# Security Models Lecture 1 <br> Security Notions 

Pascal Lafourcade



2020-2021

## Outline

## (1) Negligible Functions

(2) Diffie-Hellman
(3) Reduction Proof
(4) Different Adversaries
(5) Intuition of Computational Security
(6) Definitions of Computational Security
(7) Conclusion

## Negligible functions

We call a function $\mu: \mathbb{N} \rightarrow \mathbb{R}^{+}$negligible if for every positive polynomial $p$ there exists an $N$ such that for all $n>N$

$$
\mu(n)<\frac{1}{p(n)}
$$

## Properties

Let $f$ and $g$ be two negligible functions, then
(1) $f . g$ is negligible.
(2) For any $k>0, f^{k}$ is negligible.
(3) For any $\lambda, \mu$ in $\mathbb{R}, \lambda . f+\mu . g$ is negligible.

Exercise: Proofs

## Negligible Functions

Exercise: Prove or disprove:

- The function $f(n):=\left(\frac{1}{2}\right)^{n}$ is negligible.
- The function $f(n):=2^{-\sqrt{n}}$ is negligible.
- The function $f(n):=n^{-\log n}$ is negligible.


## Noticeable Functions

Instead of "there exists an $N$ such that for all $n>N$ " we will in the following often say "for all sufficiently large $n$ ".
We call a function $\nu: \mathbb{N} \rightarrow \mathbb{R}$ noticeable if there exists a positive polynomial $p$ such that for all sufficiently large $n$, we have:

$$
\nu(n)>\frac{1}{p(n)}
$$

Note: A function can be neither noticeable nor negligible.

## Exercises

Prove or disprove the following statements:
(1) If both $f, g \geq 0$ are noticeable, then $f-g$ and $f+g$ are noticeable.
(2) If both $f, g \geq 0$ are not noticeable, then $f-g$ is not noticeable.
(3) If both $f, g \geq 0$ are not noticeable, then $f+g$ is not noticeable.
(4) If $f \geq 0$ is noticeable, and $g \geq 0$ is negligible, then $f . g$ is negligible.
(5) If both $f, g>0$ are negligible, then $f / g$ is noticeable.

## Outline

## (1) Negligible Functions

(2) Diffie-Hellman
(3) Reduction Proof
(4) Different Adversaries
(3) Intuition of Computational Security
(0) Definitions of Computational Security
(7) Conclusion

## The Diffie-Hellman protocol

$g, p$ are public parameters.

- Diffie chooses $x$ and computes $g^{x} \bmod p$
- Diffie sends $g^{x} \bmod p$
- Hellman chooses $y$ and computes $g^{y} \bmod p$
- Hellman sends $g^{x} \bmod p$

Shared key: $\left(g^{x}\right)^{y}=g^{x y}=\left(g^{y}\right)^{x}$
Basic Diffie-Hellman key-exchange: initiator I and responder R exchange public "half-keys" to arrive at mutual session key $\mathrm{k}=\mathrm{g}^{\mathrm{xy}} \bmod \mathrm{p}$.

## Hard Problems

Most cryptographic constructions are based on hard problems. Their security is proved by reduction to these problems:

- RSA. Given $N=p q$ and $e \in \mathbb{Z}_{\varphi(N)}^{*}$, compute the inverse of $e$ modulo $\varphi(N)=(p-1)(q-1)$. Factorization
- Discrete Logarithm problem, DL. Given a group $\langle g\rangle$ and $g^{x}$, compute $x$.
- Computational Diffie-Hellman, CDH Given a group $\langle g\rangle, g^{x}$ and $g^{y}$, compute $g^{x y}$.
- Decisional Diffie-Hellman, DDH Given a group $\langle g\rangle$, distinguish between the distributions $\left(g^{x}, g^{y}, g^{x y}\right)$ and $\left(g^{x}, g^{y}, g^{r}\right)$.


## The Discrete Logarithm (DL)

Let $G=(\langle g\rangle, *)$ be any finite cyclic group of prime order. Idea: it is hard for any adversary to produce $x$ if he only knows $g^{x}$. For any adversary $\mathcal{A}$,

$$
\operatorname{Adv}^{D L}(\mathcal{A})=\operatorname{Pr}\left[\mathcal{A}\left(g^{x}\right) \rightarrow x \mid x, y{ }^{R}[1, q]\right]
$$

is negligible.

## Computational Diffie-Hellman (CDH)

Idea: it is hard for any adversary to produce $g^{x y}$ if he only knows $g^{x}$ and $g^{y}$.
For any adversary $\mathcal{A}$,

$$
\operatorname{Adv}^{C D H}(\mathcal{A})=\operatorname{Pr}\left[\mathcal{A}\left(g^{x}, g^{y}\right) \rightarrow g^{x y} \mid x, y \stackrel{R}{\leftarrow}[1, q]\right]
$$

is negligible.

## Decisional Diffie-Hellman (DDH)

Idea: Knowing $g^{x}$ and $g^{y}$, it should be hard for any adversary to distinguish between $g^{x y}$ and $g^{r}$ for some random value $r$.
For any adversary $\mathcal{A}$, the advantage of $\mathcal{A}$

$$
\begin{gathered}
\operatorname{Adv}^{D D H}(\mathcal{A})=\operatorname{Pr}\left[\mathcal{A}\left(g^{x}, g^{y}, g^{x y}\right) \rightarrow 1 \mid x, y \stackrel{R}{\leftarrow}[1, q]\right] \\
-\operatorname{Pr}\left[\mathcal{A}\left(g^{x}, g^{y}, g^{r}\right) \rightarrow 1 \mid x, y, r{ }^{R}[1, q]\right]
\end{gathered}
$$

is negligible.
This means that an adversary cannot extract a single bit of information on $g^{x y}$ from $g^{x}$ and $g^{y}$.

## Relation between the problems

## Prop

Solve $D L \Rightarrow$ Solve $C D H \Rightarrow$ Solve DDH. (Exercise)

Prop (Moaurer \& Wolf)
For many groups, $D L \Leftrightarrow C D H$
Prop (Joux \& Wolf)
There are groups for which DDH is easier than CDH.

## Usage of DH assumption

The Diffie-Hellman problems are widely used in cryptography:

- Public key crypto-systems [EIGamal, Cramer\& Shoup]
- Pseudo-random functions [Noar\& Reingold, Canetti]
- Pseudo-random generators [Blum\& Micali]
- (Group) key exchange protocols [many]


## Outline

(1) Negligible Functions
2. Diffie-Hellman

## (3) Reduction Proof

(4) Different Adversaries

5 Intuition of Computational Security
(6) Definitions of Computational Security
(3) Conclusion

## How to prove the security ?

## Theorem

A cryptosystem $C$ has a security property $P$ under a hypothesis $H$

$$
\begin{gathered}
H \Rightarrow C \text { has } P \\
(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A) \\
{[H \Rightarrow C \text { has } P] \Leftrightarrow[\neg(C \text { has } P) \Rightarrow \neg H]}
\end{gathered}
$$

## Proof by Reduction

(1) Assume that there exists an adversary $A$ that breaks the security property of $C$.
(2) Construct an adversary $B$ that uses $A$ to breaks the hypothesis $H$ in a polynomial time.

## Outline

## (1) Negligible Functions

2. Diffic Hellman
(3) Reduction Proof
(4) Different Adversaries
(5) Intuition of Computational Security
(6) Definitions of Computational Security
(2) Conclusion

## Which adversary?



## Adversary Model

Qualities of the adversary:

- Clever: Can perform all operations he wants
- Limited time:
- Do not consider attack in $2^{60}$.
- Otherwise a Brute force by enumeration is always possible.

Model used: Any Turing Machine.

- Represents all possible algorithms.
- Probabilistic: adversary can generates keys, random number...


## Adversary Models

The adversary is given access to oracles :
$\rightarrow$ encryption of all messages of his choice
$\rightarrow$ decryption of all messages of his choice
Three classical security levels:

- Chosen-Plain-text Attacks (CPA)
- Non adaptive Chosen-Cipher-text Attacks (CCA1) only before the challenge
- Adaptive Chosen-Cipher-text Attacks (CCA2) unlimited access to the oracle (except for the challenge)


## Chosen-Plain-text Attacks (CPA)



Adversary can obtain all cipher-texts from any plain-texts. It is always the case with a Public Encryption scheme.

## Non adaptive Chosen-Cipher-text Attacks (CCA1)



Adversary knows the public key, has access to a decryption oracle multiple times before to get the challenge (cipher-text), also called "Lunchtime Attack" introduced by M. Naor and M. Yung ([NY90]).

## Adaptive Chosen-Cipher-text Attacks (CCA2)



Adversary knows the public key, has access to a decryption oracle multiple times before and AFTER to get the challenge, but of course cannot decrypt the challenge (cipher-text) introduced by C. Rackoff and D. Simon ([RS92]).

## Summary of Adversaries

CCA2: $\mathcal{O}_{1}=\mathcal{O}_{2}=\{\mathcal{D}\}$ Adaptive Chosen Cipher text Attack

$\Downarrow$
CCA1: $\mathcal{O}_{1}=\{\mathcal{D}\}, \mathcal{O}_{2}=\emptyset$ Non-adaptive Chosen Cipher-text

$\Downarrow$
CPA: $\mathcal{O}_{1}=\mathcal{O}_{2}=\emptyset$ Chosen Plain text Attack


## Outline

## (1) Negligible Functions

(2) Diffic-Hellman
(3) Reduction Proof
(4) Different Adversaries
(5) Intuition of Computational Security
(0) Definitions of Computational Security
(7) Conclusion

## One-Wayness (OW)

Put your message in a translucid bag, but you cannot read the text.

## One-Wayness (OW)

Put your message in a translucid bag, but you cannot read the text.


Without the private key, it is computationally impossible to recover the plain-text.

Security Models Lecture 1 Security Notions
Intuition of Computational Security

## Is it secure ?



Security Models Lecture 1 Security Notions
Intuition of Computational Security

## Is it secure ?



## Is it secure ?



- you cannot read the text but you can distinguish which one has been encrypted.


## Is it secure ?



- you cannot read the text but you can distinguish which one has been encrypted.
- Does not exclude to recover half of the plain-text
- Even worse if one has already partial information of the message:
- Subject: $X X X X$
- From: XXXX


## Indistinguishability (IND)

Put your message in a black bag, you can not read anything.


Now a black bag is of course IND and it implies OW.

## Indistinguishability (IND)

Put your message in a black bag, you can not read anything.


Now a black bag is of course IND and it implies OW. The adversary is not able to guess in polynomial-time even a bit of the plain-text knowing the cipher-text, notion introduced by S. Goldwasser and S.Micali ([GM84]).

## Is it secure?



Security Models Lecture 1 Security Notions
Intuition of Computational Security

## Is it secure?



## Is it secure?



- It is possible to scramble it in order to produce a new cipher. In more you know the relation between the two plain text because you know the moves you have done.


## Non Malleability (NM)

Put your message in a black box.


But in a black box you cannot touch the cube (message), hence NM implies IND.

## Non Malleability (NM)

Put your message in a black box.


But in a black box you cannot touch the cube (message), hence NM implies IND.
The adversary should not be able to produce a new cipher-text such that the plain-texts are meaningfully related, notion introduced by D. Dolev, C. Dwork and M. Naor in 1991 ([DDN91,BDPR98,BS99]).

## Summary of Security Notions



## Outline

(1) Negligible Functions
2. Diffie-Hellman
(3) Reduction Proof
(4) Different Adversaries
(3) Intuition of Computational Security
(6) Definitions of Computational Security
(3) Conclusion

## Asymmetric Encryption

An asymmetric encryption scheme $\mathcal{S}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

- K : key generation
- $\mathcal{E}$ : encryption
- $\mathcal{D}$ : decryption

$$
\begin{gathered}
\mathcal{K}(\eta)=\left(k_{e}, k_{d}\right) \\
\mathcal{E}_{k e}(m, r)=c \\
\mathcal{D}\left(c, k_{d}\right)=m
\end{gathered}
$$

## One-Wayness (OW)

Adversary $\mathcal{A}$ : any polynomial time Turing Machine (PPTM)
Basic security notion: One-Wayness (OW)


Without the private key, it is computationally impossible to recover the plain text:

$$
\operatorname{Pr}_{m, r}[\mathcal{A}(c)=m \mid c=E(m, r)]
$$

is negligible.

## Indistinguishability (IND)

Game Adversary: $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$
(1) The adversary $\mathcal{A}_{1}$ is given the public key pk.
(2) The adversary $\mathcal{A}_{1}$ chooses two messages $m_{0}, m_{1}$.
(3) $b=0,1$ is chosen at random and $c=E\left(m_{b}\right)$ is given to the adversary.
(4) The adversary $\mathcal{A}_{2}$ answers $b^{\prime}$.

The probability $\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}$ should be negligible.

## The IND-CPA Games

Given an encryption scheme $\mathcal{S}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$. An adversary is a pair $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ of polynomial-time probabilistic algorithms, $b \in\{0,1\}$.
Let $\operatorname{IND}_{C P A}^{b}(\mathcal{A})$ be the following algorithm:

- Generate $(p k, s k) \stackrel{R}{\leftarrow} \mathcal{K}(\eta)$.
- $\left(s, m_{0}, m_{1}\right) \stackrel{R}{\leftarrow} \mathcal{A}_{1}(\eta, p k)$
- Sample $b \underset{\leftarrow}{\leftarrow}\{0,1\}$.
- $b^{\prime} \stackrel{R}{\leftarrow} \mathcal{A}_{2}\left(\eta, p k, s, \mathcal{E}\left(p k, m_{b}\right)\right)$
- return $b^{\prime}$.

Then, we define the advantage against the IND-CPA game by:

$$
\begin{gathered}
\operatorname{ADV}_{\mathcal{S}, \mathcal{A}}^{\mathrm{IND} C P A}(\eta)= \\
\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{IND}_{C P A}^{1}(\mathcal{A}): b^{\prime}=1\right]-\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{IND}_{C P A}^{0}(\mathcal{A}): b^{\prime}=1\right]
\end{gathered}
$$

## The IND-CCA1 Games

Given an encryption scheme $\mathcal{S}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$. An adversary is a pair $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ of polynomial-time probabilistic algorithms,
$b \in\{0,1\}$.
Let $\operatorname{IND}_{C C A 1}^{b}(\mathcal{A})$ be the following algorithm:

- Generate $(p k, s k) \stackrel{R}{\leftarrow} \mathcal{K}(\eta)$.
- $\left(s, m_{0}, m_{1}\right) \stackrel{R}{\leftarrow} \mathcal{A}_{1}^{\mathcal{O}_{1}}(\eta, p k)$ where $\mathcal{O}_{1}=\mathcal{D}$
- Sample $b \underset{\leftarrow}{\leftarrow}\{0,1\}$.
- $b^{\prime} \stackrel{R}{\leftarrow} \mathcal{A}_{2}\left(\eta, p k, s, \mathcal{E}\left(p k, m_{b}\right)\right)$
- return $b^{\prime}$.

Then, we define the advantage against the IND-CCA1 game by:

$$
\begin{gathered}
\operatorname{ADV}_{\mathcal{S}, \mathcal{A}}^{\operatorname{IND} C A 1}(\eta)= \\
\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{IND}_{C C A 1}^{1}(\mathcal{A}): b^{\prime}=1\right]-\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{IND}_{C C A 1}^{0}(\mathcal{A}): b^{\prime}=1\right] \quad 37 / 47
\end{gathered}
$$

## The IND-CCA2 Games

Given an encryption scheme $\mathcal{S}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$. An adversary is a pair $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ of polynomial-time probabilistic algorithms, $b \in\{0,1\}$.
Let $\operatorname{IND}_{C C A 2}^{b}(\mathcal{A})$ be the following algorithm:

- Generate $(p k, s k) \stackrel{R}{\leftarrow} \mathcal{K}(\eta)$.
- $\left(s, m_{0}, m_{1}\right) \stackrel{R}{\leftarrow} \mathcal{A}_{1}^{\mathcal{O}_{1}}(\eta, p k)$ where $\mathcal{O}_{1}=\mathcal{D}$
- Sample $b \underset{\leftarrow}{\leftarrow}\{0,1\}$.
- $b^{\prime} \stackrel{R}{\leftarrow} \mathcal{A}_{2}^{\mathcal{O}_{2}}\left(\eta, p k, s, \mathcal{E}\left(p k, m_{b}\right)\right)$ where $\mathcal{O}_{2}=\mathcal{D}$
- return $b^{\prime}$.

Then, we define the advantage against the IND-CCA2 game by:

$$
\begin{gathered}
\operatorname{ADV}_{\mathcal{S}, \mathcal{A}}^{\operatorname{IND} \operatorname{CA2}}(\eta)= \\
\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{IND}_{C C A 2}^{1}(\mathcal{A}): b^{\prime}=1\right]-\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{IND}_{C C A 2}^{0}(\mathcal{A}): b^{\prime}=1\right]
\end{gathered}
$$

## Summary

Given $\mathcal{S}=(\mathcal{K}, \mathcal{E}, \mathcal{D}), \mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right), \operatorname{Ind}_{\text {XXX }}^{b}(\mathcal{A})$ follows:

- Generate $(p k, s k) \stackrel{R}{\leftarrow} \mathcal{K}(\eta)$.
- $\left(s, m_{0}, m_{1}\right) \stackrel{R}{\leftarrow} \mathcal{A}_{1}^{\mathcal{O}_{1}}(\eta, p k)$
- Sample $b \underset{\leftarrow}{R}\{0,1\}$.
- $b^{\prime} \stackrel{R}{\leftarrow} \mathcal{A}_{2}^{\mathcal{O}_{2}}\left(\eta, p k, s, \mathcal{E}\left(p k, m_{b}\right)\right)$
- return $b^{\prime}$.
$\operatorname{ADv}_{\mathcal{S}, \mathcal{A}}^{\mathrm{IND} x x}(\eta)=$

$$
\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{InD}_{X X X}^{1}(\mathcal{A}): b^{\prime}=1\right]-\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{InD}_{X X X}^{0}(\mathcal{A}): b^{\prime}=1\right]
$$



IND-CPA: $\mathcal{O}_{1}=\mathcal{O}_{2}=\emptyset$ Chosen Plain text Attack
IND-CCA1: $\mathcal{O}_{1}=\{\mathcal{D}\}, \mathcal{O}_{2}=\emptyset$ Non-adaptive Chosen Cipher text Attack
IND-CCA2: $\mathcal{O}_{1}=\mathcal{O}_{2}=\{\mathcal{D}\}$ Adaptive Chosen Cipher text Attack.

## IND-XXX Security



## Definition

An encryption scheme is IND-XXX secure, if for any adversary $\mathcal{A}$ the function $\operatorname{ADv}_{\mathcal{S}, \mathcal{A}}^{I N D-X X X}$ is negligible.

## Exercise

Prove that

$$
\begin{aligned}
\operatorname{ADv}_{\mathcal{S}, \mathcal{A}}^{\operatorname{Indxx}}(\eta) & =\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{InD}^{1}(\mathcal{A}): b^{\prime}=1\right] \\
& -\operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{InD}^{0}(\mathcal{A}): b^{\prime}=1\right] \\
& =2 \operatorname{Pr}\left[b^{\prime} \stackrel{R}{\leftarrow} \operatorname{InD}^{b}(\mathcal{A}): b^{\prime}=b\right]-1
\end{aligned}
$$

## Definition of Non Malleability

Game Adversary: $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$
(1) The adversary $\mathcal{A}_{1}$ is given the public key pk.
(2) The adversary $\mathcal{A}_{1}$ chooses a message space $M$.
(3) Two messages $m$ and $m^{*}$ are chosen at random in $M$ and $c=E(m ; r)$ is given to the adversary.
(4) The adversary $\mathcal{A}_{2}$ outputs a binary relation $R$ and a cipher-text $c^{\prime}$.
Probability $\operatorname{Pr}\left[R\left(m, m^{\prime}\right)\right]-\operatorname{Pr}\left[R\left(m, m^{*}\right)\right]$ is negligible, where $m^{\prime}=\mathcal{D}\left(c^{\prime}\right)$

## Non-Malleability - XXX



- Let $\mathcal{P E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ and $A=\left(A_{1}, A_{2}\right)$.
- For $b \in\{0,1\}$ we define the experiment $\operatorname{Exp}_{\mathcal{P} \mathcal{E}, A}^{a t-b}(k)$ : $(p k, s k) \leftarrow \mathcal{K}(k) ;(M, s) \leftarrow A_{1}^{O_{1}(.)}(p k) ; x_{0}, x_{1} \leftarrow M$ $y \leftarrow \mathcal{E}_{p k}\left(x_{b}\right) ;(\mathcal{R}, \vec{y}) \leftarrow A_{2}^{O_{2}(.)}(M, s, y) ; \vec{x} \leftarrow \mathcal{D}_{p k}(\vec{y}) ;$ If $y \notin \vec{y} \wedge \perp \notin \vec{x} \wedge \mathcal{R}\left(x_{b}, \vec{x}\right)$ then $d \leftarrow 1$ else $d \leftarrow 0$ Return $d$
- For atk $\in\{c p a, c c a 1, c c a 2\}$ and $k \in \mathbb{N}$, the advantage $\operatorname{Adv}_{\mathcal{P} \mathcal{E}, A}^{\text {atk }}(k)=\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{P} \mathcal{E}, A}^{a t k-1}(k)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{P} \mathcal{E}, A}^{a t k-0}(k)=1\right]$
has to be negligible for $\mathcal{P E}$ to be considered secure, assuming $A, M$ and $\mathcal{R}$ can be computed in time $p(k)$.


## Relations


"Relations Among Notions of Security for Public-Key Encryption Schemes", Crypto’98, by Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway [BDPR'98]

## Relations


"Relations Among Notions of Security for Public-Key Encryption Schemes", Crypto'98, by Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway [BDPR'98]

## Example: RSA

| public | private |
| :---: | :---: |
| $n=p q$ | $d=e^{-1} \bmod \phi(n)$ |
| $e($ public key $)$ | (private key) |

RSA Encryption

- $E(m)=m^{e} \bmod n$
- $D(c)=c^{d} \bmod n$

$$
\mathrm{OW}-\mathrm{CPA}=\mathrm{RSA} \text { problem } \quad \text { by definition }!
$$

But not semantically secure because it is deterministic.

## Conclusion

## Outline

(1) Negligible Functions
2. Diffie-Hellman
(3) Reduction Proof
(4) Different Adversaries
(3) Intuition of Computational Security
(0) Definitions of Computational Security
(7) Conclusion

## Today

(1) DH
(2) OW \& IND \& NM
(3) CPA \& CCA1 \& CCA2
(4) Reduction technique

# Thank you for your attention. 

## Questions ?

