Security Models Lecture 2 Computational Security

Security Models
Lecture 2
Computational Security

Pascal Lafourcade

Vel
UNIVERSITE
Clermont

Auvergne

2020-2021

1/49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique

Outline

@ Simple Examples of Reduction Proof Technique

2/ 49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique

Reduction Proof Technique

How to prove that an encryption scheme E is secure ?

3/49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique

Reduction Proof Technique

How to prove that an encryption scheme E is secure ?
@ Hypothesis: HARD problem P (RSA, DL,DDH,CDH)
® Reduction:

® |f an adversary A breaks the encryption scheme E
® Then A can be used it to solve P in polynomial time.

© Conclusion: Under this assumption there does not exist an
adversary in polynomial time which can break the security of
the scheme.

3/49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique

Reduction Proof Technique

How to prove that an encryption scheme E is secure ?
@ Hypothesis: HARD problem P (RSA, DL,DDH,CDH)
® Reduction:

® |f an adversary A breaks the encryption scheme E
® Then A can be used it to solve P in polynomial time.

© Conclusion: Under this assumption there does not exist an
adversary in polynomial time which can break the security of
the scheme.

Application: ElGamal is IND-CPA secure under DDH assumption.

Consider an adversary breaking IND-CPA game for ElGamal
then he can solve DDH

3/49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
DL implies CDH

Definitions (recall)

AdvPL(A) = Pr[A(g") — x|x £ 1,]

AdeDH(A) = Pr {A(gx,gy) —g¥

X,_y<5 [17q]j|
AdVDDH(A) — 'Dr[A(gX7gy7ng) — 1‘X,y ﬁ [17 q]:|

X r R
_’Dr|:~’4(g 7gy7g)—>1‘X,y,f<— [17q]}

4/ 49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
DL implies CDH

Proof of CDH < DL

We denote by X = g*, Y = g¥

5/ 49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
DL implies CDH

Proof of CDH < DL

We denote by X = g*, Y = g¥

Consider there is an adversary A who breaks DL.

5/ 49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
DL implies CDH

Proof of CDH < DL

We denote by X = g*, Y = g”

Consider there is an adversary A who breaks DL.
Using A for breaking DL, we get y

5/ 49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
DL implies CDH

Proof of CDH < DL

We denote by X = g*, Y = g¥

Consider there is an adversary A who breaks DL.
Using A for breaking DL, we get y

Hence Z = g¥ = (g¥)’ = X¥

We have solved CDH

5/ 49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
CDH implies DDH

Experiments

EXpddh—l(A)

R
x,y < [1,q]
returnA(g*, g¥,g8")
EXpddh—O(A)

R
X’ y? 4 H [17 q]
returnA(g*, g¥, &%)

6/ 49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
CDH implies DDH

CDH implies DDH

7/49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
CDH implies DDH

CDH implies DDH

Let A be an adversary against the CDH assumption and B against DDH

Adversary B(X,Y,Z):
if Z= A(X,Y) then return 1
else return 0

7/49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique
CDH implies DDH

CDH implies DDH

Let A be an adversary against the CDH assumption and B against DDH

Adversary B(X,Y,Z):
if Z= A(X,Y) then return 1
else return 0

AdvPPH(B) = Pr{ExpPPH=1(B) = 1] — Pr[ExpPP"=0(B) = 1]

Pr [B'(gx7 gv,g¥)—=1

R R
x,y < [1, q]} - Pr[B(gX,gy,gf) — 1ix,y,r <|[1, 4]

CDH 1
Adv (.A) - E
The number of elements in G is supposed large hence 1/q is negligible.
As the DDH assumption holds, the advantage of B is negligible. Hence
the advantage of A against CDH is also negligible and the CDH
assumption holds.

/49

Security Models Lecture 2 Computational Security
Simple Examples of Reduction Proof Technique

RSA
Example: RSA
public ‘ private
n=pq d=-e"1 mod ¢(n)
e (public key) (private key)

RSA Encryption
® E(m)=m® mod n
® D(c)=c% mod n

OW-CPA = RSA problem by definition!

8/ 49

Outline

@ Simple Examples of Reduction Proof Technique
@ Modes

© Cramer-Shoup Cryptosystem

O Key Privacy

@ Signature

@ Brithday Paradox

@ Tools

@© Conclusion

9/ 49

Security Models Lecture 2 Computational Security
Modes

Chiffrement par bloc

® m, un message clair
® ¢, le chiffré de m
® |m| =|c| = n bits

m

|

sk — Enc

|

sk ——>

Dec

10 / 49

Security Models Lecture 2 Computational Security
Modes

Mode ECB (Electronic CodeBook)

Let |m| =k-n, k> 1.

m=(my,...,mg), |m;j| = n bits.
m;j Ci
sk — Enc sk — Dec
G mj

11/ 49

Security Models Lecture 2 Computational Security
Modes

Mode CBC (Cipher Block Chaining)

Encryption:
mo mq mp
v %, e &
v 3
sk — Enc ||sk —{ Enc | - sk — Enc
— | — l
Q Cc1 Cn

If the first block has index 1, C; = Ex(P; & Ci—1), Co = IV
Pi = Dk(G)® Ci—1,Co = IV

12 /49

Security Models Lecture 2 Computational Security
Modes

Mode CBC (Cipher Block Chaining)

Decryption:

o a

sk — Dec ||sk — Dec | - sk —| Dec

Y Y

Jan Van Jan

v NV, XD Y
Y A

mo m1 mp

13 / 49

Security Models Lecture 2 Computational Security
Modes

Mode CFB (Cipher FeedBack)

Encryption:
v

sk — Enc ||sk — Enc | :----: sk — Enc
mo —»69 ma —»69 mp —»6}
(o)) C'1 Cn

Ci = Ex(Ci—1) @ P

Pi = Ex(Ci—1) @ G

G=1IV

14 / 49

Security Models Lecture 2 Computational Security
Modes

Mode CFB (Cipher FeedBack)

Decryption:
vV
sk —| Enc ||sk — Enc | ::-- sk —| Enc
Y Y
S—a B—a _ B
A, Y
mo ma mp

15 / 49

Security Models Lecture 2 Computational Security

Modes

Mode OFB (Output FeedBack)

Encryption:
v
sk —| Enc ||sk —| Enc | ------
mo— e
C'O (1‘1
CG=Pi®O0,
Pi=Ci @ O
O0i = Ex(0i-1)

Op= IV

sk — Enc

Mn —B

Cn

16 / 49

Security Models Lecture 2 Computational Security

Modes

Mode OFB (Output FeedBack)

Decryption:

v

l

sk —{ Enc

sk —

Enc

% —H

mo

sk —

& —D

Enc

mp

17 / 49

Security Models Lecture 2 Computational Security
Modes

Counter Mode (CTR)

G =1V
Cf:P;@gk(/V—i-i—l)
Pi=GC®&E((IV+i-1)

18 / 49

Security Models Lecture 2 Computational Security
Modes

ECB vs Others

19 / 49

Security Models Lecture 2 Computational Security
Cramer-Shoup Cryptosystem

Outline

© Cramer-Shoup Cryptosystem

20 / 49

Security Models Lecture 2 Computational Security
Cramer-Shoup Cryptosystem

History

® Proposed in 1998 by Ronald Cramer and Victor Shoup

® First efficient scheme proven to be IND-CCA?2 in standard
model.

® Extension of Elgamal Cryptosystem.
® Use of a collision-resistant hash function

Ronald Cramer and Victor Shoup. " A practical public key
cryptosystem provably secure against adaptive chosen ciphertext
attack.” in proceedings of Crypto 1998, LNCS 1462.

21 /49

Security Models Lecture 2 Computational Security
Cramer-Shoup Cryptosystem

Key Generation

® G a cyclic group of order q with two distinct, random
generators gy, g
® Pick 5 random values (x1, x2, y1, y2,2) in {0,...,q — 1}

*c=g"g’ d=gl'gy, h=¢gf
Public key: (c,d, h), with G, q, g1, &
Secret key: (X1,X2,)/17Y272)

22 /49

Security Models Lecture 2 Computational Security
Cramer-Shoup Cryptosystem

Encryption of m € G with (G, q, g1,8,c,d, h)

® Pick a random k € {0,...,q9 — 1}
e Calculate: u; = glk, Uy = g2k

® e=hkm

® o= H(ui,uy,e)

o v — ckgka

[]

Ciphertext: (u, u2,e,v)

23 / 49

Security Models Lecture 2 Computational Security
Cramer-Shoup Cryptosystem

Decryption of (uy, uz, e, v) with (x1,x2, y1, y2, Z)

e Compute o = H(uy, up, €)
o Verify uf'u)?(u*uy?)* =v

o m=e/(uf)

It works because

z kz k
up =g1° =h

m=e/h

24 / 49

Security Models Lecture 2 Computational Security
Key Privacy

Outline

O Key Privacy

25 / 49

Security Models Lecture 2 Computational Security
Key Privacy

Key Privacy or Key Anonymity

26 / 49

Security Models Lecture 2 Computational Security
Key Privacy

Key Privacy or Key Anonymity

26 / 49

Security Models Lecture 2 Computational Security
Key Privacy

Key Privacy or Key Anonymity

L]
-

26 / 49

Security Models Lecture 2 Computational Security
Key Privacy

IKA-XXX Games

¥ 2 . 4
3 A
% 3-
E i
~

Given an encryption scheme S = (K,&,D). An adversary is a pair
A = (A, Az) of polynomial-time probab|I|st|c algorithms,

b e {0,1}.

Let IKA2,,(A) be the following algorithm:
o (pko,sko) & K(n); (pku, ski) & K(n).
o (s,m) & Au(n, pko, pky)
® Sample b & {0,1}.
o b & Ay(n, pk, s, E(pky, m))

® return b'.

IKA
ADV g X (n) =

Prit’ & IKALyx (A) : b = 1] — Prib & IKAYx (A) : b = 1]
For CCA Adversary has access to the oracles Dy, and Dgy .

27 / 49

Security Models Lecture 2 Computational Security
Key Privacy

Example of Key-privacy or anonymity

e E| Gamal and Cramer-Shoup are IKA secure under DDH
assumption
® RSA trapdoor permutation is not anonymous
® variant of RSA-OAEP is IKA secure under assumption RSA is
one-way
Reference : Key-Privacy in Public-Key Encryption by Mihir Bellare,
Alexandra Boldyreva, Anand Desai, and David Pointcheval

28 / 49

Security Models Lecture 2 Computational Security
Signature

Outline

@ Signature

29 / 49

Security Models Lecture 2 Computational Security
Signature

Digital Signature

Syntax: algorithms (KGen, Enc, Dec) such that:
® KGen(1%) : given security parameters, outputs tuple, (sk, pk)
consisting of a private/public key
® Sign(sk; m): given plaintext and secret key, outputs signature
(o
e Vf(pk; m, o) : given message, signature and public key,
outputs a bit 1 if o checks for m, 0 otherwise

30 /49

Security Models Lecture 2 Computational Security
Signature

Signature Security

Correctness:

® For all tuples (sk,pk) = KGen(1) and for all messages
m € M, it must hold that Vf(pk; m, Sign(sk, m)) =1
® Sometimes we degrade it to e-correctness in which the
verification of a signed message fails with probability €

EUF-CMA:

Adversary can't forge fresh signature

(sk, pk) = KGen(1*)

(m, o) = ASE")(pk, 1)

Storelist @ = {(m1,01),...,(mg,0x)} of queries to Sign
A wins iff (m,*) € Q and Vf(pk,m,o) =1

31/ 49

Security Models Lecture 2 Computational Security
Signature

RSA signature is Not EUF-CMA

Recall

pk = (n,e) and sk = d
oc=m? modn

verify : m=0° mod n

Attack 1 : Pick a random string s compute m’ = s¢ mod N
outputs (m’, s) as forgery.

Attack?2 : goal forge a signature for a given message m

Pick m; randomly, ask o1 = mf mod n

Compute myp such that mymy = m mod N, and ask 0, = mg
mod n

Output (m, o102 mod N)

32/ 49

Security Models Lecture 2 Computational Security
Signature

How to get EUF-CMA : Probabilistic Full-Domain-Hash
RSA (PFRSA)

Sign: o = (r,s) = (r,y? mod n), where y = H(r||m) and r
random
Verification : s = H(r||m)

33 /49

Security Models Lecture 2 Computational Security
Brithday Paradox

Outline

@ Brithday Paradox

34 / 49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision

35 /49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision

With 2% + 1 try there is a collision

P(at least 1 collision) = 1 — P(no collision)

Probability of no collision

35/ 49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision

With 2% + 1 try there is a collision

P(at least 1 collision) = 1 — P(no collision)

Probability of no collision
®* Tryl:1-0

35/ 49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision

With 2% + 1 try there is a collision

P(at least 1 collision) = 1 — P(no collision)

Probability of no collision
®* Tryl:1-0
e Try2:1-—1/2k

35/ 49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision

With 2% + 1 try there is a collision

P(at least 1 collision) = 1 — P(no collision)

Probability of no collision
®* Tryl:1-0
e Try2:1-—1/2k
® Try3:1-2/2k

35/ 49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision
With 2% + 1 try there is a collision
P(at least 1 collision) = 1 — P(no collision)

Probability of no collision
®* Tryl:1-0
e Try2:1-—1/2k
® Try3:1-2/2k

e Tryg:1—(q—1)/2"

35/ 49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H: D — 2k

Naive Collision

With 2% + 1 try there is a collision

P(at least 1 collision) = 1 — P(no collision)
Probability of no collision
®* Tryl:1-0
e Try2:1-—1/2k
® Try3:1-2/2k
o
e Tryg:1—(q—1)/2"
i=q
P(no collision) = H(l —i/2%)

i=1 35/ 49

Security Models Lecture 2 Computational Security
Brithday Paradox

Birthday Paradox : Hash Function

P(at least 1 collision) =1 — P(no collision)
Using 1 — x =~ e~ * we have

1— e Sig(1=i/2) _ 1 _ g-a(g-1)/2"

36 / 49

Security Models Lecture 2 Computational Security
Brithday Paradox

If you want a probability of ¢ to have a collision
Need ot solve

=1 _ e9(g—1)/2"

q(qg—1) =2""1n(1/(1 —¢)
k ~ sqrt(2°TLIn(1/(1 — €))

Examples

1o ko~ 1.177sqrt(25)
o — % = k= 1,6655qrt(2k+1)
0.9 = k ~ 2.146sqrt(2x+1)

® ¢ —

Remark: if 2% is 365 among 1.77sqrt(365) approx23
So should be at least > 64 or even 80. > 128 or 160 to resist
birthday attack.

37 /49

Outline

@ Simple Examples of Reduction Proof Technique
@ Modes

© Cramer-Shoup Cryptosystem

O Key Privacy

@ Signature

@ Brithday Paradox

@ Tools

@© Conclusion

38 /49

Security Models Lecture 2 Computational Security
Tools

Several Tools for computational proofs

® CryptoVerif
® Easycrypt
e [*

Example: Prove properties of primitives in EasyCrypt, and use
them to prove protocols in CryptoVerif.

39 /49

Security Models Lecture 2 Computational Security
Tools

CryptoVerif by Bruno Blanchet (2006)

Automatic tool for the automatic reasoning about security
protocols!
® Messages are bitstrings
e Cryptographic primitives are functions from bitstrings to
bitstrings
® The adversary is a probabilistic Turing machine
Version 2.04, released on Nov. 30, 2020

"http://cryptoverif.inria.fr/

40 / 49

http://cryptoverif.inria.fr/

Security Models Lecture 2 Computational Security
Tools

CryptoVerif

® generates proofs by sequences of games.

® proves secrecy, authentication, and indistinguishability
properties.

® works for N sessions (polynomial in the security parameter),
with an active adversary.

® gives a bound on the probability of an attack (exact security).

® has an automatic proof strategy and can also be manually
guided.

41 / 49

Security Models Lecture 2 Computational Security
Tools

Included

A generic method for specifying properties of cryptographic
primitives:

MACs (message authentication codes)

® symmetric encryption

public-key encryption

® signatures

hash functions,

Diffie-Hellman key agreements

42 / 49

Security Models Lecture 2 Computational Security
Tools

Workflow of CryptoVerif

Prepare the input file containing

® the specification of the protocol to study (initial game),
® the security assumptions on the cryptographic primitives,

® the security properties to prove.
Run CryptoVerif

CryptoVerif outputs

the sequence of games that leads to the proof, a succinct
explanation of the transformations performed between games, an
upper bound of the probability of success of an attack.

43/ 49

Security Models Lecture 2 Computational Security
Tools

F* (2016)

A general-purpose functional programming language with effects
aimed at program verification.
https://www.fstar-lang.org/

Semi-automated verification system

Interactive proof assistant based on dependent types

F* is programmed in F*, but not (yet) verified

44 / 49

https://www.fstar-lang.org/

Security Models Lecture 2 Computational Security
Tools

Project Everest

verify and deploy new, efficient HTTPS stack

® miTLS*: Verified reference implementation of TLS (1.2 and
1.3)

e HACL*: High-Assurance Cryptographic Library
® Vale: Verified Assembly Language for Everest

45 / 49

Security Models Lecture 2 Computational Security
Tools

EasyCrypt 2009

® A toolset for reasoning about relational properties of
probabilistic computations with adversarial code.

® Views cryptographic proofs as relational verification of open
parametric probabilistic programs

https://www.easycrypt.info/trac/

46 / 49

https://www.easycrypt.info/trac/

Security Models Lecture 2 Computational Security
Conclusion

Outline

@ Conclusion

47 / 49

Security Models Lecture 2 Computational Security
Conclusion

Today

@ Modes

® Reduction RSA, Elgamal
© Cramer Shoup

O Key Privacy

@ Signature security

@ Birhtday Paradox

@ Tools

48 / 49

Security Models Lecture 2 Computational Security
Conclusion

Thank you for your attention.

Questions ?

49 / 49

	Simple Examples of Reduction Proof Technique
	DL implies CDH
	CDH implies DDH
	RSA

	Modes
	Cramer-Shoup Cryptosystem
	Key Privacy
	Signature
	Brithday Paradox
	Tools
	Conclusion

