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Negligible Functions

Negligible functions

We call a function µ : N→ R+ negligible if for every positive
polynomial p there exists an N such that for all n > N

µ(n) <
1

p(n)

Properties

Let f and g be two negligible functions, then

1 f .g is negligible.

2 For any k > 0, f k is negligible.

3 For any λ, µ in R, λ.f + µ.g is negligible.

Exercise: Proofs
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Negligible Functions

Negligible Functions

Exercise: Prove or disprove:

• The function f (n) := (12)n is negligible.

• The function f (n) := 2−
√
n is negligible.

• The function f (n) := n−logn is negligible.
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Negligible Functions

Noticeable Functions

Instead of ”there exists an N such that for all n > N ” we will in
the following often say ”for all sufficiently large n”.
We call a function ν : N→ R noticeable if there exists a positive
polynomial p such that for all sufficiently large n, we have:

ν(n) >
1

p(n)

Note: A function can be neither noticeable nor negligible.
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Negligible Functions

Exercises

Prove or disprove the following statements:

1 If both f , g ≥ 0 are noticeable, then f − g and f + g are
noticeable.

2 If both f , g ≥ 0 are not noticeable, then f − g is not
noticeable.

3 If both f , g ≥ 0 are not noticeable, then f + g is not
noticeable.

4 If f ≥ 0 is noticeable, and g ≥ 0 is negligible, then f .g is
negligible.

5 If both f , g > 0 are negligible, then f /g is noticeable.
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Diffie-Hellman

The Diffie-Hellman protocol

g , p are public parameters.

• Diffie chooses x and computes g x mod p

• Diffie sends g x mod p

• Hellman chooses y and computes g y mod p

• Hellman sends g x mod p

Shared key: (g x)y = g xy = (g y )x

Basic Diffie-Hellman key-exchange: initiator I and responder R
exchange public “half-keys” to arrive at mutual session key
k = gxy mod p.
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Diffie-Hellman

Hard Problems

Most cryptographic constructions are based on hard problems.
Their security is proved by reduction to these problems:

• RSA. Given N = pq and e ∈ Z∗ϕ(N), compute the inverse of e

modulo ϕ(N) = (p − 1)(q − 1). Factorization

• Discrete Logarithm problem, DL. Given a group 〈g〉 and g x ,
compute x .

• Computational Diffie-Hellman, CDH Given a group 〈g〉, g x

and g y , compute g xy .

• Decisional Diffie-Hellman, DDH Given a group 〈g〉, distinguish
between the distributions (g x , g y , g xy ) and (g x , g y , g r ).
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Diffie-Hellman

The Discrete Logarithm (DL)

Let G = (〈g〉, ∗) be any finite cyclic group of prime order.

Idea: it is hard for any adversary to produce x if he only knows g x .
For any adversary A,

AdvDL(A) = Pr
[
A(g x)→ x

∣∣∣x , y R← [1, q]
]

is negligible.
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Diffie-Hellman

Computational Diffie-Hellman (CDH)

Idea: it is hard for any adversary to produce g xy if he only knows
g x and g y .
For any adversary A,

AdvCDH(A) = Pr
[
A(g x , g y )→ g xy

∣∣∣x , y R← [1, q]
]

is negligible.
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Diffie-Hellman

Decisional Diffie-Hellman (DDH)

Idea: Knowing g x and g y , it should be hard for any adversary to
distinguish between g xy and g r for some random value r .
For any adversary A, the advantage of A

AdvDDH(A) = Pr
[
A(g x , g y , g xy )→ 1

∣∣∣x , y R← [1, q]
]

−Pr
[
A(g x , g y , g r )→ 1

∣∣∣x , y , r R← [1, q]
]

is negligible.
This means that an adversary cannot extract a single bit of
information on g xy from g x and g y .
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Diffie-Hellman

Relation between the problems

Prop

Solve DL ⇒ Solve CDH ⇒ Solve DDH. (Exercise)

Prop (Moaurer & Wolf)

For many groups, DL⇔ CDH

Prop (Joux & Wolf)

There are groups for which DDH is easier than CDH.
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Diffie-Hellman

Usage of DH assumption

The Diffie-Hellman problems are widely used in cryptography:

• Public key crypto-systems [ElGamal, Cramer& Shoup]

• Pseudo-random functions [Noar& Reingold, Canetti]

• Pseudo-random generators [Blum& Micali]

• (Group) key exchange protocols [many]
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Reduction Proof

How to prove the security ?

Theorem

A cryptosystem C has a security property P under a hypothesis H

H ⇒ C has P

(A⇒ B)⇔ (¬B ⇒ ¬A)
[H ⇒ C has P]⇔ [¬(C has P)⇒ ¬H]

Proof by Reduction

1 Assume that there exists an adversary A that breaks the
security property of C .

2 Construct an adversary B that uses A to breaks the
hypothesis H in a polynomial time.
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Different Adversaries

Which adversary?
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Different Adversaries

Adversary Model

Qualities of the adversary:

• Clever: Can perform all operations he wants
• Limited time:

• Do not consider attack in 260.
• Otherwise a Brute force by enumeration is always possible.

Model used: Any Turing Machine.

• Represents all possible algorithms.

• Probabilistic: adversary can generates keys, random number...
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Different Adversaries

Adversary Models

The adversary is given access to oracles :

→ encryption of all messages of his choice
→ decryption of all messages of his choice

Three classical security levels:

• Chosen-Plain-text Attacks (CPA)

• Non adaptive Chosen-Cipher-text Attacks (CCA1)
only before the challenge

• Adaptive Chosen-Cipher-text Attacks (CCA2)
unlimited access to the oracle (except for the challenge)
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Different Adversaries

Chosen-Plain-text Attacks (CPA)

Adversary can obtain all cipher-texts from any plain-texts.
It is always the case with a Public Encryption scheme.
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Different Adversaries

Non adaptive Chosen-Cipher-text Attacks (CCA1)

Adversary knows the public key, has access to a decryption oracle
multiple times before to get the challenge (cipher-text), also
called “Lunchtime Attack” introduced by M. Naor and M. Yung
([NY90]).
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Different Adversaries

Adaptive Chosen-Cipher-text Attacks (CCA2)

Adversary knows the public key, has access to a decryption oracle
multiple times before and AFTER to get the challenge, but of
course cannot decrypt the challenge (cipher-text) introduced by
C. Rackoff and D. Simon ([RS92]).
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Different Adversaries

Summary of Adversaries

CCA2: O1 = O2 = {D} Adaptive Chosen Cipher text Attack

⇓
CCA1: O1 = {D}, O2 = ∅ Non-adaptive Chosen Cipher-text

Attack

⇓
CPA: O1 = O2 = ∅ Chosen Plain text Attack
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Intuition of Computational Security

One-Wayness (OW)

Put your message in a translucid bag, but you cannot read the text.

Without the private key, it is computationally impossible to
recover the plain-text.
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Intuition of Computational Security

Is it secure ?

• you cannot read the text but you can distinguish which one
has been encrypted.

• Does not exclude to recover half of the plain-text
• Even worse if one has already partial information of the

message:
• Subject: XXXX
• From: XXXX
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Intuition of Computational Security

Indistinguishability (IND)

Put your message in a black bag, you can not read anything.

Now a black bag is of course IND and it implies OW.

The adversary is not able to guess in polynomial-time even a
bit of the plain-text knowing the cipher-text, notion
introduced by S. Goldwasser and S.Micali ([GM84]).
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Intuition of Computational Security

Is it secure?

• It is possible to scramble it in order to produce a new cipher.
In more you know the relation between the two plain text
because you know the moves you have done.
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Intuition of Computational Security

Non Malleability (NM)

Put your message in a black box.

But in a black box you cannot touch the cube (message), hence
NM implies IND.

The adversary should not be able to produce a new cipher-text
such that the plain-texts are meaningfully related, notion
introduced by D. Dolev, C. Dwork and M. Naor in 1991
([DDN91,BDPR98,BS99]).
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Intuition of Computational Security

Summary of Security Notions

Non Malleability
⇓

Indistinguishability
⇓

One-Wayness
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Definitions of Computational Security

Asymmetric Encryption

An asymmetric encryption scheme S = (K, E ,D) is defined by

• K: key generation

• E : encryption

• D: decryption

K(η) = (ke , kd)

Eke(m, r) = c

D(c, kd) = m
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Definitions of Computational Security

One-Wayness (OW)

AdversaryA: any polynomial time Turing Machine (PPTM)

Basic security notion: One-Wayness (OW)

Without the private key, it is computationally impossible to recover
the plain text:

Prm,r [A(c) = m | c = E (m, r)]

is negligible.
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Definitions of Computational Security

Indistinguishability (IND)

Game Adversary: A = (A1,A2)
1 The adversary A1 is given the public key pk.

2 The adversary A1 chooses two messages m0,m1.

3 b = 0, 1 is chosen at random and c = E (mb) is given to the
adversary.

4 The adversary A2 answers b′.

The probability Pr [b = b′]− 1
2 should be negligible.
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Definitions of Computational Security

The IND-CPA Games

Given an encryption scheme S = (K, E ,D). An adversary is a pair
A = (A1,A2) of polynomial-time probabilistic algorithms,
b ∈ {0, 1}.
Let Indb

CPA(A) be the following algorithm:

• Generate (pk, sk)
R← K(η).

• (s,m0,m1)
R← A1(η, pk)

• Sample b
R← {0, 1}.

• b′
R← A2(η, pk, s, E(pk ,mb))

• return b′.

Then, we define the advantage against the IND-CPA game by:

AdvIndCPA
S,A (η) =

Pr [b′
R← Ind1

CPA(A) : b′ = 1]− Pr [b′
R← Ind0

CPA(A) : b′ = 1]
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Definitions of Computational Security

The IND-CCA1 Games

Given an encryption scheme S = (K, E ,D). An adversary is a pair
A = (A1,A2) of polynomial-time probabilistic algorithms,
b ∈ {0, 1}.
Let Indb

CCA1(A) be the following algorithm:

• Generate (pk, sk)
R← K(η).

• (s,m0,m1)
R← AO1

1 (η, pk) where O1 = D
• Sample b

R← {0, 1}.
• b′

R← A2(η, pk, s, E(pk ,mb))
• return b′.

Then, we define the advantage against the IND-CCA1 game by:

AdvIndCCA1
S,A (η) =

Pr [b′
R← Ind1

CCA1(A) : b′ = 1]− Pr [b′
R← Ind0

CCA1(A) : b′ = 1] 37 / 47
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Definitions of Computational Security

The IND-CCA2 Games

Given an encryption scheme S = (K, E ,D). An adversary is a pair
A = (A1,A2) of polynomial-time probabilistic algorithms,
b ∈ {0, 1}.
Let Indb

CCA2(A) be the following algorithm:

• Generate (pk, sk)
R← K(η).

• (s,m0,m1)
R← AO1

1 (η, pk) where O1 = D
• Sample b

R← {0, 1}.
• b′

R← AO2
2 (η, pk, s, E(pk,mb)) where O2 = D

• return b′.

Then, we define the advantage against the IND-CCA2 game by:

AdvIndCCA2
S,A (η) =

Pr [b′
R← Ind1

CCA2(A) : b′ = 1]− Pr [b′
R← Ind0

CCA2(A) : b′ = 1] 38 / 47
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Definitions of Computational Security

Summary

Given S = (K, E ,D), A = (A1,A2), Indb
XXX (A) follows:

• Generate (pk, sk)
R← K(η).

• (s,m0,m1)
R← AO1

1 (η, pk)

• Sample b
R← {0, 1}.

• b′
R← AO2

2 (η, pk , s, E(pk,mb))

• return b′. AdvIndXXX

S,A (η) =

Pr [b′
R← Ind1

XXX (A) : b′ = 1]− Pr [b′
R← Ind0

XXX (A) : b′ = 1]

IND-CPA: O1 = O2 = ∅ Chosen Plain text Attack

IND-CCA1: O1 = {D}, O2 = ∅ Non-adaptive Chosen Cipher text Attack

IND-CCA2: O1 = O2 = {D} Adaptive Chosen Cipher text Attack. 39 / 47
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Definitions of Computational Security

IND-XXX Security

Definition

An encryption scheme is IND-XXX secure, if for any adversary A
the function AdvIND−XXX

S,A is negligible.

Exercise

Prove that

AdvIndXXX
S,A (η) = Pr [b′

R← Ind1(A) : b′ = 1]

− Pr [b′
R← Ind0(A) : b′ = 1]

= 2Pr [b′
R← Indb(A) : b′ = b]− 1
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Definitions of Computational Security

Definition of Non Malleability

Game Adversary: A = (A1,A2)
1 The adversary A1 is given the public key pk.

2 The adversary A1 chooses a message space M.

3 Two messages m and m∗ are chosen at random in M and
c = E (m; r) is given to the adversary.

4 The adversary A2 outputs a binary relation R and a
cipher-text c ′.

Probability Pr [R(m,m′)]− Pr [R(m,m∗)] is negligible,
where m′ = D(c ′)
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Definitions of Computational Security

Non-Malleability - XXX

• Let PE = (K, E ,D) and A = (A1,A2).

• For b ∈ {0, 1} we define the experiment Expatk−b
PE,A (k) :

(pk, sk)← K(k) ; (M, s)← A
O1(.)
1 (pk) ; x, x ←M

y ← Epk(xb) ; (R, ~y)← A
O2(.)
2 (M, s, y) ; ~x ← Dpk(~y) ;

If y /∈ ~y ∧ ⊥ /∈ ~x ∧R(xb, ~x) then d← 1 else d← 0
Return d

• For atk ∈ {cpa, cca1, cca2} and k ∈ N, the advantage

AdvatkPE,A(k) = Pr
[
Expatk−1

PE,A (k) = 1
]
− Pr

[
Expatk−0

PE,A (k) = 1
]

has to be negligible for PE to be considered secure, assuming
A, M and R can be computed in time p(k).
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Definitions of Computational Security

Relations

NM-CPA NM-CCA1 NM-CCA2

IND-CCA2IND-CPA IND-CCA1

OW-CPA

“Relations Among Notions of Security for Public-Key Encryption
Schemes”, Crypto’98, by Mihir Bellare, Anand Desai, David
Pointcheval and Phillip Rogaway [BDPR’98]
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Definitions of Computational Security

Relations

strong security

minimal security

weak security

NM-CPA NM-CCA1 NM-CCA2

IND-CCA2IND-CPA IND-CCA1

OW-CPA
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Definitions of Computational Security

Example: RSA

public private

n = pq d = e−1 mod φ(n)
e (public key) (private key)

RSA Encryption

• E (m) = me mod n

• D(c) = cd mod n

OW-CPA = RSA problem by definition!
But not semantically secure because it is deterministic.
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Conclusion

Today

1 DH

2 OW & IND & NM

3 CPA & CCA1 & CCA2

4 Reduction technique
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Conclusion

Thank you for your attention.

Questions ?

47 / 47


	Negligible Functions
	Diffie-Hellman
	Reduction Proof
	Different Adversaries
	Intuition of Computational Security
	Definitions of Computational Security
	Conclusion

