Security Models Lecture 4 Active Intruder

Pascal Lafourcade

Outline of Today

(1) Unification Notions

Terms and Messages
Unification

Outline of Today

(1) Unification Notions

Terms and Messages
Unification
(2) Active Intruder: Security Problem

Outline of Today

(1) Unification Notions

Terms and Messages
Unification
(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions

Outline of Today

(1) Unification Notions

Terms and Messages
Unification
(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions
(4) NP-Hardness for Bounded Number of Sessions

Outline of Today

(1) Unification Notions

Terms and Messages
Unification
(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions
(4) NP-Hardness for Bounded Number of Sessions
(5) Conclusion

Outline

(1) Unification Notions

Terms and Messages
Unification
(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions
(4) NP-Hardness for Bounded Number of Sessions
(5) Conclusion

Arity

Definition

- \mathcal{F} is a finite set
- Arity is a mapping from \mathcal{F} into \mathbb{N}
- $(\mathcal{F}$, Arity $)$ is a ranked alphabet or signature denoted Σ
- The arity of a symbol $f \in \mathcal{F}$ is $\operatorname{Arity}(f)$
- The set of symbols of arity p is denoted by \mathcal{F}_{p}.
- Elements of arity $0,1, \ldots p$ are respectively called constants, unary, ... p-ary symbols.

Example

Example

Let $\mathcal{F}=\left\{\right.$ enc, pair, $\left.\mathrm{k}_{1}, \mathrm{k}_{2}, 0,1\right\}$
$\operatorname{Arity}(\mathrm{enc})=\operatorname{Arity}($ pair $)=2$
$\operatorname{Arity}\left(\mathrm{k}_{1}\right)=\operatorname{Arity}\left(\mathrm{k}_{2}\right)=\operatorname{Arity}(0)=\operatorname{Arity}(1)=0$
We also denote $\mathcal{F}=\left\{\right.$ enc $/ 2$, pair $\left./ 2, \mathrm{k}_{1} / 0, \mathrm{k}_{2} / 0,0 / 0,1 / 0\right\}$

Terms

Let \mathcal{X} be a set of symbols called variables.

Definition

The set $\mathcal{T}(\mathcal{F}, \mathcal{X})$ of terms over the ranked alphabet \mathcal{F} and the set of variables \mathcal{X} is the smallest set defined by:

- $\mathcal{F}_{0} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{X})$
- $\mathcal{X} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{X})$
- if $p \geq 1, f \in \mathcal{F}_{p}$ and $t_{1}, \ldots, t_{p} \in \mathcal{T}(\mathcal{F}, \mathcal{X})$, then $f\left(t_{1}, \ldots, t_{p}\right) \in$ $\mathcal{T}(\mathcal{F}, \mathcal{X})$.
- If $\mathcal{X}=\emptyset$ then $\mathcal{T}(\mathcal{F}, \mathcal{X})$ is also written $\mathcal{T}(\mathcal{F})$. Terms in $\mathcal{T}(\mathcal{F})$ are called ground terms.
- A term in $\mathcal{T}(\mathcal{F}, \mathcal{X})$ is linear if each variable occurs at most once in t.

Example

Example

Let $\mathcal{F}=\left\{\mathrm{enc} / 2\right.$, pair $\left./ 2, \mathrm{k}_{1} / 0, \mathrm{k}_{2} / 0,0 / 0,1 / 0\right\}$ and $\mathcal{X}=\{x, y, z\}$ pair $(x, 1)$, enc $\left(\right.$ pair $\left.(y, z), \mathrm{k}_{1}\right)$ and enc $\left(0, \mathrm{k}_{1}\right)$ are terms in $\mathcal{T}(\mathcal{F}, \mathcal{X})$ pair $(0,1)$, enc $\left(0, \mathrm{k}_{1}\right)$ are terms in $\mathcal{T}(\mathcal{F})$, i.e., ground terms

We also denote $\left\{{ }_{-}\right\}_{-}$for enc(-, _) and $\left\langle_{-},{ }_{-}\right\rangle$for pair($(-,)_{\text {. }}$.

Substitution

Definition

- A substitution (respectively a ground substitution) σ is a mapping from \mathcal{X} into $\mathcal{T}(\mathcal{F}, \mathcal{X})$ (respectively into $\mathcal{T}(\mathcal{F})$) where there are only finitely many variables not mapped to themselves.
- Substitutions can be extended to $\mathcal{T}(\mathcal{F}, \mathcal{X})$ in such a way that $\forall f \in \mathcal{F}_{n}, \forall t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{F}, \mathcal{X}):$

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

The domain of a substitution σ is the subset of variables $x \in \mathcal{X}$ such that $\sigma(x) \neq x$.

Unification Notions

Unification

Example:

$$
\text { Let } \sigma=\left\{x \leftarrow N_{A}, y \leftarrow\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{k_{B}}\right\} \text { and } t=\langle x,\langle y,\langle x, x\rangle\rangle\rangle \text {. }
$$

Then,

$$
\sigma(t)=\left\langle N_{A},\left\langle\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{k_{B}},\left\langle N_{A}, N_{A}\right\rangle\right\rangle\right\rangle
$$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:
$s=a \quad t=X$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:
$s=a \quad t=X \quad \sigma=\{X \leftarrow a\}$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

$$
\begin{array}{ll}
s=a & t=X \quad \sigma=\{X \leftarrow a\} \\
s=a & t=p(X)
\end{array}
$$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

$$
\begin{array}{ll}
s=a & t=X \\
s=a & t=p(X) \text { No unifier }
\end{array}
$$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

$$
\begin{aligned}
& s=a \quad t=X \quad \sigma=\{X \leftarrow a\} \\
& s=a \quad t=p(X) \text { No unifier } \\
& s=p(a, X) \quad t=p(Y, b)
\end{aligned}
$$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

$$
\begin{aligned}
& s=a \quad t=X \quad \sigma=\{X \leftarrow a\} \\
& s=a \quad t=p(X) \text { No unifier } \\
& s=p(a, X) \quad t=p(Y, b) \quad \sigma=\{X \leftarrow b ; Y \leftarrow a\}
\end{aligned}
$$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

$$
\begin{aligned}
& s=a \quad t=X \quad \sigma=\{X \leftarrow a\} \\
& s=a \quad t=p(X) \text { No unifier } \\
& s=p(a, X) \quad t=p(Y, b) \quad \sigma=\{X \leftarrow b ; Y \leftarrow a\} \\
& s=p(f(X), g(Z)) \quad t=p(f(a), Y)
\end{aligned}
$$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

$$
\begin{aligned}
& s=a \quad t=X \quad \sigma=\{X \leftarrow a\} \\
& s=a \quad t=p(X) \text { No unifier } \\
& s= p(a, X) \quad t=p(Y, b) \quad \sigma=\{X \leftarrow b ; Y \leftarrow a\} \\
& s= p(f(X), g(Z)) \quad t=p(f(a), Y) \\
& \sigma=\{X \leftarrow a ; Y \leftarrow g(Z)\}
\end{aligned}
$$

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that $\sigma(s)=\sigma(t)$

Examples:

$$
\begin{aligned}
& s=a \quad t=X \quad \sigma=\{X \leftarrow a\} \\
& s=a \quad t=p(X) \text { No unifier } \\
& s= p(a, X) \quad t=p(Y, b) \quad \sigma=\{X \leftarrow b ; Y \leftarrow a\} \\
& s= p(f(X), g(Z)) \quad t=p(f(a), Y) \\
& \sigma=\{X \leftarrow a ; Y \leftarrow g(Z)\} \text { or } \sigma=\{X \leftarrow a ; Y \leftarrow g(b) ; Z \leftarrow b\}
\end{aligned}
$$

Most General Unifier

Definition

The most general unification between two terms s and t, denoted by $m g u(s, t)$ if: $\forall \sigma$ such that $s \sigma=t \sigma, \exists \theta$ such that $\sigma=m g u(s, t) \theta$

Most General Unifier

Definition

The most general unification between two terms s and t, denoted by $m g u(s, t)$ if: $\forall \sigma$ such that $s \sigma=t \sigma, \exists \theta$ such that $\sigma=m g u(s, t) \theta$

Example:

$$
s=p(f(X), g(Z)) \quad t=p(f(a), Y)
$$

Most General Unifier

Definition

The most general unification between two terms s and t, denoted by $m g u(s, t)$ if: $\forall \sigma$ such that $s \sigma=t \sigma, \exists \theta$ such that $\sigma=m g u(s, t) \theta$

Example:

$$
\begin{gathered}
s=p(f(X), g(Z)) \quad t=p(f(a), Y) \\
\sigma_{1}=\{X \leftarrow a ; Y \leftarrow g(Z)\} \sigma_{2}=\{X \leftarrow a ; Y \leftarrow g(b) ; Z \leftarrow b\}
\end{gathered}
$$

Most General Unifier

Definition

The most general unification between two terms s and t, denoted by $m g u(s, t)$ if: $\forall \sigma$ such that $s \sigma=t \sigma, \exists \theta$ such that $\sigma=m g u(s, t) \theta$

Example:

$$
s=p(f(X), g(Z)) \quad t=p(f(a), Y)
$$

$\sigma_{1}=\{X \leftarrow a ; Y \leftarrow g(Z)\} \sigma_{2}=\{X \leftarrow a ; Y \leftarrow g(b) ; Z \leftarrow b\}$
$\theta=\{z \mapsto b\}, \sigma_{2}=\sigma_{1} \theta$

Design an algorithm that for a given unification problem $s={ }^{?} t$

- returns an mgu of s and t if they are unifiable.
- reports failure otherwise.

Naive Algorithm

Write down two terms and set markers at the beginning of the terms. Then:
(1) Move the markers simultaneously, one symbol at a time, until both move off the end of the term (success), or until they point to two different symbols;
(2) If the two symbols are both non-variables, then fail; otherwise, one is a variable (call it x) and the other one is the first symbol of a subterm (call it t):

- If x occurs in t, then fail;
- Otherwise, replace x everywhere by t (including in the solution), write down " $x \leftarrow t$ " as a part of the solution, and return to 1 .

Unification
Example: $f(x, g(a), g(z))={ }^{?} f(g(y), g(y), g(g(x)))$

$$
\begin{aligned}
& f(x, g(a), g(z)) \\
& f(g(y), g(y), g(g(x)))
\end{aligned}
$$

Unification
Example: $f(x, g(a), g(z))={ }^{?} f(g(y), g(y), g(g(x)))$

$$
f(x, g(a), g(z))
$$

$$
f(g(y), g(y), g(g(x)))
$$

Unification
Example: $f(x, g(a), g(z))={ }^{?} f(g(y), g(y), g(g(x)))$

$$
f(x, g(a), g(z))
$$

$f(g(y), g(y), g(g(x)))$
$\sigma=\{x \leftarrow g(y)\}$

Unification
Example: $f(x, g(a), g(z))={ }^{?} f(g(y), g(y), g(g(x)))$

$$
f(g(y), g(a), g(z))
$$

$f(g(y), g(y), g(g(g(y))))$
$\sigma=\{x \leftarrow g(y)\}$

Unification
Example: $f(x, g(a), g(z))={ }^{?} f(g(y), g(y), g(g(x)))$
$f(g(y), g(a), g(z))$
$f(g(y), g(y), g(g(g(y))))$
$\sigma=\{x \leftarrow g(y)\}$

Example: $f(x, g(a), g(z))=? f(g(y), g(y), g(g(x)))$

$$
f(g(a), g(a), g(z))
$$

$f(g(a), g(a), g(g(g(a))))$
$\sigma=\{x \leftarrow g(a), y \leftarrow a\}$

Example: $f(x, g(a), g(z))=? f(g(y), g(y), g(g(x)))$

$$
f(g(a), g(a), g(z))
$$

$f(g(a), g(a), g(g(g(a))))$
$\sigma=\{x \leftarrow g(a), y \leftarrow a\}$

Unification
Example: $f(x, g(a), g(z))=? f(g(y), g(y), g(g(x)))$
$f(g(a), g(a), g(g(g(a))))$
$f(g(a), g(a), g(g(g(a))))$
$\sigma=\{x \leftarrow g(a), y \leftarrow a, z \leftarrow g(g(a))\}$

Questions

(1) Correctness:

- Does the algorithm always terminate?
- Does it always produce an mgu for two unifiable terms, and fail for non-unifiable terms?
- Do these answers depend on the order of operations?
(2) Complexity:
- How much space does this take, and how much time?
(3) Extension with equational theory, e.g., $a b=b a$.

Syntactic Unification is Unitary

Theorem (Robinson)
Without equational theory there exists an unique mgu for syntactic unification (modulo renaming). Unification is called unitary.

Herbrand, Martelli, Montanari, Plotkin, Robinson, Huet, Knuth, Bendix, Siekman, Baader.

Outline

(1) Unification Notions

Terms and Messages Unification

(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions
(4) NP-Hardness for Bounded Number of Sessions
(5) Conclusion

Active Intruder with bounded number of sessions

- Theoriticaly: decidable
- Interesting practically:
- Find flaws
- Usually attacks use few sessions !

Dolev-Yao Deduction System

Deduction System: $T_{0} \vdash^{?} s$
(A) $\frac{u \in T_{0}}{T_{0} \vdash u}$
(UL) $\frac{T_{0} \vdash\langle u, v\rangle}{T_{0} \vdash u}$
(P) $\frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash\langle u, v\rangle}$
(UR) $\frac{T_{0} \vdash\langle u, v\rangle}{T_{0} \vdash v}$
(C) $\frac{T_{0} \vdash u \quad T_{0} \vdash v}{T_{0} \vdash\{u\}_{v}}$
(D) $\frac{T_{0} \vdash\{u\}_{v} \quad T_{0} \vdash v}{T_{0} \vdash u}$

Model: actions, roles and protocol

Definition (Action)

An action is a couple $(\operatorname{recv}(u)$, send $(v))$ such that $u \in \mathcal{T}(\mathcal{F}, \mathcal{X}) \cup\{$ init $\}, v \in \mathcal{T}(\mathcal{F}, \mathcal{X}) \cup\{$ stop $\}$. Denoted $(u \rightarrow v)$.

Model: actions, roles and protocol

Definition (Action)

An action is a couple $(\operatorname{recv}(u)$, send $(v))$ such that $u \in \mathcal{T}(\mathcal{F}, \mathcal{X}) \cup\{$ init $\}, v \in \mathcal{T}(\mathcal{F}, \mathcal{X}) \cup\{$ stop $\}$. Denoted $(u \rightarrow v)$.

Example

First and last actions of Needham Schroeder

- $\left(\right.$ init,$\left.X_{b} \rightarrow\left\{N_{a}, A\right\}_{p k}\left(X_{b}\right)\right)$
- $\left(\left\{N_{b}\right\}_{p k(B)} \rightarrow\right.$ stop $)$

Model: actions, roles and protocol

Definition (Role)
A role is a finite sequence of actions:

$$
\left(u_{1} \rightarrow v_{1}\right), \ldots,\left(u_{n} \rightarrow v_{n}\right)
$$

such that $\operatorname{vars}\left(v_{i}\right) \subseteq \bigcup_{1 \leq j \leq i} \operatorname{vars}\left(u_{j}\right)$.

Model: actions, roles and protocol

Definition (Role)
A role is a finite sequence of actions:

$$
\left(u_{1} \rightarrow v_{1}\right), \ldots,\left(u_{n} \rightarrow v_{n}\right)
$$

such that $\operatorname{vars}\left(v_{i}\right) \subseteq \bigcup_{1 \leq j \leq i} \operatorname{vars}\left(u_{j}\right)$.

Definition (Protocol)
A protocol P is a finite set of roles: $P=\left\{R_{1}, \ldots, R_{k}\right\}$

1st Example:

Example (Needham-schroeder)

$$
\begin{aligned}
& \text { 1. } A \rightarrow B:\left\{N_{a}, A\right\}_{p k(B)} \\
& \text { 2. } B \rightarrow A:\left\{N_{a}, N_{b}\right\}_{p k(A)} \\
& \text { 3. } A \rightarrow B:\left\{N_{b}\right\}_{p k(B)}
\end{aligned}
$$

Write down each agent's role description, this A talks with anybody.

$$
\begin{aligned}
R_{A}= & \left(\text { init }, X_{b} \rightarrow\left\{N_{a}, A\right\}_{p k}\left(X_{b}\right)\right), \\
& \left(\left\{N_{a}, x_{N_{b}}\right\}_{p k(A)} \rightarrow\left\{x_{N b}\right\}_{p k\left(X_{b}\right)}\right), \\
R_{B}= & \left(\left\{x_{N_{a}}, x_{A}\right\}_{p k(B)} \rightarrow\left\{x_{N_{a}}, N_{b}\right\}_{p k\left(x_{A}\right)}\right) \\
& \left(\left\{N_{b}\right\}_{p k(B)} \rightarrow \text { stop }\right)
\end{aligned}
$$

Scyther Notation

A: const Na: Nonce; var Nb: Nonce;
send (A,B, $\{\mathrm{Na}, \mathrm{A}\} \mathrm{pk}(\mathrm{B}))$;
$\operatorname{recv}(\mathrm{B}, \mathrm{A},\{\mathrm{Na}, \mathrm{Nb}\} \mathrm{pk}(\mathrm{A}))$;
send (A,B, \{Nb\}pk(B));
B: const Nb : Nonce; var Na: Nonce;

```
recv(A,B,{Na,A}pk(B));
send(B,A,{Na,Nb}pk(A));
recv(A,B,{Nb}pk(B));
```


Exercise

Denning-Sacco Protocol

1. $A \rightarrow S:\langle A, B\rangle$
2. $S \rightarrow A: \quad\left\{\left\langle\left\langle B, N_{A B}\right\rangle,\left\langle N_{s},\left\{\left\langle N_{A B},\left\langle A, N_{s}\right\rangle\right\rangle\right\}_{K_{B S}}\right\rangle\right\rangle\right\} K_{A S}$
3. $A \rightarrow B:\left\{\left\langle N_{A B},\left\langle A, N_{s}\right\rangle\right\rangle\right\}_{K_{B S}}$
4. $B \rightarrow A:\left\{S_{A B}\right\}_{N_{A B}}$
$P_{D S}=\left\{R_{A}, R_{B}, R_{S}\right\}$ models one session of A, B and S.

Exercise

Denning-Sacco Protocol

1. $A \rightarrow S:\langle A, B\rangle$
2. $S \rightarrow A: \quad\left\{\left\langle\left\langle B, N_{A B}\right\rangle,\left\langle N_{s},\left\{\left\langle N_{A B},\left\langle A, N_{s}\right\rangle\right\rangle\right\}_{K_{B S}}\right\rangle\right\rangle\right\}_{K_{A S}}$
3. $A \rightarrow B:\left\{\left\langle N_{A B},\left\langle A, N_{s}\right\rangle\right\rangle\right\}_{K_{B S}}$
4. $B \rightarrow A:\left\{S_{A B}\right\}_{N_{A B}}$
$P_{D S}=\left\{R_{A}, R_{B}, R_{S}\right\}$ models one session of A, B and S.

$$
\begin{aligned}
R_{A}= & \left(\text { init, } X_{B} \rightarrow\left\langle A, X_{B}\right\rangle\right) \\
& \left(\left\{\left\langle\left\langle X_{B}, x_{N_{A B}}\right\rangle,\left\langle x_{N_{S}}, z_{A}\right\rangle\right\rangle\right\}_{K_{A S}} \rightarrow z_{A}\right) \\
& \left(\left\{w_{A}\right\}_{x_{N_{A B}}} \rightarrow \text { stop }\right) \\
R_{B}= & \left.\left(\left\{y_{N_{A B}},\left\langle X_{A}, y_{N_{S}}\right\rangle\right\rangle\right\}_{K_{B S}} \rightarrow\left\{S_{A B}\right\}_{y_{N_{A B}}}\right) \\
R_{S}= & \left(\left\langle X_{A}, X_{B}\right\rangle \rightarrow\left\{\left\langle X_{B}, N_{A B},\left\langle N_{S},\left\{\left\langle N_{A B},\left\langle X_{A}, N_{S}\right\rangle\right\rangle\right\}_{K_{B S}}\right\rangle\right\rangle\right\}_{K_{A S}}\right\}^{4 / 55}
\end{aligned}
$$

Semantics

Definition (States)

- T is a set of ground terms (intruder knowledge)
- P a protocol

A state is a couple (T, P)

Definition (Transtion)

Is a relation between states $(T, P) \rightarrow^{\sigma}\left(T^{\prime}, P^{\prime}\right)$

- $P=\bigcup_{i}^{k} R_{i}$, take an $i: R_{i}=\left(u_{i} \rightarrow v_{i}\right)$
- Possible $\sigma: T \vdash u_{i} \sigma \quad\left(\operatorname{dom}(\sigma)=\operatorname{vars}\left(u_{i}\right)\right)$
- Update intruder knowledge : $T^{\prime}=T \cup\left\{v_{i} \sigma\right\}$
- Update Protocol $\forall j \neq i, R_{j} \in P^{\prime}, P^{\prime}=\left(P \backslash\left\{R_{i}\right\}\right) \cup R_{j} \sigma$

Example

Example

Simple Let $T=\left\{a, b, k_{l}\right\}$ and $P=\{R\}$ where $R=\left(\langle x, y\rangle \rightarrow\left\langle\{y\}_{k}, x\right\rangle\right),(z \rightarrow\langle x,\langle y, z\rangle\rangle)$.

- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\{b\}_{k}, a\right\rangle\right\},\{(z \rightarrow\langle a,\langle b, z\rangle\rangle)\}\right)$

$$
\sigma=\{x \leftarrow a, y \leftarrow b\}
$$

Example

Example

Simple Let $T=\left\{a, b, k_{I}\right\}$ and $P=\{R\}$ where $R=\left(\langle x, y\rangle \rightarrow\left\langle\{y\}_{k}, x\right\rangle\right),(z \rightarrow\langle x,\langle y, z\rangle\rangle)$.

- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\{b\}_{k}, a\right\rangle\right\},\{(z \rightarrow\langle a,\langle b, z\rangle\rangle)\}\right)$ $\sigma=\{x \leftarrow a, y \leftarrow b\}$
- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\left\{\{a\}_{k_{l}}\right\}_{k}, a\right\rangle\right\},\left\{\left(z \rightarrow\left\langle a,\left\langle\{a\}_{k_{l}}, z\right\rangle\right\rangle\right)\right\}\right.$ $\sigma=\left\{x \leftarrow a, y \leftarrow\{a\}_{k_{l}}\right\}$

Example

Example

Simple Let $T=\left\{a, b, k_{I}\right\}$ and $P=\{R\}$ where $R=\left(\langle x, y\rangle \rightarrow\left\langle\{y\}_{k}, x\right\rangle\right),(z \rightarrow\langle x,\langle y, z\rangle\rangle)$.

- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\{b\}_{k}, a\right\rangle\right\},\{(z \rightarrow\langle a,\langle b, z\rangle\rangle)\}\right)$ $\sigma=\{x \leftarrow a, y \leftarrow b\}$
- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\left\{\{a\}_{k_{l}}\right\}_{k}, a\right\rangle\right\},\left\{\left(z \rightarrow\left\langle a,\left\langle\{a\}_{k_{l}}, z\right\rangle\right\rangle\right)\right\}\right.$ $\sigma=\left\{x \leftarrow a, y \leftarrow\{a\}_{k_{l}}\right\}$
- $(T, P) \not \nrightarrow^{\sigma}\left(T \cup\left\{\left\langle\left\{\{a\}_{k}\right\}_{k}, a\right\rangle\right\},\left\{\left(z \rightarrow\left\langle a,\left\langle\{a\}_{k}, z\right\rangle\right\rangle\right)\right\}\right)$ $\sigma=\left\{x \leftarrow a, y \leftarrow\{a\}_{k}\right\}$

Example

Example

Simple Let $T=\left\{a, b, k_{I}\right\}$ and $P=\{R\}$ where $R=\left(\langle x, y\rangle \rightarrow\left\langle\{y\}_{k}, x\right\rangle\right),(z \rightarrow\langle x,\langle y, z\rangle\rangle)$.

- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\{b\}_{k}, a\right\rangle\right\},\{(z \rightarrow\langle a,\langle b, z\rangle\rangle)\}\right)$ $\sigma=\{x \leftarrow a, y \leftarrow b\}$
- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\left\{\{a\}_{k_{l}}\right\}_{k}, a\right\rangle\right\},\left\{\left(z \rightarrow\left\langle a,\left\langle\{a\}_{k_{l}}, z\right\rangle\right\rangle\right)\right\}\right.$ $\sigma=\left\{x \leftarrow a, y \leftarrow\{a\}_{k_{l}}\right\}$
- $(T, P) \not \nrightarrow^{\sigma}\left(T \cup\left\{\left\langle\left\{\{a\}_{k}\right\}_{k}, a\right\rangle\right\},\left\{\left(z \rightarrow\left\langle a,\left\langle\{a\}_{k}, z\right\rangle\right\rangle\right)\right\}\right)$ $\sigma=\left\{x \leftarrow a, y \leftarrow\{a\}_{k}\right\}$

Each branch has a finite depth (protocol are finite),

Example

Example

Simple Let $T=\left\{a, b, k_{I}\right\}$ and $P=\{R\}$ where $R=\left(\langle x, y\rangle \rightarrow\left\langle\{y\}_{k}, x\right\rangle\right),(z \rightarrow\langle x,\langle y, z\rangle\rangle)$.

- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\{b\}_{k}, a\right\rangle\right\},\{(z \rightarrow\langle a,\langle b, z\rangle\rangle)\}\right)$ $\sigma=\{x \leftarrow a, y \leftarrow b\}$
- $(T, P) \rightarrow^{\sigma}\left(T \cup\left\{\left\langle\left\{\{a\}_{k_{l}}\right\}_{k}, a\right\rangle\right\},\left\{\left(z \rightarrow\left\langle a,\left\langle\{a\}_{k_{l}}, z\right\rangle\right\rangle\right)\right\}\right.$ $\sigma=\left\{x \leftarrow a, y \leftarrow\{a\}_{k_{l}}\right\}$
- $(T, P) \not \nrightarrow^{\sigma}\left(T \cup\left\{\left\langle\left\{\{a\}_{k}\right\}_{k}, a\right\rangle\right\},\left\{\left(z \rightarrow\left\langle a,\left\langle\{a\}_{k}, z\right\rangle\right\rangle\right)\right\}\right)$ $\sigma=\left\{x \leftarrow a, y \leftarrow\{a\}_{k}\right\}$

Each branch has a finite depth (protocol are finite), but possibly a infinite branching (infinite number of terms).

Preservation of the secrecy

Definition (Secrecy)

Let T_{1} be a ground set of terms (Initial knowledge of the intruder). A protocol P does not preserve the secrecy of a ground term s for T_{1} if there exists a state $\left(T^{\prime}, P^{\prime}\right)$, such that

- $T^{\prime} \vdash s$
- $\left(T_{1}, P\right) \rightarrow^{*}\left(T^{\prime}, P^{\prime}\right)$
where \rightarrow^{*} is the reflexive and transitive closure of \rightarrow.
If there does not exist a such state $\left(T^{\prime}, P^{\prime}\right)$ we say that P preserves the secrecy of s for the initial intruder knowledge T_{1}.

Interleaving

Definition (Partial Order $<_{p}$)

A protocol P define a partial order $<_{p}$ on actions of P, s.t

$$
\left(u_{i} \rightarrow v_{i}\right)<_{p}\left(u_{j} \rightarrow v_{j}\right)
$$

if $R \in P, R=\left(u_{1} \rightarrow v_{1}\right) \ldots\left(u_{i} \rightarrow v_{i}\right) \ldots\left(u_{j} \rightarrow v_{j}\right) \ldots\left(u_{n} \rightarrow\right.$ $\left.v_{n}\right)(1 \leq i \leq j \leq n)$.

Interleaving

Definition (Partial Order $<_{p}$)

A protocol P define a partial order $<_{P}$ on actions of P, s.t

$$
\left(u_{i} \rightarrow v_{i}\right)<_{p}\left(u_{j} \rightarrow v_{j}\right)
$$

if $R \in P, R=\left(u_{1} \rightarrow v_{1}\right) \ldots\left(u_{i} \rightarrow v_{i}\right) \ldots\left(u_{j} \rightarrow v_{j}\right) \ldots\left(u_{n} \rightarrow\right.$ $\left.v_{n}\right)(1 \leq i \leq j \leq n)$.

Definition (Execution Order $<_{E}$)

An execution order $<_{E}$ of P is a total order on the subset A of actions of P, compatible with $<_{P}$ and stable by predecessor, i.e.

$$
\text { if } b \in A \text { et } a<_{P} b \text { then } a \in A \text { and } a<_{E} b
$$

It corresponds to an interleaving of roles.

Secrecy

Definition (Secrecy over $<_{E}$)

Let an execution order $<_{E}$ of P. We assume that

$$
\left(u_{1} \rightarrow v_{1}\right)<_{E} \ldots<_{E}\left(u_{n} \rightarrow v_{n}\right)
$$

$<_{E}$ does not preserve the secrecy of s, given T_{1} if there exists $\sigma_{1}, \ldots, \sigma_{n}$ such that

$$
\begin{aligned}
& \left(T_{1}, P\right) \rightarrow\left(T_{1} \cup\left\{v_{1} \sigma_{1}\right\}, P_{1}\right) \rightarrow \ldots \rightarrow\left(T_{1} \cup\left\{v_{1} \sigma_{1}, \ldots, v_{n} \sigma_{n}\right\}, P_{n}\right) \\
& \text { and } T_{1} \cup\left\{v_{1} \sigma_{1}, \ldots, v_{n} \sigma_{n}\right\} \vdash s .
\end{aligned}
$$

Outline

(1) Unification Notions

Terms and Messages
Unification
(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions
4. NP-Hardness for Bounded Number of Sessions
(5) Conclusion

Constraints System

Symbolic representation of execution tree by constraints system.
Definition (Constraints System)
A constraint is an expression $T \Vdash u$ where T is a set of terms and u a term.

A constraints system C is a finite set of constraints $\cup_{1 \leq i \leq n} T_{i} \Vdash u_{i}$ such that

- $T_{i} \subseteq T_{i+1} \quad(1 \leq i \leq n)$
- if $T_{i} \Vdash u_{i} \in C$ and $x \in \operatorname{vars}\left(T_{i}\right)$ then

$$
T_{j}=\min \left\{T^{\prime} \mid T^{\prime} \Vdash v \in C, x \in \operatorname{vars}(v)\right\} \text { exists and } j<i
$$

A substitution σ is a solution of C if $T \sigma \vdash u \sigma$ for all $T \Vdash u \in C$.
We denote by \perp a constraints system unsatisfiable.

From Protocols to Constraints system

Let P a protocol, $<_{E}$ an execution order of P and s a secret term.

$$
\left(u_{1} \rightarrow v_{1}\right)<_{E}\left(u_{2} \rightarrow v_{2}\right)<_{E} \ldots<_{E}\left(u_{n} \rightarrow v_{n}\right)
$$

We associate C :

$$
\begin{array}{ccc}
T_{1} & \Vdash & u_{1} \\
T_{2}=T_{1} \cup\left\{v_{1}\right\} & \Vdash & u_{2} \\
& \vdots & \\
T_{n}=T_{n-1} \cup\left\{v_{n-1}\right\} & \Vdash & u_{n} \\
T_{n+1}=T_{n} \cup\left\{v_{n}\right\} & \Vdash & s
\end{array}
$$

We show that C has a solution iff $<_{E}$ does not preserve the secret of the term s.

Exercises

Exercise 1

$$
\begin{array}{ll}
A \rightarrow B: & \left\langle A, N_{A}\right\rangle \\
B \rightarrow A: & \left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{a b} \\
A \rightarrow B: & N_{B} \\
B \rightarrow A: & \left\{\left\langle K, N_{B}\right\rangle\right\}_{a b} \\
A \rightarrow B: & \{s\}_{K}
\end{array}
$$

Intruder knows only identities of A and B.

- Give role specification of this protocol of an instance of execution between A and B.
- Give a constraint system associated to this protocol between A and B.

Solution

$$
\begin{array}{ll}
A \rightarrow B: & \left\langle A, N_{A}\right\rangle \\
B \rightarrow A: & \left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}} \\
A \rightarrow B: & N_{B} \\
B \rightarrow A: & \left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{a b}} \\
A \rightarrow B: & \{s\}_{K}
\end{array}
$$

$T_{1}=$
$\left\{A, B,\left\langle A, N_{A}\right\rangle,\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}}, N_{B},\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{a b}},\{s\}_{K}\right.$, init, stop $\}$

Roles

$$
\begin{aligned}
R_{A}= & \left(\text { init } \rightarrow\left\langle A, N_{A}\right\rangle\right), \\
& \left(\left\{\left\langle N_{A}, X_{N_{B}}\right\rangle\right\}_{K_{\left(A, X_{B}\right)}} \rightarrow X_{N_{B}}\right), \\
& \left(\left\{\left\langle X_{K}, X_{N_{B}}\right\rangle\right\}_{K_{\left(A, X_{B}\right)}} \rightarrow\{s\}_{X_{K}}\right) \\
R_{B}= & \left(\left\langle X_{A}, X_{N_{A}}\right\rangle \rightarrow\left\{\left\langle X_{N_{A}}, N_{B}\right\rangle\right\}_{K_{\left(X_{A}, B\right)}}\right) \\
& \left(N_{B} \rightarrow\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{\left(X_{A}, B\right)}}\right), \\
& \left(\left\{X_{s}\right\}_{K} \rightarrow \text { stop }\right)
\end{aligned}
$$

Solution

$$
\begin{aligned}
A \rightarrow B: & \left\langle A, N_{A}\right\rangle \\
B \rightarrow A: & \left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}} \\
A \rightarrow B: & N_{B} \\
B \rightarrow A: & \left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{a b}} \\
A \rightarrow B: & \{s\}_{K}
\end{aligned}
$$

$T_{1}=$
$\left\{A, B,\left\langle A, N_{A}\right\rangle,\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}}, N_{B},\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{a b}},\{s\}_{K}\right.$, init, stop $\}$
Constraint System

$$
\begin{array}{lll}
T_{1} & \Vdash & \text { init } \\
T_{2}=T_{1} \cup\left\{\left\langle A, N_{A}\right\rangle\right\} & \Vdash & \left\langle X_{A}, X_{N_{A}}\right\rangle \\
T_{3}=T_{2} \cup\left\{\left\{\left\langle X_{N_{A}}, N_{B}\right\rangle\right\}_{K_{\left(X_{A}, B\right)}}\right\} & \Vdash & \left\{\left\langle N_{A}, X_{N_{B}}\right\rangle\right\}_{K_{\left(A, X_{B}\right)}} \\
T_{4}=T_{3} \cup\left\{X_{N_{B}}\right\} & \Vdash & N_{B} \\
T_{5}=T_{4} \cup\left\{\left\{\left\langle K, N_{B}\right\rangle\right\}_{\left.K_{\left(X_{A}, B\right)}\right\}}\right\} & \Vdash & \Vdash\left\{\left\langle X_{K}, X_{N_{B}}\right\rangle\right\}_{K_{\left(A, X_{B}\right)}} \\
T_{6}=T_{5} \cup\left\{\{s\}_{X_{K}}\right\} & \Vdash & \left\{X_{s}\right\}_{K} \\
T_{7}=T_{6} \cup\{\text { stop }\} & \Vdash & s
\end{array}
$$

Resolution of Constraints systems

Definition (Rules of simplification: $C \rightsquigarrow_{\sigma} C^{\prime}$)

R_{1}	$\mathcal{C} \cup\{T \Vdash u\}$	\rightsquigarrow	C	if $T \cup\{x \mid$
R_{2}	$C \cup\{T \Vdash u\}$	$\rightsquigarrow \sigma$	$C \sigma \cup\{T \sigma \Vdash u \sigma\}$	$\begin{aligned} & \left.\quad T^{\prime} \Vdash x \in C, T^{\prime} \subset T\right\} \vdash u \\ & \sigma=m g u(t, u), t \in \operatorname{st}(T), \\ & t, u \text { no variables } \end{aligned}$
R_{3}	$C \cup\{T \Vdash u\}$	$\cdots \sigma$	$C \sigma \cup\{T \sigma \Vdash 4 \sigma\}$	$\sigma=m g u\left(t_{1}, t_{2}\right), t_{1}, t_{2} \in \operatorname{st}(T)$ t_{1}, t_{2} no variables
R_{4}	$C \cup\{T \Vdash\{u\} v\}$	\rightsquigarrow	$C \cup\{T \Vdash u, T \Vdash v\}$	
R_{5}	$C \cup\{T \Vdash\langle u, v\rangle\}$	\rightsquigarrow	$C \cup\{T \Vdash u, T \Vdash v\}$	
R_{6}	$C \cup\{T \Vdash u\}$	\rightsquigarrow	\perp	$\begin{aligned} & \text { if } T=\emptyset \text { or } \\ & \operatorname{var}(T)=\operatorname{var}(u)=\emptyset \text { and } T \nvdash u \end{aligned}$

Properties of simplification rules

Lemma (Preservation)
Simplification rules transform a constraints system into a constraints system.

Properties of simplification rules

Lemma (Preservation)

Simplification rules transform a constraints system into a constraints system.

Lemma (Correctness)
If $C \rightsquigarrow_{\sigma} C^{\prime}$ then if θ is a solution of $C^{\prime}, \sigma \theta$ is also a solution of C.

Properties of simplification rules

Lemma (Preservation)

Simplification rules transform a constraints system into a constraints system.

Lemma (Correctness)
If $C \rightsquigarrow_{\sigma} C^{\prime}$ then if θ is a solution of $C^{\prime}, \sigma \theta$ is also a solution of C.
Lemma (Termination)
Simplification rules always terminate: There does not exist infinite chain $C \rightsquigarrow_{\sigma_{1}} C_{1} \rightsquigarrow_{\sigma_{2}} C_{2} \rightsquigarrow_{\sigma_{3}} \ldots$

Properties

Definition (Solved Form)

A constraints system C is in solved form if $C=\perp$ or if each constraint is of the following form $T \Vdash x$ where x is a variable $T \neq \emptyset$.

Lemma
All constraints systems in solved form different of \perp has at least one solution.

Properties

Definition (Solved Form)

A constraints system C is in solved form if $C=\perp$ or if each constraint is of the following form $T \Vdash x$ where x is a variable $T \neq \emptyset$.

Lemma

All constraints systems in solved form different of \perp has at least one solution.

Lemma (Completeness)
If C is a constraint system not in solved form and if σ is a solution of C then there exists θ, τ such that $C \rightsquigarrow_{\theta} C^{\prime}, \sigma=\theta \tau$ and τ is a solution of C^{\prime}.

Decidability

Theorem

Preservation of the secrecy for protocol with bounded number of sessions is decidable.

- Guess an interleaving and build constraints system associated.
- Using previous lemma C has a solution iff there exists C^{\prime} in solved form such that $C^{\prime} \neq \perp$ and $C \rightsquigarrow_{\tau} C^{\prime}$
- Using termination lemma to conclude.

We also can show that the problem is in co-NP.

Exercises

Exercise 1

$$
\begin{array}{ll}
A \rightarrow B: & \left\langle A, N_{A}\right\rangle \\
B \rightarrow A: & \left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}} \\
A \rightarrow B: & N_{B} \\
B \rightarrow A: & \left\{\left\langle K, N_{B}\right\rangle\right\}_{a b} \\
A \rightarrow B: & \{s\}_{K}
\end{array}
$$

Intruder knows only identities of A and B.

- Use simplification rules to transform the system in solved form.
- There exists an easy attack, can you find it ?

Solution

$$
T_{1}=\left\{A, B,\left\langle A, N_{A}\right\rangle,\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}}, N_{B},\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{a b}},\{s\}_{K}, \text { init, stop }\right\}
$$

C_{1}	T_{1}		\Vdash
C_{2}	$T_{2}=T_{1} \cup\left\{\left\langle A, N_{A}\right\rangle\right\}$	\Vdash	$\left\langle X_{A}, X_{N_{A}}\right\rangle$
C_{3}	$T_{3}=T_{2} \cup\left\{\left\{\left\langle X_{N_{A}}, N_{B}\right\rangle\right\} K_{\left(X_{A}, B\right)}\right\}$	\Vdash	$\left\{\left\langle N_{A}, X_{N_{B}}\right\rangle\right\}_{K_{\left(A, X_{B}\right)}}$
C_{4}	$T_{4}=T_{3} \cup\left\{X_{N_{B}}\right\}$	\Vdash	N_{B}
C_{5}	$T_{5}=T_{4} \cup\left\{\left\{\left\langle K, N_{B}\right\rangle\right\}_{\left.K_{\left(X_{A}, B\right)}\right\}}\right\}$	\Vdash	$\left\{\left\langle X_{K}, X_{N_{B}}\right\rangle\right\}_{K_{\left(A, X_{B}\right)}}$
C_{6}	$T_{6}=T_{5} \cup\left\{\{s\} X_{K}\right\}$	\Vdash	$\left\{X_{s}\right\} K$
C_{7}	$T_{7}=T_{6} \cup\{$ stop $\}$	\Vdash	s

Road book

Interleaving: $\left(u_{1}^{A}, v_{1}^{A}\right)\left(u_{1}^{B}, v_{1}^{B}\right)\left(u_{2}^{A}, v_{2}^{A}\right)\left(u_{2}^{B}, v_{2}^{B}\right)\left(u_{3}^{A}, v_{3}^{A}\right)\left(u_{3}^{B}, v_{3}^{B}\right)$
$R_{2} C \cup\{T \Vdash u\} \quad \rightsquigarrow_{\sigma} C \sigma \cup\{T \sigma \Vdash u \sigma\} \quad \sigma=m g u(t, u), t \in \operatorname{st}(T)$,
t, u no variables

- Apply nothing on C_{1}, already in resolved form.
- Apply R_{2} on C_{2} give $\sigma_{1}=\left\{X_{N_{A}} \leftarrow N_{A}, X_{A} \leftarrow A\right\}$ and R_{1}

Solution

$$
\begin{aligned}
& T_{1}=\left\{A, B,\left\langle A, N_{A}\right\rangle,\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}}, N_{B},\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{a b}},\{s\}_{K}, \text { init, stop }\right\} \\
& C_{3} \sigma_{1} \quad T_{3}=T_{2} \cup\left\{\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{(A, B)}\right\} \quad \Vdash \quad\left\{\left\langle N_{A}, X_{N_{B}}\right\rangle\right\}_{\left(A, X_{B}\right)} \\
& C_{4} \sigma_{1} \quad T_{4}=T_{3} \cup\left\{X_{N_{B}}\right\} \quad \Vdash N_{B} \\
& C_{5} \sigma_{1} \quad T_{5}=T_{4} \cup\left\{\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{(A, B)}}\right\} \quad \Vdash \quad\left\{\left\langle X_{K}, X_{N_{B}}\right\rangle\right\}_{K_{\left(A, X_{B}\right)}} \\
& \left.C_{6} \sigma_{1} \quad T_{6}=T_{5} \cup\left\{\{s\}_{X_{K}}\right\} \quad \Vdash X_{s}\right\}_{K} \\
& C_{7} \sigma_{1} \quad T_{7}=T_{6} \cup\{\text { stop }\} \quad \Vdash s
\end{aligned}
$$

Road book $\sigma_{1}=\left\{X_{N_{A}} \leftarrow N_{A}, X_{A} \leftarrow A\right\}$

- Apply R_{2} on C_{3} gives $\sigma_{2}=\left\{X_{N_{B}} \leftarrow N_{B}, X_{B} \leftarrow B\right\}$ (or N_{A}) and R_{1}

Solution

$$
\begin{array}{rlrl}
T_{1}= & \left\{A, B,\left\langle A, N_{A}\right\rangle,\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}}, N_{B},\{\langle K,\right. & \left.\left.\left.N_{B}\right\rangle\right\}_{K_{a b}},\{s\}_{K}, \text { init, stop }\right\} \\
& C_{5} \sigma_{1} \sigma_{2} & T_{5}=T_{4} \cup\left\{\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{(A, B)}}\right\} & \Vdash \\
& C_{6} \sigma_{1} \sigma_{2} & T_{6}=T_{5} \cup\left\{\left\langle\left\{X_{K}, N_{B}\right\rangle\right\}_{K_{(A, B)}}\right. \\
& C_{7} \sigma_{1} \sigma_{2} & T_{7}=T_{6} \cup\{\text { stop }\} &
\end{array}
$$

Road book $\sigma_{1}=\left\{X_{N_{A}} \leftarrow N_{A}, X_{A} \leftarrow A\right\} \sigma_{2}=\left\{X_{N_{B}} \leftarrow N_{B}, X_{B} \leftarrow B\right\}$

- Apply R_{2} on $C_{5} \sigma_{1} \sigma_{2}$ give $\sigma_{3}=\left\{X_{K} \leftarrow N_{A}\right\}$
- Apply R_{2}, on $\sigma_{1} \sigma_{2} \sigma_{3} C_{6}$ give $\sigma_{4}=\left\{X_{S} \leftarrow s\right\}$

Solution

$$
\begin{array}{lll}
1 & A \rightarrow B: & \left\langle A, N_{A}\right\rangle \\
2 & B \rightarrow A: & \left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{a b} \\
3 & A \rightarrow B: & N_{B} \\
4 & B \rightarrow A: & \left\{\left\langle K, N_{B}\right\rangle\right\}_{\text {ab }} \\
5 & A \rightarrow B: & \{s\}_{K}
\end{array}
$$

The resolution of constraint system gives the following attack: Send 2nd message $\left\{\left\langle N_{A}, N_{B}\right\rangle\right\}_{K_{a b}}$ instead of the 4th message $\left\{\left\langle K, N_{B}\right\rangle\right\}_{K_{a b}}$. Hence A will replay $\{s\}_{N_{A}}$ because intruder knows N_{A}

Exercises

Exercise 2

$$
\begin{aligned}
A \rightarrow B: & \left\{\langle A, K\rangle K_{a b}\right. \\
B \rightarrow A: & \{s\}_{K_{a b}}
\end{aligned}
$$

Intruder knows only identities of A and B. Show that the secret data s is preserved by one single session between A and B.

Solution

$$
\begin{aligned}
& A \rightarrow B: \quad\{\langle A, K\rangle\} K_{a b} \\
& B \rightarrow A:\{s\}_{a b} \\
& T_{1}=\left\{A, B,\{\langle A, K\rangle\} K_{a b},\{s\}_{K_{a b}}\right\}
\end{aligned}
$$

Constraint System

$$
\begin{array}{llll}
C_{1} & T_{1} & \Vdash & \text { init } \\
C_{2} & T_{2}=T_{1} \cup\left\{\left\{\left\langle A, X_{K}\right\rangle\right\}_{K_{a b}}\right\} & \Vdash & \left\{\left\langle A, X_{K}\right\rangle\right\}_{K_{a b}} \\
C_{3} & T_{3}=T_{2} \cup\left\{\{s\} X_{K_{a b}}\right\} & \Vdash & \forall s\} X_{K_{a b}} \\
C_{4} & T_{4}=T_{3} \cup\{s t o p\} & \Vdash & \stackrel{s}{ }
\end{array}
$$

Solution

$$
\begin{array}{lll}
C_{1} & T_{1} & \\
C_{2} & T_{2}=T_{1} \cup\left\{\left\{\left\langle A, X_{K}\right\rangle\right\}_{K_{a b}}\right\} & \Vdash \\
C_{3} & T_{3}=T_{2} \cup\left\{\{s\}_{K_{a b}}\right\} & \left.\Vdash\left\{A, X_{K}\right\rangle\right\}_{K_{a b}} \\
C_{4} & T_{4}=T_{3} \cup\{s t o p\} & \Vdash s\}_{K_{a b}} \\
T_{1}=\left\{A, B,\{\langle A, K\rangle\}_{\left.K_{a b},\{s\}_{K_{a b}}\right\}}\right. & &
\end{array}
$$

Road book

- Apply nothing or R_{4} or R_{5} and R_{2} on C_{1} give

$$
\sigma_{0}=\left\{X_{K} \leftarrow K, X_{K_{a b}} \leftarrow K_{a b}\right\}
$$

Each time you meet a solved form of the form \perp with R_{6}.

Outline

(1) Unification Notions Terms and Messages Unification
(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions
(4) NP-Hardness for Bounded Number of Sessions
(5) Conclusion

NP-hardness

Theorem
Decide if a protocol P does not preserve the secrecy of a ground term s from an initial knowledge T_{1} is NP-difficult.

Recall 3-SAT Problem

Definition

Input: set of propositional variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and a conjunction of clauses with 3 literals.

$$
f(\vec{x})=\bigwedge_{1 \leq i \leq 1}\left(x_{i, 1}^{\epsilon_{i, 1}} \vee x_{i, 2}^{\epsilon_{i, 2}} \vee x_{i, 3}^{\epsilon_{i, 3}}\right)
$$

where $\epsilon_{i, j} \in\{+,-\}$ and $x^{+}=x, x^{-}=\neg x$.
Question: Does exist a valuation V of $\left\{x_{1}, \ldots, x_{n}\right\}$, such that $V(f(\vec{x}))=T$.

Theorem
3-SAT problem is NP-complete.

NP-difficulty

We build a protocol such that an intruder can deduce s iff $f(\vec{x})$ is satisfaisable.

$$
\begin{aligned}
& g\left(x_{i, j}^{\epsilon_{i, j}}\right)=\left\{\begin{array}{cl}
x_{i, j} & \text { if } \epsilon_{i, j}=+ \\
\left\{x_{i, j}\right\}_{K} & \text { if } \epsilon_{i, j}=-
\end{array}\right. \\
& \forall 1 \leq i \leq I: \quad f_{i}(\vec{x})=\left\langle g\left(x_{i, 1}^{\epsilon_{i, 1}}\right),\left\langle g\left(x_{i, 2}^{\epsilon_{i, 2}}\right), g\left(x_{i, 3}^{\epsilon_{i, 3}}\right)\right\rangle\right\rangle
\end{aligned}
$$

We suppose Initial intruder knowledge is $\{\perp, \top\}$.

$$
\begin{aligned}
A: & \left\langle x_{1},\left\langle\ldots, x_{n}\right\rangle\right\rangle \rightarrow\left\{\left\langle f_{1}(\vec{x}),\left\langle f_{2}(\vec{x}),\left\langle\ldots,\left\langle f_{n}(\vec{x}), \text { end }\right\rangle \ldots\right\rangle\right\rangle\right\}_{p}\right. \\
\forall 1 \leq i \leq 1: & \\
B_{i}: & \{\langle\langle T,\langle x, y\rangle\rangle, z\rangle\}_{p} \rightarrow\{z\}_{p} \\
\bar{B}_{i}: & \left\{\left\langle\left\langle\{\perp\}_{K},\langle x, y\rangle\right\rangle, z\right\rangle\right\}_{p} \rightarrow\{z\}_{p} \\
C_{i}: & \{\langle\langle x,\langle\top, y\rangle\rangle, z\rangle\}_{p} \rightarrow\{z\}_{p} \\
\bar{C}_{i}: & \left\{\left\langle\left\langle x,\left\langle\{\perp\}_{K}, y\right\rangle\right\rangle, z\right\rangle\right\}_{p} \rightarrow\{z\}_{p} \\
D_{i}: & \{\langle\langle x,\langle y, T\rangle\rangle, z\rangle\}_{p} \rightarrow\{z\}_{p} \\
\bar{D}_{i}: & \left\{\left\langle\left\langle x,\left\langle y,\{\perp\}_{K}\right\rangle\right\rangle, z\right\rangle\right\}_{p} \rightarrow\{z\}_{p} \\
E: & \{\text { end }\}_{p} \rightarrow s
\end{aligned}
$$

Conclusion

Outline

(1) Unification Notions

Terms and Messages
Unification
(2) Active Intruder: Security Problem
(3) Bounded Number of Sessions
4. NP-Hardness for Bounded Number of Sessions
(5) Conclusion

Summary

Today

- Active Intruder
- Bounded Number of Sessions
- NP-Hardness
- Tools

Conclusion

Next Time

- Playing with Tools:
- Scyther
- Avispa: OFMC, Cl-Atse, SATMC, TA4SP
- Proverif

Conclusion

Thank you for your attention

Questions ?

