
Physical Zero-Knowledge Proof and
NP-completeness Proof of Suguru Puzzle⋆

Léo Roberta,∗, Daiki Miyaharab,d,∗, Pascal Lafourcadea,∗, Luc Libralessoa,
Takaaki Mizukic,d,∗

aUniversity Clermont Auvergne, LIMOS, CNRS UMR 6158, Aubière France
bThe University of Electro-Communications, Tokyo, Japan
cCyberscience Center, Tohoku University, Sendai, Japan

dNational Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Abstract

Suguru is a paper and pencil puzzle invented by Naoki Inaba. The goal of

the game is to fill a grid with numbers between 1 and 5 while respecting three

simple constraints. We first prove the NP-completeness of Suguru puzzle. For

this we design gadgets to encode the PLANAR-CIRCUIT-SAT in a Suguru grid.

We then design a physical Zero-Knowledge Proof (ZKP) protocol for Suguru.

This ZKP protocol allows a prover to prove that he knows a solution of a

Suguru grid to a verifier without leaking any information on the solution. To

construct such a physical ZKP protocol, we only rely on a few physical cards

and adapted encoding. For a Suguru grid with n cells, we only use 5n + 5

cards. Moreover, we prove the three classical security properties of a ZKP:

completeness, extractability, and zero-knowledge.

Keywords: Physical zero-knowledge proof, Suguru, Security, Completeness,

Extractability, Zero-knowledge

⋆This article is an extended version of the paper published at SSS 2020 [29].
∗Corresponding authors
Email addresses: leo.robert@uca.fr (Léo Robert), miyahara@uec.ac.jp

(Daiki Miyahara), pascal.lafourcade@uca.fr (Pascal Lafourcade), luc.libralesso@uca.fr
(Luc Libralesso), mizuki+tcs@tohoku.ac.jp (Takaaki Mizuki)

Preprint submitted to Information and Computation December 3, 2021



1. Introduction

Zero-Knowledge Proofs (ZKP) were introduced in 1985 by Goldwasser et

al. [10]. Two parties are involved in such a ZKP protocol: a prover P and a

verifier V . At the end of the protocol, the verifier V is convinced that P knows

the solution s to the instance I of a problem P, without revealing any infor-5

mation about s. A zero-knowledge proof prevents the verifier from gaining any

knowledge on the solution other than its correctness. When both randomization

and interaction are allowed, the proofs that can be verified in polynomial time

are exactly those that can be generated within polynomial space [34].

Formally, for a solution s to any instance I of a problem P , a convincing10

interactive zero-knowledge protocol between P and V must satisfy the following

three properties1:

Completeness: If P knows s, then he is able to convince V .

Extractability2: If P does not know s, then he is not able to convince V except

with a small probability. More precisely, we want a negligible probability, i.e.,15

the probability should be a function f of a security parameter λ (for example

the number of repetitions of the protocol) such that f is negligible, that is for

every polynomial Q, there exists n0 > 0 such that:

∀ x > n0, f(x) <
1

Q(x)
.

Zero-knowledge: V learns nothing about s except I, i.e., there exists a prob-

abilistic polynomial time algorithm Sim(I) (called the simulator) such that the20

outputs of the real protocol and those of Sim(I) follow the same probability

distribution.

There exist two kinds of ZKP: interactive and non-interactive. In an in-

1Moreover, if P is NP-complete, then the ZKP should be run in polynomial time [8].
Otherwise, it might be easier to find a solution than proving that a solution is correct, making
the proof pointless.

2This implies the standard soundness property, which ensures that if there exists no solution
of the puzzle, then the prover is not able to convince the verifier with a small probability.

2



teractive ZKP, the prover can exchange messages with the verifier to convince25

him, while in the non-interactive case, the prover can only create the proof to

convince the verifier.

ZKPs are usually executed by computers. They are often used in electronic

voting to prove that some parties correctly mix some ballots without cheating,

or in multi-party computation [5, 6, 30]. Moreover, there exist generic crypto-30

graphic zero-knowledge proofs for all problems in NP [9], via a reduction to an

NP-complete problem with a known zero-knowledge proof.

In [28], the authors simply explained this concept to some children using a

circular cave. This was the first proposition of a physical ZKP. Later, Gradwohl

et al. [11] proposed a ZKP for the famous Nikoli’s puzzle known as Sudoku3.35

They used some physical cards to construct a ZKP protocol. It was one of the

first interactive physical ZKP protocols for such puzzles. We aim to design a

ZKP protocol for Suguru puzzles in the same way as the one done for Sudoku.

Suguru was designed by Naoki Inaba4, the original name of the game was

Nanba Burokku, but it is also known as Tectonics or Number Blocks. Suguru is40

a paper and pencil puzzle in which a grid is divided into outlined blocks called

regions. Each region contains up to five cells. Every cell of the grid must contain

a number from 1 to k (where k ≤ 5 is the number of cells in the region). Each

cell should be filled such that no two identical numbers coincide — not even

diagonally.45

Suguru’s rule. This puzzle consists of a rectangular grid where blocks divide

the overall area. These blocks called regions contain up to five cells. The goal

is to fill all the cells with integers under the following constraints:

• Number region rule: A region composed of k cells must be filled with

integers 1, . . . , k.50

3https://www.nikoli.co.jp/en/puzzles/sudoku.html
4His website introduces many pencil puzzles (including Suguru) of his own making in

Japanese: http://www.inabapuzzle.com/.

3

https://www.nikoli.co.jp/en/puzzles/sudoku.html
http://www.inabapuzzle.com/


2

4

3

4

3

5

Figure 1: Initial Suguru grid

• Neighbor rule: For every cell, all of its eight neighbors must have dif-

ferent values from the cell’s value.

In Figure 1, we give an example of an initial Suguru grid and in Figure 2,

we give its unique solution.

Contributions. We study the computational complexity of Suguru and prove55

that Suguru is NP-complete. We propose a polynomial construction that allows

us to encode the PLANAR-CIRCUIT-SAT problem that is a well-known NP-

complete problem in the literature. For this we design logical gadgets for TRUE,

FALSE, and also for the logical gates NOT, AND, and OR in rectangular Suguru

grids of size 11 × 5. We also design compatible connectors to plug all these60

gadgets together. Hence we are able to encode any PLANAR-CIRCUIT-SAT

problem in polynomial time in a Suguru grid, which prove that Suguru is NP-

complete.

We also propose a simple ZKP protocol for Suguru using a small number of

cards. Our construction is simple and can be used as a pedagogical example65

to explain the role of ZKP protocols. We propose an encoding of the number

using simple cards. Using this encoding, the prover places some cards on the

grid according to the solution. We use these cards to prove that the two rules of

4



2

4

3

4

3

54 1 1

2 4 2

5 1 1

2 5 2

1 3 1 3

5 2

Figure 2: Solution of the Suguru grid of Figure 1

Suguru are satisfied. We start with the first number of a cell in a region; after

verifying the validity of all regions and replacing the cards placed by the prover,70

we reuse them to prove the second rule of Suguru on the eight neighbors of each

cell of the grid. Here is the difficulty of Suguru, because we need to prove that

all values of the eight neighbors of each cell are different without revealing any

information to the verifier. Here, we use a trick in our encoding of the values of

the cards to avoid leaking any information. Our encoding requires five cards per75

cell; therefore, if a Suguru grid has n cells to guess, our protocol only requires

5n+5 cards. Finally, we prove the three security properties of our construction

i.e., completeness, extractability, and zero-knowledge.

Related work. In [33], the authors proposed an improved ZKP protocol for Su-

doku that follows the pioneer work of [11]. In [7], the authors proposed a ZKP80

protocol for Nikoli’s puzzle, Norinori.

In [15], a method to consider one feature of several puzzles that consists of

constructing a single loop, was established. This technique used a topological

approach with successive interactive transformations.

Recently several physical ZKP proofs have been proposed for different Nikoli’s85

puzzles. In [21], card-based ZKP protocols for Takuzu and Juosan were pro-

5



posed. In [31], a physical ZKP proof for Numberlink was designed. In [32], a

ZKP protocol for Ripple Effect was designed. In [22], a card-based physical ZKP

for Kakuro was established, improving the first version proposed by Bultel et

al. in [3] with the ZKP protocols for three other Nikoli’s games: Akari, Takuzu,90

and Kenken.

All these works clearly demonstrate that designing physical ZKP is an in-

teresting research topic. Each game has its own rules and requires an adapted

construction.

Despite the existence of all those previous works, one cannot reuse or directly95

adapt them for the Suguru game. The main reason is the “strong” neighbor

rule where no cell can have eight neighbors with the same value. Other puzzles

have a similar rule but with relaxed restrictions. For instance, Makaro5 has

a neighbor rule but only for adjacent cells (and not in diagonal). Thus, a

naive adaptation would imply a loss in terms of efficiency and zero-knowledge100

(no information about the solution can be leaked). Furthermore, it is worth

noting that the encoding for the proof of NP-completeness of Makaro cannot

be applied for Suguru. It is not easy to fulfill empty spaces between gadgets

in Suguru because the number of possible values in the room is limited to 5 in

Suguru while it is unlimited in Makaro. Moreover in Suguru, the neighbor rule105

with eight neigbors contraints more the construction for the empty parts of the

grid and also connections between gadgets which make the task more tricky.

Many studies on secure computations with physical objects have been con-

ducted. Using a deck of cards, we are able to solve Yao’s millionaires’ prob-

lem [20, 24, 25, 36] and efficiently compute any logical function [26, 27, 35].110

Using PEZ dispensers, one can achieve secure multiparty computation [1, 2, 23].

This paper is an extended version of the SSS 2020 conference paper [29]; we

mainly add the NP-completeness proof of Suguru, which solves an open question

raised in the SSS 2020 paper.

5Makaro was proven to be NP-complete in [14].

6



Outline. In Section 2, we begin by a proof of NP-completeness of Suguru. In115

Section 3, we present our notations, and all sub-protocols needed to construct

our ZKP. In Section 4, we design our ZKP protocol for Suguru. In Section 5, we

prove the security of our protocol. In the last section, we conclude the paper.

2. Suguru is NP-complete

We present an NP-completeness proof for Suguru. The proof can be roughly120

summarized as follows: We reduce any PLANAR-CIRCUIT-SAT problem to

solve a Suguru puzzle instance.

PLANAR-CIRCUIT-SAT is an extension of the satisfiability problem in

which a formula can be represented by a circuit that is planar, meaning that

the circuit can be embedded in the plane, i.e., it can be drawn on the plane in125

such a way that its wires do not intersect and are only connected to the logical

gates. It is a standard lecture notes question6 to prove that this problem is

NP-complete using the result that PLANAR-SAT is NP-complete [16]. More-

over, using PLANAR-CIRCUIT-SAT problem for proving NP-completeness is

often used in pen and pencil 2D puzzles. In the original version of PLANAR-130

CIRCUIT-SAT, the proof is done only with NAND operator, denoted by ⊼.

Since NAND is the inverse of an AND, it can be defined as follows: (x ∧ y).

Notice that with only NAND it is possible to derivate all the other operators as

follows:

• x = x ⊼ x135

• x ∧ y = (x ⊼ y) ⊼ (x ⊼ y)

• x ∨ y = (x ⊼ x) ⊼ (y ⊼ y)

In our proof, we have designed gadgets for OR, AND, and NOT which are

more than enough to use the PLANAR-CIRCUIT-SAT NP-completeness result.

6The reader can find the proof in Erik Demaine’s lecture notes http://courses.csail.mit.
edu/6.892/spring19/scribe/lec6.pdf or in Luca Trevisan’s lecture notes https://theory.

stanford.edu/~trevisan/cs170/notes/lecture22.pdf

7

http://courses.csail.mit.edu/6.892/spring19/scribe/lec6.pdf
http://courses.csail.mit.edu/6.892/spring19/scribe/lec6.pdf
https://theory.stanford.edu/~trevisan/cs170/notes/lecture22.pdf
https://theory.stanford.edu/~trevisan/cs170/notes/lecture22.pdf


Running example. We use the following formula as our running example:140

(x1 ∨ x2) ∧ x1.

This simple formula is composed of two clauses and contains two variables x1

and x2, OR, AND and NOT operators, respectively denoted in logics by ∨, ∧,

and . Moreover, x1 appears in both clauses. This formula can be represented

by the plannar circuit given in Figure 3 where standard representation of OR,

AND, and NOT gates are used.145

x2

x1

Figure 3: Circuit of our running example (x1 ∨ x2) ∧ x1.

The idea of our proof works as follows. We construct gadgets in Suguru,

i.e., we first define a set of TRUE, FALSE (Section 2.1), then AND, OR, NOT,

SPLIT gadgets (Section 2.2), the connectors/isolators to perform the wiring

(Section 2.3), and finally the procedure to build the full Suguru instance that

encodes any PLANAR-CIRCUIT-SAT formula (Section 2.4).150

2.1. Modeling TRUE and FALSE

We first need to define a representation of TRUE and FALSE in a Suguru

grid. We use the representation given in Figure 4 for TRUE and in Figure 5 for

FALSE.

21 12

1

2

2

1

Figure 4: TRUE gadgets.

The shape of TRUE and FALSE is minimalist and uses only a room of size155

two. It is crucial, and it determines the design of all the other gadgets. It is

8



21 12

1

2

2

1

Figure 5: FALSE gadgets.

important to notice that the semantics depends on the direction of reading of

the circuit. It is why we add external arrows to help the reader to understand

our gadgets in the paper. Of course these arrows are not part of our modeling.

As we can see in Figures 4 and 5, TRUE encounters first 1 then 2 while FALSE160

meets first 2 and then 1.

2.2. Gadgets for logical gates: NOT, AND, OR, and SPLIT

We give logical gadgets for the following logical gates: NOT, AND, OR, and

SPLIT. All these gadgets are small Suguru grids of 5 lines and 11 columns. In

order to help the reader to understand our gadgets, we add arrows to indicate165

the sense of TRUE and FALSE gadgets for the inputs. We do not add the arrow

for the output, since it is clear enough with the coloring of the cells, due to the

shape of our gadgets.

We start with the NOT that is the only one to have only one input and one

output.170

NOT gadget. In Figure 6, we present our NOT gadget.

3 3

4 3 5 4 5 4 5 4 5 3 4

3 3

4 3 4 5 4 5 4 5 4 3 4

3 3 3

Figure 6: NOT gadget.

The input is represented by red cells, the output is represented by blue cells.

Red and blue cells only take 1 or 2 depending on the current value (TRUE or

9



FALSE) of the adjacent gadget of the input. In order to help the reader to

understand our gadget, we paint in green cells that should contain 1 or 2 (called175

1-2 cells in the rest of the paper) in our gadgets and that depend on the input.

We also paint in yellow the 1-2 cells that are independent of the red and green

1-2 cells.

It is easy to observe that if TRUE is the value of the adjacent gadget of

the red cell then 1 is the value in the leftmost red input cell, then the output180

value of the NOT operator is 1 in the rightmost blue cell, which implies that

the output is the inverse of the input; thus, the operator produces a FALSE.

Similarly, if FALSE is the value of the adjacent gadget then 2 is the value of the

leftmost input cell of the NOT operator, then its output in blue is the inverse

of the input, which implies that the output is TRUE.185

By inverting blue and red cells, we obtain a NOT gadget in the opposite

direction (right to left).

OR gadget. In Figure 7, we present the OR gadget that takes two input roomss

in red and outputs the result in the blue room.

3 3 3

4 3 4 5 4 5 3 4

1 2 1 2 3 3 2 1 2 1

4 3 4 5 4 4 5 4 3 4

3 3

Figure 7: OR gadget

The positions of 1, 2, 3, 4, and 5 in the two white rooms of size 5 are crucial190

that are adjacent to the white room in the middle that forms a cross. We now

prove that our OR gadget serves a logical OR.

• If the adjacent gadget of each of the two inputs is FALSE, i.e., the two red

rooms contain 2 and 1 (in this order), then two green cells adjacent to the

10



cross room contain 1. This implies that the bottom of the cross contains195

1, and that the output blue two cells become 2 and 1, which means a

FALSE value.

• If one of the adjacent gadgets of the two inputs is TRUE, i.e., one of the

red rooms starts with 1, then at least one of the two green cells adjacent

to the cross room contains 2. This implies that the 2 in the cross is in the200

bottom cell. This forces the output cells in blue to contain 1 and 2 (in

this order) which means a TRUE value.

AND gadget. In Figure 8, we present the AND gadget. The only difference

from the OR is that we swap 1 and 2 in the two white cells of size 5 adjacent

to the cross, implying the need to swap to the 1 and 2 in the two adjacent cells205

of size 4. We emphasize on the difference by writing in red the values of the

modified cells.

3 3 3

4 3 4 5 4 5 3 4

2 1 2 1 3 3 1 2 1 2

4 3 4 5 4 4 5 4 3 4

3 3

Figure 8: AND gadget

Our AND gadget works similarly to the OR gadget; here, the positions of

the 1 close to the cross are crucial. We now prove that our AND gadget serves

a logical AND.210

• In the case where the two inputs are TRUE, the two green cells adjacent

to the cross on the first line contain 2. This implies that the 2 is in the

bottom cell of the cross, the output cells in blue read 1 and 2, which is

the TRUE value.

11



• If at least one of the inputs of the AND gadget is a FALSE, i.e., a red215

room starts with 2, then the 1 is in the bottom cell of the cross room;

thus, the bottom-most output cell in blue contains 1, which is the FALSE

value.

SPLIT Gadget. The last gadget required to design is a SPLIT gadget. This

gadget is 22× 5 cells as presented in Figure 9.220

3 3 3 3 3

4 3 4 5 4 5 4 5 4 3 4 3 5 4 5 4 5 4 5 4 3

3 3 3 3

4 3 4 5 4 4 5 4 3 4 5 3 4 5 4 5 4 5 4 5 3

3 3 3 3 3

Figure 9: SPLIT gadget.

Our SPLIT gadget allows us to connect different elements. One can observe

that it propagates its input (red room) to its outputs (blue rooms) of the same

value (TRUE or FALSE). Notice that all the blue cells contain 1 or 2. We also

emphasize that it can be use in any direction, since it just splits and propagates

similar values on all directions.225

To propagate the circuit above, we need to use a vertical propagator as we

will define in Section 2.3.

An important remark is that NOT, OR, AND, and SPLIT gadgets have

almost the same borders:

• the top and bottom lines contain only 1, 2 or 3 values;230

• the leftmost and rightmost columns alternate 1 or 2 values and 4 value.

This structure in our gadgets helps us to design our connectors.

We also need to definie a SPLIT STOP gadet given in Figure 10 that allows

us to propagate the circuit only to the top or bottom but stop the propagation

on the right side. We put in red the 3 that has been moved to one cell to the235

right.

12



3 3 3 3 3

4 3 4 5 4 5 4 5 4 3 4 3 5 4 5 4 5 4 5 4 3

3 3 3 3

4 3 4 5 4 4 5 4 3 4 5 3 4 5 4 5 4 5 4 5 3

3 3 3 3 3

Figure 10: SPLIT STOP gadget.

2.3. Connecting and isolating “logic” components

We have introduced our “logical” gadgets. However, they cannot be di-

rectly connected. Thus, we introduce in this subsection horizontal and verti-

cal connectors and isolators in order to plug all logical gadgets to construct a240

PLANAR-CIRCUIT-SAT formula.

More precisely, our idea is to construct a Suguru grid where there is an

alternation between “logical” and “connection/isolation” layers, both vertically

and horizontally.

We first present the horizontal isolator and the horizontal connector, before245

introducing the vertical isolator and the vertical connector.

Horizontal isolator. The horizontal isolator is described in Figure 11.

3

3 4 3 4 5 4 5 4 3 4 3

3

3 4 3 4 3 4 5 4 5 4 3

3

Figure 11: Horizontal isolator

The inputs on the left or right side are isolated thanks to the 3 in the middle

of the first line and the line of 3, 4 and 5 below. The goal of this isolator gadget

is not to propagate the 1 and 2 values.250

13



Horizontal connector. Figure 12 presents our horizontal connector. In this fig-

ure, we present the case where the input is on the left side and the output is on

the right side. To obtain a connector that works in the opposite direction, it is

enough to swap the red and blue cells.

3

3 4 3 4 5 4 5 4 3 4 3

3

3 4 3 4 3 4 5 4 5 4 3

3

Figure 12: Horizontal connector

This connector allows values to propagate on the first row (in green), but not255

on the third and fifth rows (in yellow). Moreover, as all the logical gadgets have

a 4 in their second and fourth rows, they are compatible with the horizontal

connector (which has a 3 in its second and fourth rows). Besides, the horizontal

yellow lines of this connector are disconnected, due to the vertical sequence of

5, 3, 5, 3; hence, they are compatible with any values 1 and 2. The horizontal260

connector has the same dimension as the logical gadgets (11× 5).

Vertical isolator. The vertical isolator is presented in Figure 13.

This behaves as the vertical connector except on the sixth column that does

not expose a vertical logical gadget. As for the vertical connector, it is compat-

ible horizontally with the vertical connectors/isolators, and is vertically com-265

patible with the logical gadgets and horizontal connectors.

Vertical connector. The vertical connector is presented in Figure 14.

It is vertically surrounded by 4s and 5s, making the first line and the last line

compatible with our logical gadgets and horizontal connectors/isolators except

at one position (sixth column). This trick allows us to connect the 1 and 2270

between vertical layers. Notice that its size is (22× 10), which is twice as large

14



5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
3 3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5
3 3 3 3 3 3 3 3 3 3 3
5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

Figure 13: Vertical isolator

5 4 5 4 5 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

3 3 3 4 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5

3 3 3 4 3 3 3 3 3 3 3 3

5 4 5 4 5 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

Figure 14: Vertical connector

as the logical gadgets or horizontal connectors/isolators. Moreover, the vertical

connector can be repeated as its left side has 5s in the first and 10th row, and 3s,

4s and 5s in the other rows while its right side has 4s in the first and 10th row

and 1s and 2s in the other rows. By abuse of notations, we use the same colors275

(red, green and blue) to indicate clearly how this vertical connector works.

2.4. Building the complete Suguru instance

Having defined the logical gates (Section 2.2) and the connectors/isolators

to build the wiring (Section 2.3), we are now able to build the complete Suguru

instance.280

We define a coarser grain grid, in which we alternate between a “logic

15



gadget” and a “connector/isolator gadget”. In other words, the first row of

gadgets is composed of an alternation of “logic gadgets” and “horizontal con-

nector/isolator gadgets”. The second row of gadgets is composed of “vertical

connector/isolators”. The third row is composed of an alternation of “logic285

gadgets” and “horizontal connector/isolator gadgets”, and so on. This allows

to make sure that every gadget is compatible with its neighbors.

We fill each eventual gap using the SPLIT gadgets surrounded by the vertical

isolators.

Let X be the maximum number of logical gadgets in a row of the planar290

circuit layout and Y be the maximum number of logical gadgets in a column of

the planar circuit. The generated Suguru grid would have X × (11 + 11) rows

and Y × (5 + 10)− 10 columns, which are polynomial in the size of the input.

We need to use the SPLIT gadget if one variable appears serveral times in a

formula, because we need to propagate its values into all the operators that are295

using it. Since we use PLANAR-CIRCUIT-SAT, we are sure that we can always

represent any formula into a Suguru grid with our gadgets. The transformation

is clearly polynomial in the size of the circuit.

Encoding the running example. Using a planar embedding of our running ex-

ample ((x1∨x2)∧x1) given in Figure 3, we can position the logical gadgets and300

the connectors as follows by following the lines of the circuit:

x1 SPLIT → → NOT → → OR x2

↓ ↓

SPLIT → → AND ← ← SPLIT

↓

In a similar way to the existing NP-completeness proofs for other puzzles,

e.g., [12, 17, 18, 19], when the cirucuit line is split, we use a SPLIT gadget and

use the corresponding logical gadget and connector to obtain the corresponding305

Suguru grid.

The result is given in Figure 15.

16



3
3

3
3

3
3

3
3

3
3

3
3

4
3
4
5
4

5
4
5
4
3
4
3
5
4
5
4
5
4
5
4
3
4
3
5
4
5
4
5
4
5
3
4
3
4
3
4
5
4
5
4
3
4
3
4
3
4
5

4
5
3
4
3
4
3
4
5
4
5
4
3
4
3

3
3

3
3

3
3

3
1
2
1
2
3

3
2
1
2
1

3
4
3
4
5
4

4
5
4
3
4
5
3
4
5
4
5
4
5
4
5
3
4
3
4
5
4
5
4
5
4
3
4
3
4
3
4
3
4
5
4
5
4
3
4
3
4
5
4

4
5
4
3
4
3
4
3
4
3
4
5
4
5
4
3

3
3

3
3

3
3

3
3

3
3

3
3

5
4
5
4
5

5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5

5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4

3
3

3
4
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
4
3

3
3

3
3

3
3

3
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
3

3
3
4
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
4
3

3
3

3
3

3
3

3
5
4
5
4
5

5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4
5

5
4
5
4
5
4
5
4
5
4
5
4
5
4
5
4

3
3

3
3

3
3

3
3

3
3

3
3

3
3

4
3
4
5
4

5
4
5
4
3
4
3
5
4
5
4
5
4
5
4
3
4
3
4
5

4
5
3
4
3
4
3
4
5
4
5
4
3
4
3
4
3
4
5
4

5
4
5
4
3
4
3
5
4
5
4
5
4
5
4
3

3
3

3
3

2
1
2
1
3

3
1
2
1
2

3
3

3
3

3
4
3
4
5
4

4
5
4
3
4
5
3
4
5
4
5
4
5
4
5
3
4
3
4
5
4
2
4
5
4
3
4
3
4
3
4
3
4
5
4
5
4
3
4
3
4
5
4

4
5
4
3
4
5
3
4
5
4
5
4
5
4
5
3

3
3

3
3

3
3
1
3

3
3

3
3

3
3

F
ig
u
re

1
5
:
(x

1
∨
x
2
)
∧
x
1
re
p
re
se
n
te
d
in

S
u
g
u
ru

.
T
h
e
in
p
u
ts

a
re

in
d
ic
a
te
d
w
it
h
a
rr
o
w
s.

T
h
e
in
p
u
t
fo
r
x
1
is

o
n
th

e
le
ft

p
a
rt
,
th

e
in
p
u
t
fo
r
x
2
is

o
n
th

e
ri
g
h
t
p
a
rt
.
T
o
ch

ec
k
if
th

e
fo
rm

u
la

is
v
a
li
d
w
e
se
t
th

e
o
u
tp

u
t
to

T
R
U
E
,
h
en

ce
if
th

er
e
is

a
so
lu
ti
o
n
fo
r
th

e
g
ri
d
th

en
th

e
fo
rm

u
la

is
v
a
li
d
,
o
th

er
w
is
e

th
e
so
lu
ti
o
n
in

n
o
t
sa
ti
si
a
b
le
.

17



3. Preliminaries for the ZKP

From now on, we construct a physical ZKP protocol for a Suguru puzzle.

For this, in this section, we introduce some card and shuffle notations used in310

our construction.

3.1. Notations

Card. A deck of cards used in our protocol consists of blacks ♣ and reds ♡

whose backs are identical ? . Each integer i ∈ {1, . . . , 5} is encoded as:

1

♡
2

♣
3

♣
4

♣
5

♣︸ ︷︷ ︸
1

,
1

♣
2

♡
3

♣
4

♣
5

♣︸ ︷︷ ︸
2

,
1

♣
2

♣
3

♡
4

♣
5

♣︸ ︷︷ ︸
3

,

1

♣
2

♣
3

♣
4

♡
5

♣︸ ︷︷ ︸
4

,
1

♣
2

♣
3

♣
4

♣
5

♡︸ ︷︷ ︸
5

.

We call such face-down five cards ? ? ? ? ? corresponding to an integer

according to the above encoding rule a commitment to the respective integer.

We also use numbered cards such as 1 2 3 4 5 whose backs are identical315

? .

Neighbor cell. Consider a target cell denoted ct on a grid. A cell is a neighbor

of ct if it is next to ct. It can be on the left, right, top, or bottom of ct, and also

on its diagonal:

ct320

Thus, a cell can have at most eight neighbors.

Pile-scramble shuffle. A shuffle used in our protocol is a pile-scramble shuffle,

which was first used by Ishikawa et al. [13] and was used in other physical ZKP

protocols for puzzles (e.g., Sudoku [33]). Consider that we have a sequence of

ℓ piles of cards, each of which consists of the same number of face-down cards,325

18



denoted by (p1, p2, . . . , pℓ) for some positive integer ℓ. Applying a pile-scramble

shuffle to the sequence results in (pr−1(1), pr−1(2), . . . , pr−1(ℓ)) where permutation

r is uniformly and randomly chosen from the symmetric group of degree ℓ. That

is, it randomly permutes a sequence of piles, and nobody knows the order of the

resulting sequence.330

One can easily implement a pile-scramble shuffle using physical tools that

can fix each pile of cards such as rubber bands and envelopes; a player (or

players) randomly shuffles them until nobody traces the order of the piles.

4. ZKP protocol for Suguru

We propose a ZKP protocol for Suguru composed of two phases, the setup335

phase, and the verification phase.

4.1. Setup phase

The verifier V and prover P place commitments corresponding to the integers

on the initial grid of a Suguru puzzle. In addition, when a region of k cells is

already filled with k − 1 cells, P and V agreed on the last cell to complete and340

place the commitment accordingly7.

Subsequently, P continues to place commitments on all the remaining cells

by himself according to the solution of the puzzle.

4.2. Verification phase

There are two verifications to ensure the number region rule and neighbor345

rule.

Number region rule. V wants to check that a region of k cells contains all the

consecutive integers from 1 to k. The following steps are exactly the same as in

the ZKP protocol for Makaro for verifying the room rule [4].

7For example, in Figure 1 the upper left region can be directly completed with a 1.

19



1. For every i, 1 ≤ i ≤ k, V picks all cards of the i-th cell (in any ordering)350

to form a pile pi. Subsequently, V attaches a numbered card i to pi.

Thus, there are p1, . . . , pk piles, each of which consists of six cards.

2. Apply the pile-scramble shuffle.

3. V reveals the cards of each pile except for the numbered card. The revealed

output is of the form (up to a permutation in the rows), i.e., all the k355

(opened) commitments corresponding to 1 through k should appear. For

example, if k = 4, the revealed output should be of the following form (up

to a permutation in the rows):

♡ ♣ ♣ ♣ ♣ ?

♣ ♡ ♣ ♣ ♣ ?

♣ ♣ ♡ ♣ ♣ ?

♣ ♣ ♣ ♡ ♣ ?

,

where the face-down cards on the right side are the numbered cards. If

the revealed output is not of this form, V aborts.360

4. Turn over the face-up cards and apply the pile-scramble shuffle again to

the piles.

5. Reveal only the numbered cards of all piles. Because these revealed cards

indicate the initial positions for each pile, V rearranges each pile back to

their initial place. The revealed numbered cards can be reused for the365

remaining verifications.

Neighbor rule. V wants to check if a given cell has no neighbor with the same

integer as the cell.8

8This neighbor rule can be also verified using the existing ZKP protocols for Makaro [4] and
Numberlink [31]. Our proposed protocol differs with those protocols in that we simultaneously
verify that a value on a given cell is different from the values on its eight neighbors using a
pile-scramble shuffle. In the protocol for Makaro [4], it verifies that all adjacent cells have
different values. In the protocol for Numberlink [31], it uses an extension of a pile-scramble
shuffle called a “double-scramble” shuffle.

20



1. V picks the first card of the target commitment and then picks each first

card of the commitments on its neighbor cells (in any order) to form the370

pile p1. The following is an example when there are eight neighbors:

7

? ? ? ? ?

8

? ? ? ? ?

9

? ? ? ? ?

6

? ? ? ? ?

1

? ? ? ? ?

2

? ? ? ? ?

5

? ? ? ? ?

4

? ? ? ? ?

3

? ? ? ? ?

→
p1 :

1

?
2

?
3

?
4

?

5

?
6

?
7

?
8

?
9

?

.

2. V repeats the same operation until the pile p5 is formed.

3. V attaches a numbered card i to pi. (If the target cell is the last one, V

does not perform this step.)

4. If an integer is written on the target cell, then go to the next step. Oth-375

erwise, apply the pile-scramble shuffle to the piles.

5. V reveals the first card of each pile, which corresponds to the target com-

mitment. Let pt denote the pile where a red card appears.

6. V reveals all the cards in the pile pt except for the numbered cards. If

there are two red cards in the pile, then V aborts; otherwise, V goes to380

the next step.

7. As Steps 4 and 5 in the previous verification, V rearranges all the cards

in the piles back to their initial places. (If the target cell is the last one,

V does not perform this step.)

4.3. Evaluation385

If the size of the grid is represented by n, then the number of cards used in

this protocol is equal to 5n+5. Each cell must be encoded with five cards (four

blacks and one red)9 and five numbered cards are used for all the Starget cells.

9We could have encoded each cell with a total of ℓ cards where ℓ is the number of cells in
the region (thus, a region with two cells has its cell encoded with only two cards, a red and
a black). Yet, this would lead to inconstancy in the encoding rule, which is required in the
neighbor verification.

21



5. Security proofs

We present theorems along with their proofs to show that our protocol re-390

spects the security properties, which were introduced in Section 1.

Theorem 1 (Completeness). If P knows a solution of a Suguru grid, then

it can convince V .

Proof. Suppose that the prover P knows the solution of the Suguru grid. The

prover runs with the verifier V the Setup phase (Section 4.1). We show that P395

can perform both verification phases without aborting.

Number region verification:. In this phase, the goal of P is to show that each

region of size k contains consecutive integers from 1 to k (note that the lower

bound of k is 1 and its upper bound 5). Because P places the cards accordingly

with the solution, each region of size k contains the numbers 1 to k. Without

loss of generality, suppose that the pile pi corresponds to the number i with

i = 1 . . . k. The pile p1 is composed of the sequence (in this order):

♡ ♣ ♣ ♣ ♣ .

The pile p2 is composed of the sequence (in this order):

♣ ♡ ♣ ♣ ♣ .

More generally, the pile pi is a sequence of black cards where the red card is

placed at position i.

Because the pile-scramble shuffle applied on Step 2 does not modify the

order of the sequence, the red card of pile pi is at position i. As i = 1 . . . k, all400

numbers from 1 to k are represented. Thus, V is convinced that the number

region rule is verified by revealing the piles in Step 3.

Neighbor verification:. The goal of P is to convince V that no cell has the same

number of its neighbors (there are eight neighbors as defined in Section 3). Let

22



ct be the target cell placed in the center of the 3× 3 square. Because P placed405

the commitments according to the solution, there is no cell with the same value

of ct in this square. Let i be the position of the red card of ct (with i = 1 . . . 5).

Because no neighbor cell has the same value of ct, there is no other red card at

position i. Because each pile is composed of cards with the same indices, the

pile pi (before the shuffle) contains exactly one red card. Hence, V is convinced410

that the neighbor rule is verified.

Finally, because all verifications are checked, we proved that if P has the

solution, then the verifications will always succeed. □

Theorem 2 (Extractability). If P does not provide a solution of the Suguru

puzzle, then it is not able to convince V .415

Proof. Suppose that P does not know a solution for the puzzle. We need to

show that V will always detect it.

Because P cannot provide the solution, at least one of the two rules is not

verified (if both can be verified, this is the solution). We can distinguish the

two cases corresponding to each verification:420

• The number region rule is not respected. That is, suppose w.l.o.g. that

a region of size k with k > 1 does not contain the number 1. Hence, the

sequence corresponding to this number is missing, meaning that V cannot

reveal the sequence in Step 3:

♡ ♣ ♣ ♣ ♣ .

Thus, V will abort the protocol and detect that P cannot provide the425

solution.

• The neighbor rule is not respected. Suppose that we have the following

configuration:

23



2

2

where the blank cells have different values from 2.430

We encode number 2 as:

♣ ♡ ♣ ♣ ♣ .

Thus, the pile p2 corresponding to all the cards with index 2 (before the

shuffle) will contain exactly two red cards. Thus, V will abort the protocol.

We proved that if P does not have the solution, then the verifications will

abort in both cases meaning that P cannot convince V . □

Theorem 3 (Zero-knowledge). V learns nothing about P ’s solution of the435

given grid G.

Proof. We use the same proof technique as in [11]: zero-knowledge is caused

by a description of an efficient simulator that simulates interaction between a

cheating verifier and a real prover. However, the simulator does not have a

solution, but it can swap cards for different ones during shuffles. The simulator440

acts as follows:

• During the number region verification at Step 2, the simulator swaps the

piles to replace them by the sequences (up to a permutation in the rows):

♡ ♣ ♣ ♣ ♣

♣ ♡ ♣ ♣ ♣

♣ ♣ ♡ ♣ ♣

♣ ♣ ♣ ♡ ♣

• During the neighbor verification, when revealing the cards at Step 6, the

24



simulator swaps the pile with a pile containing k−1 black cards and 1 red445

card.

The simulated and real proofs are indistinguishable; thus, V learns nothing

about P ’s solution. □

6. Conclusion

In this study, we proposed a simple card-based physical ZKP for Suguru.450

Our solution is simple and efficient because it relies on only 5n + 5 cards. We

also proved that solving a Suguru grid is NP-complete.

Moreover, our long term research direction is to design physical ZKP pro-

tocols for all Nikoli’s games. However, some rules of some games such as

Shakashaka10 require drawing rectangles, which is not easy to model without455

leaking any information. Another example of a challenging game is Shikaku11,

where the rules are simple: 1) Divide the grid into rectangles with the numbers

in the cells. 2) Each rectangle is to contain only one number showing the num-

ber of cells in the rectangle. However, it remains a challenging open question to

design a physical ZKP for this game without revealing any information on the460

positions of the rectangles.

Acknowledgements.

We thank the anonymous referees, whose comments have helped us to im-

prove the presentation of the paper. This work was supported in part by JSPS

KAKENHI Grant Numbers JP17K00001, JP19J21153, and JP21K11881. This465

study was partially supported by the French ANR project ANR-18-CE39-0019

(MobiS5). This work has been partially supported by the French government re-

search program “Investissements d’Avenir” through the IDEX-ISITE initiative

10http://www.nikoli.co.jp/en/puzzles/shakashaka.html
11https://www.nikoli.co.jp/en/puzzles/shikaku.html

25

http://www.nikoli.co.jp/en/puzzles/shakashaka.html
https://www.nikoli.co.jp/en/puzzles/shikaku.html


16-IDEX-0001 (CAP 20-25) and the IMobS3 Laboratory of Excellence (ANR-

10-LABX-16-01). This work was also supported by the French ANR project470

DECRYPT (ANR-18-CE39-0007) and SEVERITAS (ANR-20-CE39-0009).

References

[1] Y. Abe, M. Iwamoto, K. Ohta, Efficient Private PEZ Protocols for Sym-

metric Functions, in: D. Hofheinz, A. Rosen (Eds.), Theory of Cryp-

tography, vol. 11891 of LNCS, Springer, Cham, 372–392, 2019, https:475

//doi.org/10.1007/978-3-030-36030-6_15.

[2] J. Balogh, J. A. Csirik, Y. Ishai, E. Kushilevitz, Private computation using

a PEZ dispenser, Theor. Comput. Sci. 306 (1) (2003) 69–84, https://doi.

org/10.1016/S0304-3975(03)00210-X.

[3] X. Bultel, J. Dreier, J. Dumas, P. Lafourcade, Physical Zero-Knowledge480

Proofs for Akari, Takuzu, Kakuro and KenKen, in: E. D. Demaine,

F. Grandoni (Eds.), Fun with Algorithms, vol. 49 of LIPIcs, Schloss

Dagstuhl, Dagstuhl, Germany, 8:1–8:20, 2016, https://doi.org/10.

4230/LIPIcs.FUN.2016.8.

[4] X. Bultel, J. Dreier, J. Dumas, P. Lafourcade, D. Miyahara, T. Mizuki,485

A. Nagao, T. Sasaki, K. Shinagawa, H. Sone, Physical Zero-Knowledge

Proof for Makaro, in: T. Izumi, P. Kuznetsov (Eds.), SSS 2018, vol. 11201

of LNCS, Springer, Cham, 111–125, 2018, https://doi.org/10.1007/

978-3-030-03232-6_8.

[5] R. Cramer, I. Damg̊ard, J. B. Nielsen, Multiparty Computation from490

Threshold Homomorphic Encryption, in: B. Pfitzmann (Ed.), Advances

in Cryptology — EUROCRYPT 2001, vol. 2045 of LNCS, Springer, Berlin,

Heidelberg, 280–300, 2001, https://doi.org/10.1007/3-540-44987-6_

18.

[6] I. Damg̊ard, S. Faust, C. Hazay, Secure Two-Party Computation with Low495

Communication, in: R. Cramer (Ed.), Theory of Cryptography, vol. 7194

26

https://doi.org/10.1007/978-3-030-36030-6_15
https://doi.org/10.1007/978-3-030-36030-6_15
https://doi.org/10.1007/978-3-030-36030-6_15
https://doi.org/10.1016/S0304-3975(03)00210-X
https://doi.org/10.1016/S0304-3975(03)00210-X
https://doi.org/10.1016/S0304-3975(03)00210-X
https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://doi.org/10.4230/LIPIcs.FUN.2016.8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18


of LNCS, Springer, Berlin, Heidelberg, 54–74, 2012, https://doi.org/10.

1007/978-3-642-28914-9_4.

[7] J. Dumas, P. Lafourcade, D. Miyahara, T. Mizuki, T. Sasaki, H. Sone, In-

teractive Physical Zero-Knowledge Proof for Norinori, in: COCOON 2019,500

vol. 11653 of LNCS, Springer, Cham, 166–177, 2019, https://doi.org/

10.1007/978-3-030-26176-4_14.

[8] O. Goldreich, S. Micali, A. Wigderson, How to Prove all NP-Statements in

Zero-Knowledge, and a Methodology of Cryptographic Protocol Design, in:

A. M. Odlyzko (Ed.), CRYPTO 1986, vol. 263 of LNCS, Springer, Berlin,505

Heidelberg, 171–185, 1987, https://doi.org/10.1007/3-540-47721-7_

11.

[9] O. Goldreich, S. Micali, A. Wigderson, Proofs that Yield Nothing But Their

Validity for All Languages in NP Have Zero-Knowledge Proof Systems,

J. ACM 38 (3) (1991) 691–729, https://doi.acm.org/10.1145/116825.510

116852.

[10] S. Goldwasser, S. Micali, C. Rackoff, The Knowledge Complexity of In-

teractive Proof-systems, in: STOC 1985, ACM, 291–304, 1985, https:

//doi.org/10.1145/22145.22178.

[11] R. Gradwohl, M. Naor, B. Pinkas, G. N. Rothblum, Cryptographic and515

Physical Zero-Knowledge Proof Systems for Solutions of Sudoku Puzzles,

Theory Comput. Syst. 44 (2) (2009) 245–268, https://doi.org/10.1007/

s00224-008-9119-9.

[12] M. Holzer, A. Klein, M. Kutrib, O. Ruepp, Computational Complexity

of NURIKABE, Fundam. Informaticae 110 (1-4) (2011) 159–174, https:520

//doi.org/10.3233/FI-2011-534.

[13] R. Ishikawa, E. Chida, T. Mizuki, Efficient Card-Based Protocols for Gen-

erating a Hidden Random Permutation Without Fixed Points, in: C. S.

Calude, M. J. Dinneen (Eds.), UCNC 2015, vol. 9252 of LNCS, Springer,

27

https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://doi.acm.org/10.1145/116825.116852
https://doi.acm.org/10.1145/116825.116852
https://doi.acm.org/10.1145/116825.116852
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/s00224-008-9119-9
https://doi.org/10.1007/s00224-008-9119-9
https://doi.org/10.1007/s00224-008-9119-9
https://doi.org/10.3233/FI-2011-534
https://doi.org/10.3233/FI-2011-534
https://doi.org/10.3233/FI-2011-534


Cham, 215–226, 2015, https://doi.org/10.1007/978-3-319-21819-9_525

16.

[14] C. Iwamoto, M. Haruishi, T. Ibusuki, Herugolf and Makaro are NP-

complete, in: H. Ito, S. Leonardi, L. Pagli, G. Prencipe (Eds.), Fun with

Algorithms, vol. 100 of LIPIcs, Schloss Dagstuhl, Dagstuhl, 24:1–24:11,

2018, https://doi.org/10.4230/LIPIcs.FUN.2018.24.530

[15] P. Lafourcade, D. Miyahara, T. Mizuki, L. Robert, T. Sasaki, H. Sone,

How to Construct Physical Zero-Knowledge Proofs for Puzzles with a “Sin-

gle Loop” Condition, Theor. Comput. Sci. https://doi.org/10.1016/j.

tcs.2021.07.019.

[16] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (2)535

(1982) 329–343, https://doi.org/10.1137/0211025.

[17] Z. Liu, C. Yang, Hanano Puzzle is NP-hard, Information Processing Letters

145 (2019) 6–10, https://doi.org/10.1016/j.ipl.2019.01.003.

[18] B. P. McPhail, The Complexity of Puzzles: NP-Completeness Results for

Nurikabe and Minesweeper, Bachelor Thesis, The Division of Mathematics540

and Natural Sciences, Reed College, 2003.

[19] B. P. McPhail, Light Up is NP-complete, https://www.researchgate.

net/publication/249927572_Light_Up_is_NP-complete, 2005.

[20] D. Miyahara, Y. Hayashi, T. Mizuki, H. Sone, Practical card-based imple-

mentations of Yao’s millionaire protocol, Theor. Comput. Sci. 803 (2020)545

207–221, https://doi.org/10.1016/j.tcs.2019.11.005.

[21] D. Miyahara, L. Robert, P. Lafourcade, S. Takeshige, T. Mizuki, K. Shi-

nagawa, A. Nagao, H. Sone, Card-Based ZKP Protocols for Takuzu and

Juosan, in: M. Farach-Colton, G. Prencipe, R. Uehara (Eds.), Fun with

Algorithms, LIPIcs, Schloss Dagstuhl, Dagstuhl, 20:1–20:21, 2020, https:550

//doi.org/10.4230/LIPIcs.FUN.2021.20.

28

https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.4230/LIPIcs.FUN.2018.24
https://doi.org/10.1016/j.tcs.2021.07.019
https://doi.org/10.1016/j.tcs.2021.07.019
https://doi.org/10.1016/j.tcs.2021.07.019
https://doi.org/10.1137/0211025
https://doi.org/10.1016/j.ipl.2019.01.003
https://www.researchgate.net/publication/249927572_Light_Up_is_NP-complete
https://www.researchgate.net/publication/249927572_Light_Up_is_NP-complete
https://www.researchgate.net/publication/249927572_Light_Up_is_NP-complete
https://doi.org/10.1016/j.tcs.2019.11.005
https://doi.org/10.4230/LIPIcs.FUN.2021.20
https://doi.org/10.4230/LIPIcs.FUN.2021.20
https://doi.org/10.4230/LIPIcs.FUN.2021.20


[22] D. Miyahara, T. Sasaki, T. Mizuki, H. Sone, Card-Based Physical Zero-

Knowledge Proof for Kakuro, IEICE Trans. Fundamentals E102.A (9)

(2019) 1072–1078, https://doi.org/10.1587/transfun.E102.A.1072.

[23] S. Murata, D. Miyahara, T. Mizuki, H. Sone, Public-PEZ Cryptography,555

in: W. Susilo, R. H. Deng, F. Guo, Y. Li, R. Intan (Eds.), Information

Security, vol. 12472 of LNCS, Springer, Cham, 59–74, 2020, https://doi.

org/10.1007/978-3-030-62974-8_4.

[24] T. Nakai, Y. Misawa, Y. Tokushige, M. Iwamoto, K. Ohta, How to Solve

Millionaires’ Problem with Two Kinds of Cards, New Gener. Comput.560

39 (1) (2021) 73–96, https://doi.org/10.1007/s00354-020-00118-8.

[25] H. Ono, Y. Manabe, Efficient Card-Based Cryptographic Protocols for the

Millionaires’ Problem Using Private Input Operations, in: Asia Joint Con-

ference on Information Security (AsiaJCIS), 23–28, 2018, https://doi.

org/10.1109/AsiaJCIS.2018.00013.565

[26] H. Ono, Y. Manabe, Card-Based Cryptographic Protocols with the Min-

imum Number of Rounds Using Private Operations, in: C. Pérez-Solà,

G. Navarro-Arribas, A. Biryukov, J. Garcia-Alfaro (Eds.), Data Privacy

Management, Cryptocurrencies and Blockchain Technology, vol. 11737

of LNCS, Springer, Cham, 156–173, 2019, https://doi.org/10.1007/570

978-3-030-31500-9_10.

[27] H. Ono, Y. Manabe, Card-Based Cryptographic Logical Computations

Using Private Operations, New Gener. Comput. 39 (1) (2021) 19–40,

https://doi.org/10.1007/s00354-020-00113-z.

[28] J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. C. Guil-575

lou, M. A. Guillou, G. Guillou, A. Guillou, G. Guillou, S. Guillou, T. A.

Berson, How to Explain Zero-Knowledge Protocols to Your Children, in:

G. Brassard (Ed.), Advances in Cryptology — CRYPTO’ 89, vol. 435 of

LNCS, Springer, New York, 628–631, 1990, https://doi.org/10.1007/

0-387-34805-0_60.580

29

https://doi.org/10.1587/transfun.E102.A.1072
https://doi.org/10.1007/978-3-030-62974-8_4
https://doi.org/10.1007/978-3-030-62974-8_4
https://doi.org/10.1007/978-3-030-62974-8_4
https://doi.org/10.1007/s00354-020-00118-8
https://doi.org/10.1109/AsiaJCIS.2018.00013
https://doi.org/10.1109/AsiaJCIS.2018.00013
https://doi.org/10.1109/AsiaJCIS.2018.00013
https://doi.org/10.1007/978-3-030-31500-9_10
https://doi.org/10.1007/978-3-030-31500-9_10
https://doi.org/10.1007/978-3-030-31500-9_10
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60


[29] L. Robert, D. Miyahara, P. Lafourcade, T. Mizuki, Physical Zero-

Knowledge Proof for Suguru Puzzle, in: S. Devismes, N. Mittal (Eds.),

Stabilization, Safety, and Security of Distributed Systems, vol. 12514

of LNCS, Springer, Cham, 235–247, 2020, https://doi.org/10.1007/

978-3-030-64348-5_19.585

[30] C. Romero-Tris, J. Castellà-Roca, A. Viejo, Multi-party Private Web

Search with Untrusted Partners, in: M. Rajarajan, F. Piper, H. Wang,

G. Kesidis (Eds.), Security and Privacy in Communication Networks,

vol. 96 of LNICST, Springer, Berlin, Heidelberg, 261–280, 2012, https:

//doi.org/10.1007/978-3-642-31909-9_15.590

[31] S. Ruangwises, T. Itoh, Physical Zero-Knowledge Proof for Numberlink

Puzzle and k Vertex-Disjoint Paths Problem, New Gener. Comput. 39 (1)

(2021) 3–17, https://doi.org/10.1007/s00354-020-00114-y.

[32] S. Ruangwises, T. Itoh, Physical Zero-Knowledge Proof for Ripple Ef-

fect, in: S. Hong, S. Nandy, R. Uehara (Eds.), WALCOM: Algorithms595

and Computation, vol. 11737 of LNCS, Springer, Cham, 296–307, 2021,

https://doi.org/10.1007/978-3-030-68211-8_24.

[33] T. Sasaki, D. Miyahara, T. Mizuki, H. Sone, Efficient card-based zero-

knowledge proof for Sudoku, Theor. Comput. Sci. 839 (2020) 135–142,

https://doi.org/10.1016/j.tcs.2020.05.036.600

[34] A. Shamir, IP = PSPACE, J. ACM 39 (4) (1992) 869–877, https://doi.

org/10.1145/146585.146609.

[35] K. Shinagawa, K. Nuida, A single shuffle is enough for secure card-based

computation of any Boolean circuit, Discrete Appl. Math. 289 (2021) 248–

261, https://doi.org/10.1016/j.dam.2020.10.013.605

[36] K. Takashima, Y. Abe, T. Sasaki, D. Miyahara, K. Shinagawa, T. Mizuki,

H. Sone, Card-based protocols for secure ranking computations, Theor.

30

https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-642-31909-9_15
https://doi.org/10.1007/978-3-642-31909-9_15
https://doi.org/10.1007/978-3-642-31909-9_15
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/978-3-030-68211-8_24
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1016/j.dam.2020.10.013


Comput. Sci. 845 (2020) 122–135, https://doi.org/10.1016/j.tcs.

2020.09.008.

31

https://doi.org/10.1016/j.tcs.2020.09.008
https://doi.org/10.1016/j.tcs.2020.09.008
https://doi.org/10.1016/j.tcs.2020.09.008

	Introduction
	Suguru is NP-complete
	Modeling TRUE and FALSE
	Gadgets for logical gates: NOT, AND, OR, and SPLIT
	Connecting and isolating ``logic'' components
	Building the complete Suguru instance

	Preliminaries for the ZKP
	Notations

	ZKP protocol for Suguru
	Setup phase
	Verification phase
	Evaluation

	Security proofs
	Conclusion

