability

Definition (Post Correspondence Problem (PCP))

Let Σ be a finite alphabet.

Input: Sequence of pairs $\langle u_i, v_i \rangle_{1 \le i \le n} u_i, v_i \in \Sigma^*, n \in \mathbb{N}$

Question: Existence of $k, i_1, \ldots, i_k \in \mathbb{N}$ such that

 $u_{i_1}\ldots u_{i_k}=v_{i_1}\ldots v_{i_k}?$

Undecidability

Definition (Post Correspondence Problem (PCP))

Let Σ be a finite alphabet.

Input: Sequence of pairs $\langle u_i, v_i \rangle_{1 \le i \le n} u_i, v_i \in \Sigma^*, n \in \mathbb{N}$

Question: Existence of $k, i_1, \ldots, i_k \in \mathbb{N}$ such that

 $u_{i_1}\ldots u_{i_k}=v_{i_1}\ldots v_{i_k}$?

Example

$$u_1$$
 u_2 u_3 u_4 aba bbb aab bb

$$V_1$$
 V_2 V_3 V_4 a aaa abab babba

Solution: 1431

$$u_1 \cdot u_4 \cdot u_3 \cdot u_1 = aba \cdot bb \cdot aab \cdot aba = a \cdot babba \cdot abab \cdot a = v_1 \cdot v_4 \cdot v_3 \cdot v_1$$

But no solution for $\langle u_1, v_1 \rangle, \langle u_2, v_2 \rangle, \langle u_3, v_3 \rangle$

Undecidability

Definition (Post Correspondence Problem (PCP))

Let Σ be a finite alphabet.

Input: Sequence of pairs $\langle u_i, v_i \rangle_{1 \le i \le n} u_i, v_i \in \Sigma^*, n \in \mathbb{N}$

Question : Existence of $k, i_1, \ldots, i_k \in \mathbb{N}$ such that

 $u_{i_1}\ldots u_{i_k}=v_{i_1}\ldots v_{i_k}$?

Example

$$u_1$$
 u_2 u_3 u_4 v_1 v_2 v_3 v_4 aba bbb aab bb aab babba

Solution: 1431

$$u_1 \cdot u_4 \cdot u_3 \cdot u_1 = aba \cdot bb \cdot aab \cdot aba = a \cdot babba \cdot abab \cdot a = v_1 \cdot v_4 \cdot v_3 \cdot v_1$$

But no solution for $\langle u_1, v_1 \rangle, \langle u_2, v_2 \rangle, \langle u_3, v_3 \rangle$

Undecidability for Protocols

We construct a protocol such that decidability of secret implies decidability of PCP.

A:
$$send(\{\langle u_i, v_i \rangle\}_{K_{ab}})$$
 $(1 \le i \le n)$

$$B: receive(\{\langle x,y\rangle\}_{K_{ab}}) \\ send(\langle\{\langle x\cdot u_i,y\cdot v_i\rangle\}_{K_{ab}},\{s\}_{\langle\{\langle x\cdot u_i,x\cdot u_i\rangle\}_{K_{ab}}\rangle}) \qquad (1\leq i\leq n)$$

We assume that K_{AB} is a shared key between A and B.

Intruder can find s iff he can solve PCP.

Outline

- 1 Logical Attacks
- Diffie-Hellman
- Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

Syntactic Subterms

Equivalent definition for Dolev Yao model

S(t) is the smallest set such that:

- $t \in S(t)$
- $\langle u, v \rangle \in S(t) \Rightarrow u, v \in S(t)$
- $\{u\}_v \in S(t) \Rightarrow u, v \in S(t)$

Exercise:

• Let $t = \{\langle a, \{b\}_{k_2} \rangle\}_{k_1}$

Syntactic Subterms

Equivalent definition for Dolev Yao model

S(t) is the smallest set such that:

- $t \in S(t)$
- $\langle u, v \rangle \in S(t) \Rightarrow u, v \in S(t)$
- $\{u\}_v \in S(t) \Rightarrow u, v \in S(t)$

Exercise:

• Let $t = \{\langle a, \{b\}_{k_2} \rangle\}_{k_1}$

$$S(t) = \{t, a, b, k_1, k_2, \{b\}_{k_2}, \langle a, \{b\}_{k_2} \rangle\}$$

Definition of S-Locality

• A proof P of $T_0 \vdash s$ is S-local :

Definition of S-Locality

• A proof P of $T_0 \vdash s$ is S-local :

S-Local Proof:

A proof P of $T \vdash w$ is **S-local** if all nodes are in $S(T \cup \{w\})$.

Definition of S-Locality

• A proof P of $T_0 \vdash s$ is S-local :

S-Local Proof:

A proof P of $T \vdash w$ is **S-local** if all nodes are in $S(T \cup \{w\})$.

S-Locality:

A proof system is **S-local** if whenever there is a proof of $T \vdash w$ then there is also a S-local proof of $T \vdash w$.

Locality Idea [MacAllester'93]

Intruder Deduction Problem : $T_0 \vdash^? s$

- S-locality
- One-step deductibility

Example: a local proof of $T_0 \vdash s$

Example

$$T_{0} = \{k, \{b\}_{c}, \langle a, \{c\}_{k} \rangle\} \text{ and } s = b$$

$$(UR) \frac{(A) \frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \langle a, \{c\}_{k} \rangle}}{T_{0} \vdash \{c\}_{k}} \qquad (A) \frac{k \in T_{0}}{T_{0} \vdash k}$$

$$(D) \frac{(D) \frac{(D) \frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \{c\}_{k}}}{T_{0} \vdash b}$$

Example: a local proof of $T_0 \vdash s$

Example $T_0 = \{k, \{b\}_c, \langle a, \{c\}_k \rangle\} \text{ and } s = b$ $(D) \frac{(A) \frac{\langle a, \{c\}_k \rangle \in T_0}{T_0 \vdash \langle a, \{c\}_k \rangle}}{T_0 \vdash \{c\}_k} \qquad (A) \frac{k \in T_0}{T_0 \vdash k}$ $(A) \frac{\{b\}_c \in T_0}{T_0 \vdash \{b\}_c}$

 $T_0 \vdash b$

$$S(T_0 \cup \{s\}) = T_0 \cup \{a, b, c, \{c\}_k\}$$

Locality Theorem

Theorem of Locality [McAllester 93]

If a proof system P is SyntacticSubterm-local then there is a P-time procedure to decide the deductibility in P.

Locality Theorem

Theorem of Locality [McAllester 93]

If a proof system P is SyntacticSubterm-local then there is a P-time procedure to decide the deductibility in P.

Restrictions:

- Deduction system must be finite
- Use just syntactic subterms

Adapted McAllester Results

McAllester's Algorithm

```
Input: T_0, w
T \leftarrow T_0;
while (\exists s \in S(T_0, w) \text{ such that } T \vdash^{\leq 1} s \text{ and } s \notin T)
T \leftarrow T \cup \{s\};
Output: w \in T
```

Theorem

Let P be a proof system. If:

- the size of S(T) is polynomial in the size of T,
- P is S-local.
- one-step deducibility is P-time decidable,

then provability in the proof system P is P-time decidable.

Outline

- 1 Logical Attacks
- 2 Diffie-Hellman
- Needham Schroeder
- 4 Dolev Yao's Intruder
- 5 Undecidability for unbounded number of sessions
- 6 Notion of Locality
- Passive Intruder: Intruder Deduction Problem

Locality Theorem

Theorem of Locality [McAllester 93]

If a proof system P is SyntacticSubterm-local then there is a P-time procedure to decide the deductibility in P.

Locality Theorem

Theorem of Locality [McAllester 93]

If a proof system P is SyntacticSubterm-local then there is a P-time procedure to decide the deductibility in P.

Result:

Dolev Yao deduction system is S-local.

Example of necessity of $S(T \cup \{s\})$

$$T_0 = \{k, \{b\}_c, \langle a, \{c\}_k \rangle\}$$
 and $s = \langle b, k \rangle$

Example of necessity of $S(T \cup \{s\})$

$$T_{0} = \{k, \{b\}_{c}, \langle a, \{c\}_{k} \rangle\} \text{ and } s = \langle b, k \rangle$$

$$\frac{(A)\frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \langle a, \{c\}_{k} \rangle}}{(T_{0} \vdash \{c\}_{k})} \frac{(A)\frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \langle c\}_{k}}}{T_{0} \vdash \langle c\}_{k}} \frac{(A)\frac{k \in T_{0}}{T_{0} \vdash k}}{T_{0} \vdash k}$$

$$(P)\frac{(D)\frac{(A)\frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \langle b, k \rangle}}{T_{0} \vdash \langle b, k \rangle} \frac{(A)\frac{k \in T_{0}}{T_{0} \vdash k}}{T_{0} \vdash \langle b, k \rangle}$$

Example of necessity of $S(T \cup \{s\})$

Example

$$T_{0} = \{k, \{b\}_{c}, \langle a, \{c\}_{k} \rangle\} \text{ and } s = \langle b, k \rangle$$

$$\frac{(A) \frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \langle a, \{c\}_{k} \rangle}}{\frac{(A) \frac{\langle a, \{c\}_{k} \rangle \in T_{0}}{T_{0} \vdash \langle c\}_{k}}}{T_{0} \vdash \langle c, k \rangle}}{\frac{(A) \frac{k \in T_{0}}{T_{0} \vdash k}}{T_{0} \vdash \langle c, k \rangle}}$$

$$(A) \frac{k \in T_{0}}{T_{0} \vdash k}$$

$$(A) \frac{k \in T_{0}}{T_{0} \vdash k}$$

 $T_0 \vdash \langle b, k \rangle$

$$S(T_0) = T_0 \cup \{a, b, c, k, \{b\}_k, \{c\}_k\}$$
 but $\langle b, k \rangle \notin S(T_0)$ It is Not enough

Notice that $\langle b, k \rangle \in S(T_0 \cup \{s\})$

Example non minimal proof is not S-local

GOAL: Find a good S.

$$T_0 = \{k, \{c\}_k\} \text{ and } s = c$$

Example non minimal proof is not S-local

GOAL: Find a good S.

$$T_{0} = \{k, \{c\}_{k}\} \text{ and } s = c$$

$$(P) \frac{(A) \frac{\{c\}_{k} \in T_{0}}{T_{0} \vdash \{c\}_{k}} (A) \frac{\{c\}_{k} \in T_{0}}{T_{0} \vdash \{c\}_{k}}}{T_{0} \vdash \{c\}_{k}} (A) \frac{k \in T_{0}}{T_{0} \vdash \{c\}_{k}}}{T_{0} \vdash \{c\}_{k}}$$

$$(D) \frac{(UL) \frac{(C) \frac{k}{T_{0} \vdash \{c\}_{k}}}{T_{0} \vdash \{c\}_{k}} (A) \frac{k \in T_{0}}{T_{0} \vdash k}}{C}$$

Example non minimal proof is not S-local

GOAL: Find a good S.

$$T_{0} = \{k, \{c\}_{k}\} \text{ and } s = c$$

$$(UL) \frac{(P) \frac{(A) \frac{\{c\}_{k} \in T_{0}}{T_{0} \vdash \{c\}_{k}} (A) \frac{\{c\}_{k} \in T_{0}}{T_{0} \vdash \{c\}_{k}}}{T_{0} \vdash \{c\}_{k}}}{(C) \frac{(DL) \frac{T_{0} \vdash \{c\}_{k}}{T_{0} \vdash \{c\}_{k}}}{C}} (A) \frac{k \in T_{0}}{T_{0} \vdash k}}{C}$$

$$S(T_{0}) = T_{0} \cup \{c\} \text{ but } \langle \{c\}_{k}, \{c\}_{k} \rangle$$
It is Not in $S(T_{0} \cup \{s\})$

Example:

$$1 \quad A \rightarrow B : \{m\}_{K_A}$$

Example:

$$1 \quad A \rightarrow B : \{m\}_{K_A}$$

Example:

$$1 \quad A \rightarrow B : \{m\}_{K_A}$$

Example:

$$1 \quad A \rightarrow B : \{m\}_{K_A}$$

Example:

Example:

Example:

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

$$\{m\}_k = m \oplus k$$

XOR Properties (ACUN)

- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- $x \oplus y = y \oplus x$
- $x \oplus 0 = x$
- $x \oplus x = 0$

Associativity

Commutativity

Unity

Nilpotency

Logical Attack on Shamir 3-Pass Protocol (I)

Perfect encryption one-time pad (Vernam Encryption)

$$\{m\}_k = m \oplus k$$

XOR Properties (ACUN)

- $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- $x \oplus y = y \oplus x$
- $x \oplus 0 = x$
- $x \oplus x = 0$

Associativity

Commutativity

Unity

Nilpotency

Vernam encryption is a commutative encryption :

$$\{\{m\}_{K_A}\}_{K_I}=(m\oplus K_A)\oplus K_I=(m\oplus K_I)\oplus K_A=\{\{m\}_{K_I}\}_{K_A}$$

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption)

$$\{m\}_k = m \oplus k$$

Shamir 3-Pass Protocol

Passive attacker:

 $m \oplus K_{\Delta}$ $m \oplus K_{B} \oplus K_{\Delta}$ $m \oplus K_{B}$

Logical Attack on Shamir 3-Pass Protocol (II)

Perfect encryption one-time pad (Vernam Encryption)

$$\{m\}_k = m \oplus k$$

Shamir 3-Pass Protocol

Passive attacker:

$$m \oplus K_A \oplus m \oplus K_B \oplus K_A \oplus m \oplus K_B = m$$

Thank you for your attention.

Questions?