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How to prove that an encryption scheme E is secure ?
@ Hypothesis: HARD problem P (RSA, DL,DDH,CDH)
® Reduction:

® |f an adversary A breaks the encryption scheme E
® Then A can be used it to solve P in polynomial time.

© Conclusion: Under this assumption there does not exist an
adversary in polynomial time which can break the security of
the scheme.
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Reduction Proof Technique

How to prove that an encryption scheme E is secure ?
@ Hypothesis: HARD problem P (RSA, DL,DDH,CDH)
® Reduction:

® |f an adversary A breaks the encryption scheme E
® Then A can be used it to solve P in polynomial time.

© Conclusion: Under this assumption there does not exist an
adversary in polynomial time which can break the security of
the scheme.

Application: ElGamal is IND-CPA secure under DDH assumption.

Consider an adversary breaking IND-CPA game for ElGamal
then he can solve DDH
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DL implies CDH

Definitions (recall)

AdvPL(A) = Pr[A(g") — x|x £ 1,]

AdeDH(A) = Pr {A(gx,gy) —g¥

X,_y<5 [17q]j|
AdVDDH(A) — 'Dr[A(gX7gy7ng) — 1‘X,y ﬁ [17 q]:|

X r R
_’Dr|:~’4(g 7gy7g )—>1‘X,y,f<— [17q]}
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Simple Examples of Reduction Proof Technique
DL implies CDH

Proof of CDH < DL

We denote by X = g*, Y = g¥

Consider there is an adversary A who breaks DL.
Using A for breaking DL, we get y

Hence Z = g¥ = (g¥)’ = X¥

We have solved CDH
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CDH implies DDH

Experiments

EXpddh—l(A)

R
x,y < [1,q]
returnA(g*, g¥,g8")
EXpddh—O(A)

R
X’ y? 4 H [17 q]
returnA(g*, g¥, &%)
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CDH implies DDH

Let A be an adversary against the CDH assumption and B against DDH

Adversary B(X,Y,Z):
if Z= A(X,Y) then return 1
else return 0
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CDH implies DDH

Let A be an adversary against the CDH assumption and B against DDH

Adversary B(X,Y,Z):
if Z= A(X,Y) then return 1
else return 0

AdvPPH(B) = Pr{ExpPPH=1(B) = 1] — Pr[ExpPP"=0(B) = 1]

Pr [B'(gx7 gv,g¥)—=1

R R
x,y < [1, q]} - Pr[B(gX,gy,gf) — 1ix,y,r <|[1, 4]

CDH 1
Adv (.A) - E
The number of elements in G is supposed large hence 1/q is negligible.
As the DDH assumption holds, the advantage of B is negligible. Hence
the advantage of A against CDH is also negligible and the CDH
assumption holds.
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RSA
Example: RSA
public ‘ private
n=pq d=-e"1 mod ¢(n)
e (public key) (private key)

RSA Encryption
® E(m)=m® mod n
® D(c)=c% mod n

OW-CPA = RSA problem by definition!
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Chiffrement par bloc

® m, un message clair
® ¢, le chiffré de m
® |m| =|c| = n bits

m

|

sk — Enc

|

sk ——>

Dec
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Mode ECB (Electronic CodeBook)

Let |m| =k-n, k> 1.

m=(my,...,mg), |m;j| = n bits.
m;j Ci
sk — Enc sk — Dec
G mj
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Mode CBC (Cipher Block Chaining)

Encryption:
mo mq mp
v %, e &
v 3
sk — Enc ||sk —{ Enc | - sk — Enc
— | — l
Q Cc1 Cn

If the first block has index 1, C; = Ex(P; & Ci—1), Co = IV
Pi = Dk(G)® Ci—1,Co = IV
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Mode CBC (Cipher Block Chaining)

Decryption:

o a

sk — Dec ||sk — Dec | - sk —| Dec

Y Y

Jan Van Jan

v NV, XD Y
Y A

mo m1 mp
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Modes

Mode CFB (Cipher FeedBack)

Encryption:
v

sk — Enc ||sk — Enc | :----: sk — Enc
mo —»69 ma —»69 mp —»6}
(o)) C'1 Cn

Ci = Ex(Ci—1) @ P

Pi = Ex(Ci—1) @ G

G=1IV
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Mode CFB (Cipher FeedBack)

Decryption:
vV
sk —| Enc ||sk — Enc | ::-- sk —| Enc
Y Y
S—a  B—a _ B
A, Y
mo ma mp
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Modes

Mode OFB (Output FeedBack)

Encryption:
v
sk —| Enc ||sk —| Enc | ------
mo— e
C'O (1‘1
CG=Pi®O0,
Pi=Ci @ O
O0i = Ex(0i-1)

Op= IV

sk — Enc

Mn —B

Cn
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Modes

Mode OFB (Output FeedBack)

Decryption:

v

l

sk —{ Enc

sk —

Enc

% —H

mo

sk —

& —D

Enc

mp
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Counter Mode (CTR)

G =1V
Cf:P;@gk(/V—i-i—l)
Pi=GC®&E((IV+i-1)
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ECB vs Others
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Cramer-Shoup Cryptosystem

History

® Proposed in 1998 by Ronald Cramer and Victor Shoup

® First efficient scheme proven to be IND-CCA?2 in standard
model.

® Extension of Elgamal Cryptosystem.
® Use of a collision-resistant hash function

Ronald Cramer and Victor Shoup. " A practical public key
cryptosystem provably secure against adaptive chosen ciphertext
attack.” in proceedings of Crypto 1998, LNCS 1462.
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Cramer-Shoup Cryptosystem

Key Generation

® G a cyclic group of order q with two distinct, random
generators gy, g
® Pick 5 random values (x1, x2, y1, y2,2) in {0,...,q — 1}

*c=g"g’ d=gl'gy, h=¢gf
Public key: (c,d, h), with G, q, g1, &
Secret key: (X1,X2,)/17Y272)
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Cramer-Shoup Cryptosystem

Encryption of m € G with (G, q, g1,8,c,d, h)

® Pick a random k € {0,...,q9 — 1}
e Calculate: u; = glk, Uy = g2k

® e=hkm

® o= H(ui,uy,e)

o v — ckgka

[ ]

Ciphertext: (u, u2,e,v)
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Cramer-Shoup Cryptosystem

Decryption of (uy, uz, e, v) with (x1,x2, y1, y2, Z)

e Compute o = H(uy, up, €)
o Verify uf'u)?(u*uy?)* =v

o m=e/(uf)

It works because

z kz k
up =g1° =h

m=e/h
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Key Privacy

IKA-XXX Games

¥ 2 . 4
3 A
% 3-
E i
~

Given an encryption scheme S = (K,&,D). An adversary is a pair
A = (A, Az) of polynomial-time probab|I|st|c algorithms,

b e {0,1}.

Let IKA2,,(A) be the following algorithm:
o (pko,sko) & K(n); (pku, ski) & K(n).
o (s,m) & Au(n, pko, pky)
® Sample b & {0,1}.
o b & Ay(n, pk, s, E(pky, m))

® return b'.

IKA
ADV g X (n) =

Prit’ & IKALyx (A) : b = 1] — Prib & IKAYx (A) : b = 1]
For CCA Adversary has access to the oracles Dy, and Dgy .
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Key Privacy

Example of Key-privacy or anonymity

e E| Gamal and Cramer-Shoup are IKA secure under DDH
assumption
® RSA trapdoor permutation is not anonymous
® variant of RSA-OAEP is IKA secure under assumption RSA is
one-way
Reference : Key-Privacy in Public-Key Encryption by Mihir Bellare,
Alexandra Boldyreva, Anand Desai, and David Pointcheval
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Signature

Digital Signature

Syntax: algorithms (KGen, Enc, Dec) such that:
® KGen(1%) : given security parameters, outputs tuple, (sk, pk)
consisting of a private/public key
® Sign(sk; m): given plaintext and secret key, outputs signature
(o
e Vf(pk; m, o) : given message, signature and public key,
outputs a bit 1 if o checks for m, 0 otherwise
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Signature

Signature Security

Correctness:

® For all tuples (sk,pk) = KGen(1) and for all messages
m € M, it must hold that Vf( pk; m, Sign(sk, m)) =1
® Sometimes we degrade it to e-correctness in which the
verification of a signed message fails with probability €

EUF-CMA:

Adversary can't forge fresh signature

(sk, pk) = KGen(1*)

(m, o) = ASE")(pk, 1)

Storelist @ = {(m1,01),...,(mg,0x)} of queries to Sign
A wins iff (m,*) € Q and Vf(pk,m,o) =1
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Signature

RSA signature is Not EUF-CMA

Recall

pk = (n,e) and sk = d
oc=m? modn

verify : m=0° mod n

Attack 1 : Pick a random string s compute m’ = s¢ mod N
outputs (m’, s) as forgery.

Attack?2 : goal forge a signature for a given message m

Pick m; randomly, ask o1 = mf mod n

Compute myp such that mymy = m mod N, and ask 0, = mg
mod n

Output (m, o102 mod N)
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Signature

How to get EUF-CMA : Probabilistic Full-Domain-Hash
RSA (PFRSA)

Sign: o = (r,s) = (r,y? mod n), where y = H(r||m) and r
random
Verification : s = H(r||m)
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Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision
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Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision
With 2% + 1 try there is a collision
P(at least 1 collision) = 1 — P(no collision)

Probability of no collision
®* Tryl:1-0
e Try2:1-—1/2k
® Try3:1-2/2k

e Tryg:1—(q—1)/2"
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Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision

With 2% + 1 try there is a collision

P(at least 1 collision) = 1 — P(no collision)
Probability of no collision
®* Tryl:1-0
e Try2:1-—1/2k
® Try3:1-2/2k
o
e Tryg:1—(q—1)/2"
i=q
P(no collision) = H(l —i/2%)

i=1 35/ 49
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Birthday Paradox : Hash Function

P(at least 1 collision) =1 — P(no collision)
Using 1 — x =~ e~ * we have

1— e Sig(1=i/2) _ 1 _ g-a(g-1)/2"
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Brithday Paradox

If you want a probability of ¢ to have a collision
Need ot solve

=1 _ e9(g—1)/2"

q(qg—1) =2""1n(1/(1 —¢)
k ~ sqrt(2°TLIn(1/(1 — €))

Examples

1o ko~ 1.177sqrt(25)
o — % = k= 1,6655qrt(2k+1)
0.9 = k ~ 2.146sqrt(2x+1)

® ¢ —

Remark: if 2% is 365 among 1.77sqrt(365) approx23
So should be at least > 64 or even 80. > 128 or 160 to resist
birthday attack.
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Tools

Several Tools for computational proofs

® CryptoVerif
® Easycrypt
e [*

Example: Prove properties of primitives in EasyCrypt, and use
them to prove protocols in CryptoVerif.
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CryptoVerif by Bruno Blanchet (2006)

Automatic tool for the automatic reasoning about security
protocols!
® Messages are bitstrings
e Cryptographic primitives are functions from bitstrings to
bitstrings
® The adversary is a probabilistic Turing machine
Version 2.04, released on Nov. 30, 2020

"http://cryptoverif.inria.fr/
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Tools

CryptoVerif

® generates proofs by sequences of games.

® proves secrecy, authentication, and indistinguishability
properties.

® works for N sessions (polynomial in the security parameter),
with an active adversary.

® gives a bound on the probability of an attack (exact security).

® has an automatic proof strategy and can also be manually
guided.
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Tools

Included

A generic method for specifying properties of cryptographic
primitives:

MACs (message authentication codes)

® symmetric encryption

public-key encryption

® signatures

hash functions,

Diffie-Hellman key agreements
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Tools

Workflow of CryptoVerif

Prepare the input file containing

® the specification of the protocol to study (initial game),
® the security assumptions on the cryptographic primitives,

® the security properties to prove.
Run CryptoVerif

CryptoVerif outputs

the sequence of games that leads to the proof, a succinct
explanation of the transformations performed between games, an
upper bound of the probability of success of an attack.
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Tools

F* (2016)

A general-purpose functional programming language with effects
aimed at program verification.
https://www.fstar-lang.org/

Semi-automated verification system

Interactive proof assistant based on dependent types

F* is programmed in F*, but not (yet) verified
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Tools

Project Everest

verify and deploy new, efficient HTTPS stack

® miTLS*: Verified reference implementation of TLS (1.2 and
1.3)

e HACL*: High-Assurance Cryptographic Library
® Vale: Verified Assembly Language for Everest
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Tools

EasyCrypt 2009

® A toolset for reasoning about relational properties of
probabilistic computations with adversarial code.

® Views cryptographic proofs as relational verification of open
parametric probabilistic programs

https://www.easycrypt.info/trac/
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Today

@ Modes

® Reduction RSA, Elgamal
© Cramer Shoup

O Key Privacy

@ Signature security
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Conclusion

Thank you for your attention.

Questions ?
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