
Security Models Lecture 2 Computational Security

Security Models
Lecture 2

Computational Security

Pascal Lafourcade

2020-2021

1 / 49



Security Models Lecture 2 Computational Security

Simple Examples of Reduction Proof Technique

Outline

1 Simple Examples of Reduction Proof Technique

2 Modes

3 Cramer-Shoup Cryptosystem

4 Key Privacy

5 Signature

6 Brithday Paradox

7 Tools

8 Conclusion

2 / 49



Security Models Lecture 2 Computational Security

Simple Examples of Reduction Proof Technique

Reduction Proof Technique

How to prove that an encryption scheme E is secure ?

1 Hypothesis: HARD problem P (RSA, DL,DDH,CDH)

2 Reduction:
• If an adversary A breaks the encryption scheme E
• Then A can be used it to solve P in polynomial time.

3 Conclusion: Under this assumption there does not exist an
adversary in polynomial time which can break the security of
the scheme.

Application: ElGamal is IND-CPA secure under DDH assumption.

Consider an adversary breaking IND-CPA game for ElGamal
then he can solve DDH
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Simple Examples of Reduction Proof Technique

DL implies CDH

Definitions (recall)

AdvDL(A) = Pr
[
A(g x)→ x

∣∣∣x R← [1, q]
]

AdvCDH(A) = Pr
[
A(g x , g y )→ g xy

∣∣∣x , y R← [1, q]
]

AdvDDH(A) = Pr
[
A(g x , g y , g xy )→ 1

∣∣∣x , y R← [1, q]
]

−Pr
[
A(g x , g y , g r )→ 1

∣∣∣x , y , r R← [1, q]
]
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Simple Examples of Reduction Proof Technique

DL implies CDH

Proof of CDH ≤ DL

We denote by X = g x ,Y = g y

Consider there is an adversary A who breaks DL.
Using A for breaking DL, we get y
Hence Z = g xy = (g x)y = X y

We have solved CDH
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Simple Examples of Reduction Proof Technique

CDH implies DDH

Experiments

Expddh−1(A)

x , y
R← [1, q]

returnA(g x , g y , g xy )

Expddh−0(A)

x , y , z
R← [1, q]

returnA(g x , g y , g z)
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Simple Examples of Reduction Proof Technique

CDH implies DDH

CDH implies DDH

Let A be an adversary against the CDH assumption and B against DDH

Adversary B(X ,Y ,Z ):
if Z = A(X ,Y ) then return 1
else return 0

AdvDDH(B) = Pr [ExpDDH−1(B) = 1]− Pr [ExpDDH−0(B) = 1]

Pr
[
B(g x , g y , g xy )→ 1

∣∣∣x , y R← [1, q]
]
− Pr

[
B(g x , g y , g r )→ 1

∣∣∣x , y , r R← [1, q]
]

AdvCDH(A)− 1
q

The number of elements in G is supposed large hence 1/q is negligible.
As the DDH assumption holds, the advantage of B is negligible. Hence
the advantage of A against CDH is also negligible and the CDH
assumption holds.
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Simple Examples of Reduction Proof Technique

RSA

Example: RSA

public private

n = pq d = e−1 mod φ(n)
e (public key) (private key)

RSA Encryption

• E (m) = me mod n

• D(c) = cd mod n

OW-CPA = RSA problem by definition!
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Modes

Chiffrement par bloc

• m, un message clair

• c , le chiffré de m

• |m| = |c| = n bits

m

sk Enc

c

c

sk Dec

m
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Modes

Mode ECB (Electronic CodeBook)

Let |m| = k · n, k > 1.
m = (m1, . . . ,mk), |mi | = n bits.

mi

sk Enc

ci

ci

sk Dec

mi
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Modes

Mode CBC (Cipher Block Chaining)

Encryption:

Enc

m0

sk

c0

Enc

m1

sk

c1

IV

· · · · · · Enc

mn

sk

cn

If the first block has index 1, Ci = EK (Pi ⊕ Ci−1),C0 = IV
Pi = DK (Ci )⊕ Ci−1,C0 = IV
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Modes

Mode CBC (Cipher Block Chaining)

Decryption:

Dec

m0

sk

c0

Dec

m1

sk

c1

IV

· · · · · · Dec

mn

sk

cn
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Modes

Mode CFB (Cipher FeedBack)

Encryption:

Enc

c0

sk

m0

Enc

c1

sk

m1

IV

· · · · · · Enc

cn

sk

mn

Ci = EK (Ci−1)⊕ Pi

Pi = EK (Ci−1)⊕ Ci

C0 = IV
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Modes

Mode CFB (Cipher FeedBack)

Decryption:

Enc

m0

sk

c0

Enc

m1

sk

c1

IV

· · · · · · Enc

mn

sk

cn
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Modes

Mode OFB (Output FeedBack)

Encryption:

Enc

c0

sk

m0

Enc

c1

sk

m1

IV

· · · · · · Enc

cn

sk

mn

Ci = Pi ⊕ Oi

Pi = Ci ⊕ Oi

Oi = EK (Oi−1)
O0 = IV
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Modes

Mode OFB (Output FeedBack)

Decryption:

Enc

m0

sk

c0

Enc

m1

sk

c1

IV

· · · · · · Enc

mn

sk

cn
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Modes

Counter Mode (CTR)

C0 = IV

Ci = Pi ⊕ Ek(IV + i − 1)

Pi = Ci ⊕ Ek(IV + i − 1)
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Modes

ECB vs Others
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Cramer-Shoup Cryptosystem

History

• Proposed in 1998 by Ronald Cramer and Victor Shoup

• First efficient scheme proven to be IND-CCA2 in standard
model.

• Extension of Elgamal Cryptosystem.

• Use of a collision-resistant hash function

Ronald Cramer and Victor Shoup. ”A practical public key
cryptosystem provably secure against adaptive chosen ciphertext
attack.” in proceedings of Crypto 1998, LNCS 1462.
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Cramer-Shoup Cryptosystem

Key Generation

• G a cyclic group of order q with two distinct, random
generators g1, g2
• Pick 5 random values (x1, x2, y1, y2, z) in {0, . . . , q − 1}
• c = g x1

1 g x2
2 , d = g y1

1 g y2
2 , h = g z

1

• Public key: (c , d , h), with G , q, g1, g2
• Secret key: (x1, x2, y1, y2, z)
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Cramer-Shoup Cryptosystem

Encryption of m ∈ G with (G , q, g1, g2, c , d , h)

• Pick a random k ∈ {0, . . . , q − 1}
• Calculate: u1 = gk

1 , u2 = gk
2

• e = hkm

• α = H(u1, u2, e)

• v = ckdkα

• Ciphertext: (u1, u2, e, v)
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Cramer-Shoup Cryptosystem

Decryption of (u1, u2, e, v) with (x1, x2, y1, y2, z)

• Compute α = H(u1, u2, e)

• Verify ux11 ux22 (uy11 uy22 )α = v

• m = e/(uz1)

It works because

uz1 = gkz
1 = hk

m = e/hk
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Key Privacy

Key Privacy or Key Anonymity

SOLUTION
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Key Privacy

IKA-XXX Games

Given an encryption scheme S = (K, E ,D). An adversary is a pair
A = (A1,A2) of polynomial-time probabilistic algorithms,
b ∈ {0, 1}.
Let IKAb

CPA(A) be the following algorithm:

• (pk0, sk0)
R← K(η); (pk1, sk1)

R← K(η).

• (s,m)
R← A1(η, pk0, pk1)

• Sample b
R← {0, 1}.

• b′
R← A2(η, pk, s, E(pkb,m))

• return b′.

AdvIKAXXX
S,A (η) =

Pr [b′
R← IKA1

XXX (A) : b′ = 1]− Pr [b′
R← IKA0

XXX (A) : b′ = 1]

For CCA Adversary has access to the oracles Dsk0 and Dsk1 .
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Key Privacy

Example of Key-privacy or anonymity

• El Gamal and Cramer-Shoup are IKA secure under DDH
assumption

• RSA trapdoor permutation is not anonymous

• variant of RSA-OAEP is IKA secure under assumption RSA is
one-way

Reference : Key-Privacy in Public-Key Encryption by Mihir Bellare,
Alexandra Boldyreva, Anand Desai, and David Pointcheval
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Signature

Digital Signature

Syntax: algorithms (KGen, Enc, Dec) such that:

• KGen(1λ) : given security parameters, outputs tuple, (sk , pk)
consisting of a private/public key

• Sign(sk;m): given plaintext and secret key, outputs signature
σ

• Vf(pk; m, σ) : given message, signature and public key,
outputs a bit 1 if σ checks for m, 0 otherwise
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Signature

Signature Security

Correctness:

• For all tuples (sk,pk) = KGen(1λ) and for all messages
m ∈ M, it must hold that Vf( pk; m, Sign(sk, m)) = 1

• Sometimes we degrade it to ε-correctness in which the
verification of a signed message fails with probability ε

EUF-CMA:

Adversary can’t forge fresh signature
(sk, pk) = KGen(1λ)
(m, σ) = ASign(∗)(pk, 1λ)
Storelist Q = {(m1, σ1), . . . , (mk , σk)} of queries to Sign
A wins iff (m, ∗) 6∈ Q and Vf (pk,m, σ) = 1
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Signature

RSA signature is Not EUF-CMA

Recall

pk = (n, e) and sk = d
σ = md mod n
verify : m = σe mod n

Attack 1 : Pick a random string s compute m′ = se mod N
outputs (m′, s) as forgery.
Attack2 : goal forge a signature for a given message m
Pick m1 randomly, ask σ1 = md

1 mod n
Compute m2 such that m1m2 = m mod N, and ask σ2 = md

2

mod n
Output (m, σ1σ2 mod N)
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Signature

How to get EUF-CMA : Probabilistic Full-Domain-Hash
RSA (PFRSA)

Sign: σ = (r , s) = (r , yd mod n), where y = H(r ||m) and r
random
Verification : se = H(r ||m)
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Brithday Paradox

Birthday Paradox : Hash Function
Let an Hash function H : D → 2k

Näıve Collision

With 2k + 1 try there is a collision

P(at least 1 collision) = 1− P(no collision)

Probability of no collision
• Try 1 : 1− 0

• Try 2 : 1− 1/2k

• Try 3 : 1− 2/2k

• ...

• Try q : 1− (q − 1)/2k

P(no collision) =

i=q∏
i=1

(1− i/2k)
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Brithday Paradox

Birthday Paradox : Hash Function

P(at least 1 collision) = 1− P(no collision)
Using 1− x ≈ e−x we have

1− e−
∑i=q

i=1(1−i/2
k ) = 1− e−q(q−1)/2

k+1
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Brithday Paradox

If you want a probability of ε to have a collision

Need ot solve

ε = 1− e−q(q−1)/2
k+1

q(q − 1) = 2k+1ln(1/(1− ε)
k ≈ sqrt(2k+1ln(1/(1− ε))

Examples

• ε = 1
2 ⇒ k ≈ 1.177sqrt(2k+1)

• ε = 3
4 ⇒ k ≈ 1.665sqrt(2k+1)

• ε = 0.9⇒ k ≈ 2.146sqrt(2k+1)

Remark: if 2k+1 is 365 among 1.77sqrt(365) approx23
So should be at least > 64 or even 80. > 128 or 160 to resist
birthday attack.
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Tools

Several Tools for computational proofs

• CryptoVerif

• Easycrypt

• F*

Example: Prove properties of primitives in EasyCrypt, and use
them to prove protocols in CryptoVerif.
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Tools

CryptoVerif by Bruno Blanchet (2006)

Automatic tool for the automatic reasoning about security
protocols1

• Messages are bitstrings

• Cryptographic primitives are functions from bitstrings to
bitstrings

• The adversary is a probabilistic Turing machine

Version 2.04, released on Nov. 30, 2020

1http://cryptoverif.inria.fr/
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Tools

CryptoVerif

• generates proofs by sequences of games.

• proves secrecy, authentication, and indistinguishability
properties.

• works for N sessions (polynomial in the security parameter),
with an active adversary.

• gives a bound on the probability of an attack (exact security).

• has an automatic proof strategy and can also be manually
guided.
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Tools

Included

A generic method for specifying properties of cryptographic
primitives:

• MACs (message authentication codes)

• symmetric encryption

• public-key encryption

• signatures

• hash functions,

• Diffie-Hellman key agreements

• ...
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Tools

Workflow of CryptoVerif

Prepare the input file containing

• the specification of the protocol to study (initial game),

• the security assumptions on the cryptographic primitives,

• the security properties to prove.

Run CryptoVerif

CryptoVerif outputs

the sequence of games that leads to the proof, a succinct
explanation of the transformations performed between games, an
upper bound of the probability of success of an attack.
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Tools

F* (2016)

A general-purpose functional programming language with effects
aimed at program verification.
https://www.fstar-lang.org/

Semi-automated verification system
Interactive proof assistant based on dependent types
F* is programmed in F*, but not (yet) verified

44 / 49
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Tools

Project Everest

verify and deploy new, efficient HTTPS stack

• miTLS*: Verified reference implementation of TLS (1.2 and
1.3)

• HACL*: High-Assurance Cryptographic Library

• Vale: Verified Assembly Language for Everest
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Tools

EasyCrypt 2009

• A toolset for reasoning about relational properties of
probabilistic computations with adversarial code.

• Views cryptographic proofs as relational verification of open
parametric probabilistic programs

https://www.easycrypt.info/trac/
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Conclusion

Today

1 Modes

2 Reduction RSA, Elgamal

3 Cramer Shoup

4 Key Privacy

5 Signature security

6 Birhtday Paradox

7 Tools
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Conclusion

Thank you for your attention.

Questions ?
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