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Unification Notions

Terms and Messages

Arity

Definition

• F is a finite set

• Arity is a mapping from F into N
• (F ,Arity) is a ranked alphabet or signature denoted Σ

• The arity of a symbol f ∈ F is Arity(f )

• The set of symbols of arity p is denoted by Fp.

• Elements of arity 0, 1, . . . p are respectively called constants,
unary, . . . p-ary symbols.
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Unification Notions

Terms and Messages

Example

Example

Let F = {enc, pair, k1, k2, 0, 1}

Arity(enc) = Arity(pair) = 2
Arity(k1) = Arity(k2) = Arity(0) = Arity(1) = 0

We also denote F = {enc/2, pair/2, k1/0, k2/0, 0/0, 1/0}
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Unification Notions

Terms and Messages

Terms

Let X be a set of symbols called variables.

Definition

The set T (F ,X ) of terms over the ranked alphabet F and the set
of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X )
- X ⊆ T (F ,X )
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X ), then f (t1, . . . , tp) ∈
T (F ,X ).

• If X = ∅ then T (F ,X ) is also written T (F). Terms in T (F)
are called ground terms.

• A term in T (F ,X ) is linear if each variable occurs at most
once in t.
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Unification Notions

Terms and Messages

Example

Example

Let F = {enc/2, pair/2, k1/0, k2/0, 0/0, 1/0} and X = {x , y , z}

pair(x , 1), enc(pair(y , z), k1) and enc(0, k1) are terms in T (F ,X )

pair(0, 1), enc(0, k1) are terms in T (F), i.e., ground terms

We also denote { } for enc( , ) and 〈 , 〉 for pair( , ).
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Unification Notions

Unification

Substitution

Definition

• A substitution (respectively a ground substitution) σ is a
mapping from X into T (F ,X ) (respectively into T (F))
where there are only finitely many variables not mapped to
themselves.

• Substitutions can be extended to T (F ,X ) in such a way that
∀f ∈ Fn,∀t1, . . . , tn ∈ T (F ,X ):

σ(f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)).

The domain of a substitution σ is the subset of variables x ∈ X
such that σ(x) 6= x .
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Unification Notions

Unification

Example:

Let σ = {x ← NA, y ← {〈NA,NB〉}kB} and t = 〈x , 〈y , 〈x , x〉〉〉.

Then,

σ(t) = 〈NA, 〈{〈NA,NB〉}kB , 〈NA,NA〉〉〉
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Unification Notions

Unification

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that
σ(s) = σ(t)

Examples:
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Unification

Unification

Definition

Two t and s are unifiable if there exists a substitution σ such that
σ(s) = σ(t)

Examples:
s = a t = X σ = {X ← a}
s = a t = p(X ) No unifier
s = p(a,X ) t = p(Y , b) σ = {X ← b;Y ← a}
s = p(f (X ), g(Z )) t = p(f (a),Y )

σ = {X ← a;Y ← g(Z )} or σ = {X ← a;Y ← g(b);Z ← b}
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Unification Notions

Unification

Most General Unifier

Definition

The most general unification between two terms s and t, denoted
by mgu(s, t) if: ∀σ such that sσ = tσ, ∃θ such that
σ = mgu(s, t)θ

Example:
s = p(f (X ), g(Z )) t = p(f (a),Y )

σ1 = {X ← a;Y ← g(Z )} σ2 = {X ← a;Y ← g(b);Z ← b}

θ = {z 7→ b}, σ2 = σ1θ
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Unification Notions

Unification

Goal

Design an algorithm that for a given unification problem s =? t

• returns an mgu of s and t if they are unifiable.

• reports failure otherwise.
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Unification Notions

Unification

Naive Algorithm

Write down two terms and set markers at the beginning of the
terms. Then:

1 Move the markers simultaneously, one symbol at a time, until
both move off the end of the term (success), or until they
point to two different symbols;

2 If the two symbols are both non-variables, then fail;
otherwise, one is a variable (call it x) and the other one is the
first symbol of a subterm (call it t):
• If x occurs in t, then fail;
• Otherwise, replace x everywhere by t (including in the

solution), write down ”x ← t” as a part of the solution, and
return to 1.
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Unification Notions

Unification

Example: f (x , g(a), g(z)) =? f (g(y), g(y), g(g(x)))

f (x , g(a), g(z))

f (g(y), g(y), g(g(x)))
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f (g(a), g(a), g(z))
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f (g(a), g(a), g(z))
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Unification

Example: f (x , g(a), g(z)) =? f (g(y), g(y), g(g(x)))

f (g(a), g(a), g(g(g(a))))

f (g(a), g(a), g(g(g(a))))

σ = {x ← g(a), y ← a, z ← g(g(a))}
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Unification Notions

Unification

Questions

1 Correctness:
• Does the algorithm always terminate?
• Does it always produce an mgu for two unifiable terms, and

fail for non-unifiable terms?
• Do these answers depend on the order of operations?

2 Complexity:
• How much space does this take, and how much time?

3 Extension with equational theory, e.g., ab = ba.

15 / 55



Security Models Lecture 4 Active Intruder

Unification Notions

Unification

Syntactic Unification is Unitary

Theorem (Robinson)

Without equational theory there exists an unique mgu for syntactic
unification (modulo renaming). Unification is called unitary.

Herbrand, Martelli, Montanari, Plotkin, Robinson, Huet, Knuth,
Bendix, Siekman, Baader.
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Active Intruder: Security Problem

Active Intruder with bounded number of sessions

• Theoriticaly: decidable
• Interesting practically:

• Find flaws
• Usually attacks use few sessions !
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Active Intruder: Security Problem

Dolev-Yao Deduction System

Deduction System : T0 `? s

(A) u ∈ T0

T0 ` u
(UL)

T0 ` 〈u, v〉
T0 ` u

(P) T0 ` u T0 ` v
T0 ` 〈u, v〉

(UR)
T0 ` 〈u, v〉
T0 ` v

(C) T0 ` u T0 ` v
T0 ` {u}v

(D)
T0 ` {u}v T0 ` v

T0 ` u
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Active Intruder: Security Problem

Model: actions, roles and protocol

Definition (Action)

An action is a couple (recv(u), send(v)) such that
u ∈ T (F ,X ) ∪ {init}, v ∈ T (F ,X ) ∪ {stop}. Denoted (u → v).

Example

First and last actions of Needham Schroeder

• (init,Xb → {Na,A}pk(Xb))

• ({Nb}pk(B) → stop)
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Active Intruder: Security Problem

Model: actions, roles and protocol

Definition (Role)

A role is a finite sequence of actions:

(u1 → v1), . . . , (un → vn)

such that vars(vi ) ⊆
⋃

1≤j≤i
vars(uj).

Definition (Protocol)

A protocol P is a finite set of roles: P = {R1, . . . ,Rk}
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Active Intruder: Security Problem

1st Example:

Example (Needham-schroeder)

1. A → B : {Na,A}pk(B)

2. B → A : {Na,Nb}pk(A)
3. A → B : {Nb}pk(B)

Write down each agent’s role description, this A talks with
anybody.

RA = (init,Xb → {Na,A}pk(Xb)),
({Na, xNb

}pk(A) → {xNb}pk(Xb)),

RB = ({xNa , xA}pk(B) → {xNa ,Nb}pk(xA))
({Nb}pk(B) → stop)
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Active Intruder: Security Problem

Scyther Notation

A: const Na: Nonce;

var Nb: Nonce;

send(A,B, {Na,A}pk(B));

recv(B,A, {Na,Nb}pk(A));

send(A,B, {Nb}pk(B));

B: const Nb: Nonce;

var Na: Nonce;

recv(A,B,{Na,A}pk(B));

send(B,A,{Na,Nb}pk(A));

recv(A,B,{Nb}pk(B));
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Active Intruder: Security Problem

Exercise

Denning-Sacco Protocol

1. A→ S : 〈A,B〉
2. S → A : {〈〈B,NAB〉, 〈Ns , {〈NAB , 〈A,Ns〉〉}KBS

〉〉}KAS

3. A→ B : {〈NAB , 〈A,Ns〉〉}KBS

4. B → A : {SAB}NAB

PDS = {RA,RB ,RS} models one session of A,B and S .

RA = (init,XB → 〈A,XB〉),
({〈〈XB , xNAB

〉, 〈xNS
, zA〉〉}KAS

→ zA),
({wA}xNAB → stop)

RB = ({yNAB
, 〈XA, yNS

〉〉}KBS
→ {SAB}yNAB )

RS = (〈XA,XB〉 → {〈XB ,NAB , 〈NS , {〈NAB , 〈XA,NS〉〉}KBS
〉〉}KAS

)
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Active Intruder: Security Problem

Semantics

Definition (States)

• T is a set of ground terms (intruder knowledge)

• P a protocol

A state is a couple (T ,P)

Definition (Transtion)

Is a relation between states (T ,P)→σ (T ′,P ′)

• P =
⋃k

i Ri , take an i : Ri = (ui → vi )

• Possible σ : T ` uiσ (dom(σ) = vars(ui ))

• Update intruder knowledge : T ′ = T ∪ {viσ}
• Update Protocol ∀j 6= i ,Rj ∈ P ′,P ′ = (P \ {Ri}) ∪ Rjσ
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Active Intruder: Security Problem

Example

Example

Simple Let T = {a, b, kI} and P = {R} where
R = (〈x , y〉 → 〈{y}k , x〉), (z → 〈x , 〈y , z〉〉).

• (T ,P)→σ (T ∪ {〈{b}k , a〉}, {(z → 〈a, 〈b, z〉〉)})
σ = {x ← a, y ← b}

• (T ,P)→σ (T ∪ {〈{{a}kI }k , a〉}, {(z → 〈a, 〈{a}kI , z〉〉)}
σ = {x ← a, y ← {a}kI }
• (T ,P) 6→σ (T ∪ {〈{{a}k}k , a〉}, {(z → 〈a, 〈{a}k , z〉〉)})
σ = {x ← a, y ← {a}k}

Each branch has a finite depth (protocol are finite),
but possibly a infinite branching (infinite number of terms).
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Active Intruder: Security Problem

Preservation of the secrecy

Definition (Secrecy)

Let T1 be a ground set of terms (Initial knowledge of the intruder).
A protocol P does not preserve the secrecy of a ground term s for
T1 if there exists a state (T ′,P ′), such that

• T ′ ` s

• (T1,P)→∗ (T ′,P ′)

where →∗ is the reflexive and transitive closure of →.

If there does not exist a such state (T ′,P ′) we say that P
preserves the secrecy of s for the initial intruder knowledge T1.
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Active Intruder: Security Problem

Interleaving

Definition (Partial Order <p)

A protocol P define a partial order <P on actions of P, s.t

(ui → vi ) <P (uj → vj)

if R ∈ P, R = (u1 → v1) . . . (ui → vi ) . . . (uj → vj) . . . (un →
vn) (1 ≤ i ≤ j ≤ n).

Definition (Execution Order <E )

An execution order <E of P is a total order on the subset A of
actions of P, compatible with <P and stable by predecessor, i.e.

if b ∈ A et a <P b then a ∈ A and a <E b

It corresponds to an interleaving of roles.
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Active Intruder: Security Problem

Secrecy

Definition (Secrecy over <E )

Let an execution order <E of P. We assume that

(u1 → v1) <E . . . <E (un → vn)

<E does not preserve the secrecy of s, given T1 if there exists
σ1, . . . , σn such that

(T1,P)→ (T1 ∪ {v1σ1},P1)→ . . .→ (T1 ∪ {v1σ1, . . . , vnσn},Pn)

and T1 ∪ {v1σ1, . . . , vnσn} ` s.
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Bounded Number of Sessions
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Bounded Number of Sessions

Constraints System

Symbolic representation of execution tree by constraints system.

Definition (Constraints System)

A constraint is an expression T  u
where T is a set of terms and u a term.

A constraints system C is a finite set of constraints ∪1≤i≤nTi  ui
such that

• Ti ⊆ Ti+1 (1 ≤ i ≤ n)

• if Ti  ui ∈ C and x ∈ vars(Ti ) then
Tj = min{T ′ | T ′  v ∈ C , x ∈ vars(v)} exists and j < i

A substitution σ is a solution of C if Tσ ` uσ for all T  u ∈ C .

We denote by ⊥ a constraints system unsatisfiable.
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Bounded Number of Sessions

From Protocols to Constraints system

Let P a protocol, <E an execution order of P and s a secret term.

(u1 → v1) <E (u2 → v2) <E . . . <E (un → vn)

We associate C :

T1  u1
T2 = T1 ∪ {v1}  u2

...
Tn = Tn−1 ∪ {vn−1}  un
Tn+1 = Tn ∪ {vn}  s

We show that C has a solution iff <E does not preserve the secret
of the term s.
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Bounded Number of Sessions

Exercises

Exercise 1

A→ B : 〈A,NA〉
B → A : {〈NA,NB〉}Kab

A→ B : NB

B → A : {〈K ,NB〉}Kab

A→ B : {s}K
Intruder knows only identities of A and B.

• Give role specification of this protocol of an instance of
execution between A and B.

• Give a constraint system associated to this protocol between
A and B.
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Bounded Number of Sessions

Solution
A→ B : 〈A,NA〉
B → A : {〈NA,NB〉}Kab

A→ B : NB

B → A : {〈K ,NB〉}Kab

A→ B : {s}K

T1 =
{A,B, 〈A,NA〉, {〈NA,NB〉}Kab

,NB , {〈K ,NB〉}Kab
, {s}K , init, stop}

Roles
RA = (init → 〈A,NA〉),

({〈NA,XNB
〉}K(A,XB )

→ XNB
),

({〈XK ,XNB
〉}K(A,XB )

→ {s}XK
)

RB = (〈XA,XNA
〉 → {〈XNA

,NB〉}K(XA,B)
)

(NB → {〈K ,NB〉}K(XA,B)
),

({Xs}K → stop) 34 / 55
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Bounded Number of Sessions

Solution
A→ B : 〈A,NA〉
B → A : {〈NA,NB〉}Kab

A→ B : NB

B → A : {〈K ,NB〉}Kab

A→ B : {s}K
T1 =
{A,B, 〈A,NA〉, {〈NA,NB〉}Kab

,NB , {〈K ,NB〉}Kab
, {s}K , init, stop}

Constraint System

T1  init
T2 = T1 ∪ {〈A,NA〉}  〈XA,XNA

〉
T3 = T2 ∪ {{〈XNA

,NB〉}K(XA,B)
}  {〈NA,XNB

〉}K(A,XB )

T4 = T3 ∪ {XNB
}  NB

T5 = T4 ∪ {{〈K ,NB〉}K(XA,B)
}  {〈XK ,XNB

〉}K(A,XB )

T6 = T5 ∪ {{s}XK
}  {Xs}K

T7 = T6 ∪ {stop}  s 35 / 55
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Bounded Number of Sessions

Resolution of Constraints systems

Definition (Rules of simplification: C  σ C ′)

R1 C ∪ {T  u}  C if T ∪ {x |
T ′  x ∈ C ,T ′ ⊂ T} ` u

R2 C ∪ {T  u}  σ Cσ ∪ {Tσ  uσ} σ = mgu(t, u), t ∈ st(T ),
t, u no variables

R3 C ∪ {T  u}  σ Cσ ∪ {Tσ  uσ} σ = mgu(t1, t2), t1, t2 ∈ st(T ),
t1, t2 no variables

R4 C ∪ {T  {u}v}  C ∪ {T  u,T  v}
R5 C ∪ {T  〈u, v〉}  C ∪ {T  u,T  v}
R6 C ∪ {T  u}  ⊥ if T = ∅ or

var(T ) = var(u) = ∅ and T 6` u
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Bounded Number of Sessions

Properties of simplification rules

Lemma (Preservation)

Simplification rules transform a constraints system into a
constraints system.

Lemma (Correctness)

If C  σ C ′ then if θ is a solution of C ′, σθ is also a solution of C .

Lemma (Termination)

Simplification rules always terminate: There does not exist infinite
chain C  σ1 C1  σ2 C2  σ3 . . ..

37 / 55



Security Models Lecture 4 Active Intruder

Bounded Number of Sessions

Properties of simplification rules

Lemma (Preservation)

Simplification rules transform a constraints system into a
constraints system.

Lemma (Correctness)

If C  σ C ′ then if θ is a solution of C ′, σθ is also a solution of C .

Lemma (Termination)

Simplification rules always terminate: There does not exist infinite
chain C  σ1 C1  σ2 C2  σ3 . . ..

37 / 55



Security Models Lecture 4 Active Intruder

Bounded Number of Sessions

Properties of simplification rules

Lemma (Preservation)

Simplification rules transform a constraints system into a
constraints system.

Lemma (Correctness)

If C  σ C ′ then if θ is a solution of C ′, σθ is also a solution of C .

Lemma (Termination)

Simplification rules always terminate: There does not exist infinite
chain C  σ1 C1  σ2 C2  σ3 . . ..

37 / 55



Security Models Lecture 4 Active Intruder

Bounded Number of Sessions

Properties

Definition (Solved Form)

A constraints system C is in solved form if C = ⊥ or if each
constraint is of the following form T  x where x is a variable
T 6= ∅.

Lemma

All constraints systems in solved form different of ⊥ has at least
one solution.

Lemma (Completeness)

If C is a constraint system not in solved form and if σ is a solution
of C then there exists θ, τ such that C  θ C

′, σ = θτ and τ is a
solution of C ′.
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Bounded Number of Sessions

Decidability

Theorem

Preservation of the secrecy for protocol with bounded number of
sessions is decidable.

• Guess an interleaving and build constraints system associated.

• Using previous lemma C has a solution iff there exists C ′ in
solved form such that C ′ 6= ⊥ and C  τ C ′

• Using termination lemma to conclude.

We also can show that the problem is in co-NP.
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Bounded Number of Sessions

Exercises

Exercise 1

A→ B : 〈A,NA〉
B → A : {〈NA,NB〉}Kab

A→ B : NB

B → A : {〈K ,NB〉}Kab

A→ B : {s}K
Intruder knows only identities of A and B.

• Use simplification rules to transform the system in solved
form.

• There exists an easy attack, can you find it ?
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Bounded Number of Sessions

Solution
T1 = {A,B, 〈A,NA〉, {〈NA,NB〉}Kab

,NB , {〈K ,NB〉}Kab
, {s}K , init, stop}

C1 T1  init
C2 T2 = T1 ∪ {〈A,NA〉}  〈XA,XNA

〉
C3 T3 = T2 ∪ {{〈XNA

,NB〉}K(XA,B)
}  {〈NA,XNB

〉}K(A,XB )

C4 T4 = T3 ∪ {XNB
}  NB

C5 T5 = T4 ∪ {{〈K ,NB〉}K(XA,B)
}  {〈XK ,XNB

〉}K(A,XB )

C6 T6 = T5 ∪ {{s}XK
}  {Xs}K

C7 T7 = T6 ∪ {stop}  s

Road book

Interleaving: (uA1 , v
A
1 )(uB1 , v

B
1 )(uA2 , v

A
2 )(uB2 , v

B
2 )(uA3 , v

A
3 )(uB3 , v

B
3 )

R2 C ∪ {T  u}  σ Cσ ∪ {Tσ  uσ} σ = mgu(t, u), t ∈ st(T ),
t, u no variables

• Apply nothing on C1, already in resolved form.

• Apply R2 on C2 give σ1 = {XNA
← NA,XA ← A} and R1 41 / 55
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Bounded Number of Sessions

Solution

T1 = {A,B, 〈A,NA〉, {〈NA,NB〉}Kab
,NB , {〈K ,NB〉}Kab

, {s}K , init, stop}

C3σ1 T3 = T2 ∪ {{〈NA,NB〉}K(A,B)
}  {〈NA,XNB

〉}K(A,XB )

C4σ1 T4 = T3 ∪ {XNB
}  NB

C5σ1 T5 = T4 ∪ {{〈K ,NB〉}K(A,B)
}  {〈XK ,XNB

〉}K(A,XB )

C6σ1 T6 = T5 ∪ {{s}XK
}  {Xs}K

C7σ1 T7 = T6 ∪ {stop}  s

Road book σ1 = {XNA
← NA,XA ← A}

• Apply R2 on C3 gives σ2 = {XNB
← NB ,XB ← B} (or NA) and R1
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Bounded Number of Sessions

Solution

T1 = {A,B, 〈A,NA〉, {〈NA,NB〉}Kab
,NB , {〈K ,NB〉}Kab

, {s}K , init, stop}

C5σ1σ2 T5 = T4 ∪ {{〈K ,NB〉}K(A,B)
}  {〈XK ,NB〉}K(A,B)

C6σ1σ2 T6 = T5 ∪ {{s}XK
}  {Xs}K

C7σ1σ2 T7 = T6 ∪ {stop}  s

Road book σ1 = {XNA
← NA,XA ← A} σ2 = {XNB

← NB ,XB ← B}
• Apply R2 on C5σ1σ2 give σ3 = {XK ← NA}
• Apply R2, on σ1σ2σ3C6 give σ4 = {XS ← s}
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Bounded Number of Sessions

Solution

1 A→ B : 〈A,NA〉
2 B → A : {〈NA,NB〉}Kab

3 A→ B : NB

4 B → A : {〈K ,NB〉}Kab

5 A→ B : {s}K

The resolution of constraint system gives the following attack:
Send 2nd message {〈NA,NB〉}Kab

instead of the 4th message
{〈K ,NB〉}Kab

. Hence A will replay {s}NA
because intruder knows

NA

44 / 55



Security Models Lecture 4 Active Intruder

Bounded Number of Sessions

Exercises

Exercise 2

A→ B : {〈A,K 〉}Kab

B → A : {s}Kab

Intruder knows only identities of A and B. Show that the secret
data s is preserved by one single session between A and B.
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Bounded Number of Sessions

Solution

A→ B : {〈A,K 〉}Kab

B → A : {s}Kab

T1 = {A,B, {〈A,K 〉}Kab
, {s}Kab

}

Constraint System

C1 T1  init
C2 T2 = T1 ∪ {{〈A,XK 〉}Kab

}  {〈A,XK 〉}Kab

C3 T3 = T2 ∪ {{s}XKab
}  {s}XKab

C4 T4 = T3 ∪ {stop}  s
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Bounded Number of Sessions

Solution

C1 T1  init
C2 T2 = T1 ∪ {{〈A,XK 〉}Kab

}  {〈A,XK 〉}Kab

C3 T3 = T2 ∪ {{s}XKab
}  {s}XKab

C4 T4 = T3 ∪ {stop}  s

T1 = {A,B, {〈A,K 〉}Kab
, {s}Kab

}

Road book

• Apply nothing or R4 or R5 and R2 on C1 give
σ0 = {XK ← K ,XKab

← Kab}
Each time you meet a solved form of the form ⊥ with R6.
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NP-Hardness for Bounded Number of Sessions

NP-hardness

Theorem

Decide if a protocol P does not preserve the secrecy of a ground
term s from an initial knowledge T1 is NP-difficult.
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NP-Hardness for Bounded Number of Sessions

Recall 3-SAT Problem

Definition

Input: set of propositional variables {x1, . . . , xn} and a conjunction
of clauses with 3 literals.

f (~x) =
∧

1≤i≤I
(x
εi,1
i ,1 ∨ x

εi,2
i ,2 ∨ x

εi,3
i ,3 )

where εi ,j ∈ {+,−} and x+ = x , x− = ¬x .
Question : Does exist a valuation V of {x1, . . . , xn}, such that
V (f (~x)) = >.

Theorem

3-SAT problem is NP-complete.
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NP-Hardness for Bounded Number of Sessions

NP-difficulty

We build a protocol such that an intruder can deduce s iff f (~x) is
satisfaisable.

g(x
εi,j
i ,j ) =

{
xi ,j if εi ,j = +
{xi ,j}K if εi ,j = −

∀1 ≤ i ≤ I : fi (~x) = 〈g(x
εi,1
i ,1 ), 〈g(x

εi,2
i ,2 ), g(x

εi,3
i ,3 )〉〉

We suppose Initial intruder knowledge is {⊥,>}.
A : 〈x1, 〈. . . , xn〉〉 → {〈f1(~x), 〈f2(~x), 〈. . . , 〈fn(~x), end〉 . . .〉〉}p

∀1 ≤ i ≤ I :
Bi : {〈〈>, 〈x , y〉〉, z〉}p → {z}p
B i : {〈〈{⊥}K , 〈x , y〉〉, z〉}p → {z}p
Ci : {〈〈x , 〈>, y〉〉, z〉}p → {z}p
C i : {〈〈x , 〈{⊥}K , y〉〉, z〉}p → {z}p
Di : {〈〈x , 〈y ,>〉〉, z〉}p → {z}p
D i : {〈〈x , 〈y , {⊥}K 〉〉, z〉}p → {z}p
E : {end}p → s
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Conclusion

Summary

Today

• Active Intruder

• Bounded Number of Sessions

• NP-Hardness

• Tools
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Conclusion

Next Time

• Playing with Tools:
• Scyther
• Avispa: OFMC, Cl-Atse, SATMC, TA4SP
• Proverif
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Conclusion

Thank you for your attention

Questions ?
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