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Negligible functions

We call a function i : N — R™ negligible if for every positive
polynomial p there exists an N such that for all n > N

1
uln) < p(n)

Properties

Let f and g be two negligible functions, then
O f.g is negligible.
@® For any k > 0, fk is negligible.
© For any A\, in R, A\.f + p.g is negligible.

Exercise: Proofs
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Negligible Functions

Exercise: Prove or disprove:
e The function f(n) := (3)" is negligible.
e The function f(n) :=2~V" is negligible.

® The function f(n) := n='°8" is negligible.
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Noticeable Functions

Instead of "there exists an N such that for all n > N " we will in
the following often say "for all sufficiently large n".

We call a function v : N — R noticeable if there exists a positive
polynomial p such that for all sufficiently large n, we have:

Note: A function can be neither noticeable nor negligible.
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Exercises

Prove or disprove the following statements:

@ If both f, g > 0 are noticeable, then f — g and f + g are
noticeable.

@ If both f, g > 0 are not noticeable, then f — g is not
noticeable.

© If both f, g > 0 are not noticeable, then f + g is not
noticeable.

O If f > 0 is noticeable, and g > 0 is negligible, then f.g is
negligible.

@ If both f, g > 0 are negligible, then f /g is noticeable.
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The Diffie-Hellman protocol

g, p are public parameters.
e Diffie chooses x and computes g*¥ mod p
e Diffie sends g¥ mod p
® Hellman chooses y and computes g¥ mod p
® Hellman sends g* mod p

Shared key: (g%)’ = g = (g¥)*

Basic Diffie-Hellman key-exchange: initiator | and responder R
exchange public “half-keys” to arrive at mutual session key
k=g mod p.
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Hard Problems

Most cryptographic constructions are based on hard problems.
Their security is proved by reduction to these problems:
® RSA. Given N = pg and e € Z:;(N), compute the inverse of e
modulo p(N) = (p — 1)(g — 1). Factorization
® Discrete Logarithm problem, DL. Given a group (g) and g*,
compute x.

e Computational Diffie-Hellman, CDH Given a group (g), g*
and g¥, compute g*.

® Decisional Diffie-Hellman, DDH Given a group (g), distinguish
between the distributions (g*, g¥,g") and (g*,g”,g").
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The Discrete Logarithm (DL)

Let G = ((g), *) be any finite cyclic group of prime order.

Idea: it is hard for any adversary to produce x if he only knows g*.
For any adversary A,

AdvPL(A) = Pr {A(gX) Sx

xy &1, q]}

is negligible.
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Computational Diffie-Hellman (CDH)

Idea: it is hard for any adversary to produce g* if he only knows
g¥ and g”.
For any adversary A,

AdeDH(.A) = PriA(g*,g”) — g

xy &1, q]}

is negligible.
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Decisional Diffie-Hellman (DDH)

Idea: Knowing g* and g7, it should be hard for any adversary to
distinguish between g* and g’ for some random value r.
For any adversary A, the advantage of A

AdvPPH(A) = Pr [A(gX7gy,gXY) — l‘x,y & [1, q]}

—Pr [A(gx,gy,g’) - l‘x,y, r &, q]}

is negligible.
This means that an adversary cannot extract a single bit of
information on g* from g* and g”.
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Relation between the problems

Prop
Solve DL = Solve CDH = Solve DDH. (Exercise)

Prop (Moaurer & Wolf)
For many groups, DL < CDH

Prop (Joux & Wolf)
There are groups for which DDH is easier than CDH.
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Usage of DH assumption

The Diffie-Hellman problems are widely used in cryptography:

® Public key crypto-systems [ElGamal, Cramer& Shoup]
® Pseudo-random functions [Noar& Reingold, Canetti]
® Pseudo-random generators [Blum& Micali]

® (Group) key exchange protocols [many]
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How to prove the security ?

Theorem

A cryptosystem C has a security property P under a hypothesis H
H= C has P

(A= B) & (B = -A)
[H= C has P] & [~(C has P) = —H]

Proof by Reduction

@ Assume that there exists an adversary A that breaks the
security property of C.

® Construct an adversary B that uses A to breaks the
hypothesis H in a polynomial time.
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Which adversary?
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Adversary Model

Qualities of the adversary:

® (Clever: Can perform all operations he wants
® | imited time:

® Do not consider attack in 260,
® Otherwise a Brute force by enumeration is always possible.

Model used: Any Turing Machine.

® Represents all possible algorithms.

® Probabilistic: adversary can generates keys, random number...
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Adversary Models

The adversary is given access to oracles :

— encryption of all messages of his choice
— decryption of all messages of his choice

Three classical security levels:

® Chosen-Plain-text Attacks (CPA)

® Non adaptive Chosen-Cipher-text Attacks (CCA1)
only before the challenge

¢ Adaptive Chosen-Cipher-text Attacks (CCA2)
unlimited access to the oracle (except for the challenge)
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Chosen-Plain-text Attacks (CPA)

Adversary can obtain all cipher-texts from any plain-texts.

It is always the case with a Public Encryption scheme.
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Non adaptive Chosen-Cipher-text Attacks (CCA1)

Adversary knows the public key, has access to a decryption oracle
multiple times before to get the challenge (cipher-text), also
called “Lunchtime Attack” introduced by M. Naor and M. Yung
([INY90])).
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Adaptive Chosen-Cipher-text Attacks (CCA2)

Adversary knows the public key, has access to a decryption oracle
multiple times before and AFTER to get the challenge, but of
course cannot decrypt the challenge (cipher-text) introduced by

C. Rackoff and D. Simon ([RS92]).
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Summary of Adversaries

CCA2: 01 = O, = {D} Adaptive Chosen Cipher text Attack

CCAl: O; = {D}, Oy = ) Non-adaptive Chosen Cipher-text
~ Attack

(2
CPA: O1 = Oy = ) Chosen Plain text Attack
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One-Wayness (OW)

Put your message in a translucid bag, but you cannot read the text.
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One-Wayness (OW)

Put your message in a translucid bag, but you cannot read the text.

Without the private key, it is computationally impossible to
recover the plain-text.
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Is it secure 7

® you cannot read the text but you can distinguish which one
has been encrypted.
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Is it secure 7

® you cannot read the text but you can distinguish which one
has been encrypted.
® Does not exclude to recover half of the plain-text

® Even worse if one has already partial information of the
message:

® Subject: XXXX
® From: XXXX
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Indistinguishability (IND)

Put your message in a black bag, you can not read anything.

Now a black bag is of course IND and it implies OW.
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Indistinguishability (IND)

Put your message in a black bag, you can not read anything.

Now a black bag is of course IND and it implies OW.

The adversary is not able to guess in polynomial-time even a
bit of the plain-text knowing the cipher-text, notion
introduced by S. Goldwasser and S.Micali ([GM84]).
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Is it secure?
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Is it secure?

® |t is possible to scramble it in order to produce a new cipher.
In more you know the relation between the two plain text
because you know the moves you have done.
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Non Malleability (NM)

Put your message in a black box.

But in a black box you cannot touch the cube (message), hence
NM implies IND.
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Non Malleability (NM)

Put your message in a black box.

But in a black box you cannot touch the cube (message), hence
NM implies IND.

The adversary should not be able to produce a new cipher-text
such that the plain-texts are meaningfully related, notion
introduced by D. Dolev, C. Dwork and M. Naor in 1991
([DDN91,BDPR98,BS99]).
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Summary of Security Notions

Non Malleability
4

Indistinguishability
4

One-Wayness
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Asymmetric Encryption

An asymmetric encryption scheme S = (K, &, D) is defined by
e [C: key generation
e £: encryption
e D: decryption

’C(U) = (kea kd)
Ere(m,r) =c

D(c, kq) =m

33/ 47



Security Models Lecture 1 Security Notions
Definitions of Computational Security

One-Wayness (OW)

Adversary A: any polynomial time Turing Machine (PPTM)
Basic security notion: One-Wayness (OW)

Without the private key, it is computationally impossible to recover
the plain text:

Prmr[A(c) =m|c=E(m,r)]
is negligible.

34 /47



Security Models Lecture 1 Security Notions
Definitions of Computational Security

Indistinguishability (IND)

Game Adversary: A = (A1, Ap)
@ The adversary Aj is given the public key pk.

® The adversary A; chooses two messages mq, mj.

© b =0,1 is chosen at random and ¢ = E(mj) is given to the
adversary.

O The adversary A, answers b'.
The probability Pr[b = b'] — % should be negligible.
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The IND-CPA Games & E)‘

Given an encryption scheme & = (K, £, D). An adversary is a pair

A = (A1, Az) of polynomial-time probabilistic algorithms,
b e {0,1}.

Let IND2p4(A) be the following algorithm:
® Generate (pk, sk) & K(n).
® (s, mg, my) & Ai(n, pk)
® Sample b & {0,1}.

1 b, <5 AQ(Tla pk7575(pk7 mb))
® return b'.

Then, we define the advantage against the IND-CPA game by:

ADV‘ISNJDLlCPA (77) _

Prib’ & INDLpa(A) 1 b = 1] — Pr[b & INDLpa(A) : b = 1]
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The IND-CCA1 Games

Given an encryption scheme & = (K, £, D). An adversary is a pair

A = (A1, Az) of polynomial-time probabilistic algorithms,
b e {0,1}.

Let INDZ 4, (A) be the following algorithm:
® Generate (pk, sk) & K(n).
e (s, mg, mi) & AS (), pk) where O =D
® Sample b & {0,1}.

o b/ & Ao, pk, s, E(pk, mp))
® return b'.

Then, we define the advantage against the IND-CCA1 game by:

ADV};E‘CCAI (n) =

Pr[b/ bl IND}:CAl(A) b =1]— Pr[t E IND%CAl(A) b =1] /4
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The IND-CCA2 Games

én

Given an encryption scheme & = (K, £, D). An adversary is a pair

A = (A, Az) of polynomial-time probabilistic algorithms,
b e {0,1}.

Let INDZ4,(A) be the following algorithm:
® Generate (pk, sk) & K(n).
® (s, mg, m) £ AS(n, pk) where O; = D
o Sample b & {0,1}.

o & A?2(7],pk,s,5(pk, mp)) where O, =D
® return b'.

Then, we define the advantage against the IND-CCA2 game by:

ADV‘ISNB‘CCA2 (n) =

Pr[bl (5 IND]CCAZ(A) . b/ = 1] — Pr[bl <5 IND%CA2(A) . bl = 1] 38 / 47
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Summary é

Given S = (K,&,D), A= (A1, A;), INDXyx (A) follows:
® Generate (pk, sk) & K(n).

o (s, mo, my) & AQt(n, pk)

Sample b & {0,1}.
b & Ag%(n, pk,s,E(pk, mp))

® return b'. Ava,;’f‘{XX (n) =

Pribt’ & INDkyx (A) : b = 1] — Pr[b’ & INDSyx(A) 1 b = 1]

o ) il o L8 €
E; R

IND-CPA: O; = O, = () Chosen Plain text Attack
IND-CCAL: Oy = {D}, O, = () Non-adaptive Chosen Cipher text Attack
IND-CCA2: 01 = O, = {D} Adaptive Chosen Cipher text Attack. 39 / 47
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IND-XXX Security

Definition
An encryption scheme is IND-XXX secure, if for any adversary A
the function ADVQ’Q‘XXX is negligible.
Exercise
Prove that
ApveX(n) = Pr[b’ & Inp}(A) 1 b = 1]

)i b =1
- Pr[b'<51ND° A): b =1]
= 2Py EInDP(A): b = b] — 1
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Definition of Non Malleability

Game Adversary: A = (A;, Az)
@ The adversary A; is given the public key pk.

® The adversary A; chooses a message space M.
© Two messages m and m* are chosen at random in M and
c = E(m;r) is given to the adversary.
O The adversary A outputs a binary relation R and a
cipher-text ¢’.
Probability Pr[R(m, m")] — Pr[R(m, m*)] is negligible,
where m" = D(c’)
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Non-Malleability - XXX . E‘

o Let PE = (K,E,D) and A= (Aq, Ay).

® For b € {0,1} we define the experiment Exp;”;é’_Ab(k) :
(pk, sk) < K(k) : (M, s) « A2 (pk) ; 20,2, M
v+ () ; (R.7) = A7V (M, 5.9) ; ¥ = Dou(7) |
Ify ¢ yAnL¢xXAR(xp X)then d < 1else d + 0
Return d

® For atk € {cpa, ccal, cca?} and k € N, the advantage

Adv%tgA(k) = Pr Expgg;l(k) = 1} — Pr [Exp?}é‘;\o(k) = 1}

has to be negligible for PE to be considered secure, assuming
A, M and R can be computed in time p(k).
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Relations

—_—t,
NM-CPA <— NM-CCA1 <—— NM-CCA2

IND-CPA  <—— IND-CCA1l <— IND-CCA2

OW-CPA

“Relations Among Notions of Security for Public-Key Encryption
Schemes”, Crypto’98, by Mihir Bellare, Anand Desai, David
Pointcheval and Phillip Rogaway [BDPR'98]
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Relations

—_—t
NM-CPA <—— NM-CCA1 <—— NM-CCA2

IND-CPA <—— IND-CCA1 <— IND-CCA2

’minimal security‘

OW-CPA ‘ strong security ‘

“Relations Among Notions of Security for Public-Key Encryption
Schemes”, Crypto’98, by Mihir Bellare, Anand Desai, David
Pointcheval and Phillip Rogaway [BDPR'98]
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Example: RSA
public ‘ private
n=pgq d=e"1 mod ¢(n)
e (public key) (private key)

RSA Encryption
e E(m)=m® mod n

® D(c)=c? mod n

OW-CPA = RSA problem by definition!

But not semantically secure because it is deterministic.
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Today

® DH

® OW & IND & NM

© CPA & CCA1 & CCA2
O Reduction technique
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Thank you for your attention.

Questions ?

47 / 47



	Negligible Functions
	Diffie-Hellman
	Reduction Proof
	Different Adversaries
	Intuition of Computational Security
	Definitions of Computational Security
	Conclusion

