Improved Constructions of Anonymous Credentials From Structure-Preserving Signatures on Equivalence Classes

Aisling Connolly^{1†} Pascal Lafourcade [‡] Octavio Perez Kempner ^{§,¶}

[†]DFINITY

[‡]University Clermont Auvergne, LIMOS, France

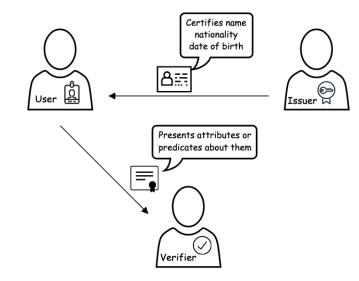
§DIENS, École normale supérieure, CNRS, PSL University, Paris, France

 ¶be-ys Research, France

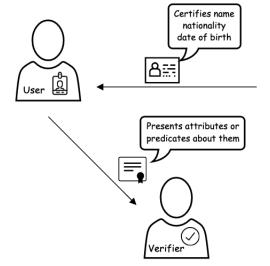
 Image: state state

¹Work done while the author was at Wordline Global.

Attribute-based Credentials

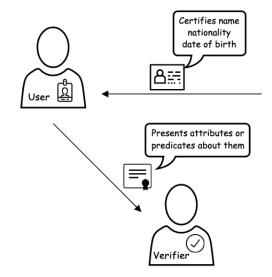


Attribute-based Credentials



Multi-show ABC's: arbitrary number of unlinkable showings

Attribute-based Credentials



Multi-show ABC's: arbitrary number of unlinkable showings

Multi-authority ABC's: single credential for attributes issued by multiple authorities

Expressiveness

Octavio Perez Kempner

Expressiveness

|×_| |×______

Efficiency

Expressiveness

Efficiency

Communication

Attribute-based Credentials: Lines of work

• CL signatures [?]: Idemix [?] and [?]

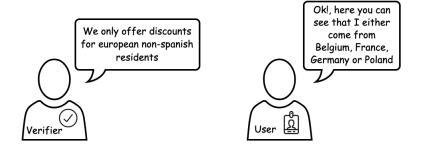
- CL signatures [?]: Idemix [?] and [?]
- Aggregatable signatures: [?] and [?]

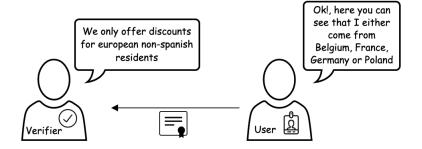
- CL signatures [?]: Idemix [?] and [?]
- Aggregatable signatures: [?] and [?]
- Sanitizable signatures: [?]

- CL signatures [?]: Idemix [?] and [?]
- Aggregatable signatures: [?] and [?]
- Sanitizable signatures: [?]
- Redactable signatures: [?] and [?]

- CL signatures [?]: Idemix [?] and [?]
- Aggregatable signatures: [?] and [?]
- Sanitizable signatures: [?]
- Redactable signatures: [?] and [?]
- Structure-Preserving Signatures on Equivalence Classes (SPS-EQ): [?], [?] and [?]

- CL signatures [?]: Idemix [?] and [?]
- Aggregatable signatures: [?] and [?]
- Sanitizable signatures: [?]
- Redactable signatures: [?] and [?]
- Structure-Preserving Signatures on Equivalence Classes (SPS-EQ): [?], [?] and [?]
- All previous constructions leak the issuer's identity





SPS-EQ: Intuition

• Controlled form of malleability: $(\sigma,m)
ightarrow (\sigma',m')$

- Controlled form of malleability: $(\sigma,m)
 ightarrow (\sigma',m')$
- Message space can be partitioned into equivalence classes

- Controlled form of malleability: $(\sigma,m) \to (\sigma',m')$
- Message space can be partitioned into equivalence classes
 - e.g., $m \in \mathbb{G}^{\ell} \sim_{\mathcal{R}} m' \in \mathbb{G}^{\ell} \iff \mu \in \mathbb{Z}_p^* \text{ s.t. } m' = \mu m$

- Controlled form of malleability: $(\sigma,m) \to (\sigma',m')$
- Message space can be partitioned into equivalence classes
 - e.g., $m \in \mathbb{G}^{\ell} \sim_{\mathcal{R}} m' \in \mathbb{G}^{\ell} \iff \mu \in \mathbb{Z}_p^* \text{ s.t. } m' = \mu m$
- Unforgeability holds with respect to classes

- Controlled form of malleability: $(\sigma,m) \to (\sigma',m')$
- Message space can be partitioned into equivalence classes
 e.g., m ∈ G^ℓ ~_R m' ∈ G^ℓ ⇔ μ ∈ Z^{*}_n s.t. m' = μm
- Unforgeability holds with respect to classes
- Message-signature pairs in the same class are unlinkable

- Controlled form of malleability: $(\sigma,m) \to (\sigma',m')$
- Message space can be partitioned into equivalence classes

• e.g., $m \in \mathbb{G}^{\ell} \sim_{\mathcal{R}} m' \in \mathbb{G}^{\ell} \iff \mu \in \mathbb{Z}_p^* \text{ s.t. } m' = \mu m$

- Unforgeability holds with respect to classes
- Message-signature pairs in the same class are unlinkable
- Recently extended to consider equivalence classes on the key space (e.g., [?, ?, ?])

SPS-EQ: Syntax

• pp
$$\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$$
 ParGen (1^{λ})

- pp $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ ParGen (1^{λ})
- $(sk, pk) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathsf{KGen}(pp, \ell)$

- pp $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ ParGen (1^{λ})
- $(sk, pk) \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\leftarrow} KGen(pp, \ell)$
- $\sigma \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \operatorname{Sign}(\operatorname{sk},m)$

- pp $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ ParGen (1^{λ})
- $(sk, pk) \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\leftarrow} KGen(pp, \ell)$
- $\sigma \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \operatorname{Sign}(\operatorname{sk},m)$
- $(m^*, \sigma^*) \leftarrow \mathsf{ChgRep}(m, \sigma, \mu, \mathsf{pk})$

- pp $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ ParGen (1^{λ})
- $(sk, pk) \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\leftarrow} KGen(pp, \ell)$
- $\sigma \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \operatorname{Sign}(\operatorname{sk},m)$
- $(m^*, \sigma^*) \leftarrow \mathsf{ChgRep}(m, \sigma, \mu, \mathsf{pk})$
- $b \leftarrow \text{Verify}(m, \sigma, \text{pk})$

- pp $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ ParGen (1^{λ})
- $(\mathsf{sk},\mathsf{pk}) \xleftarrow{\hspace{0.1cm}}{\overset{\hspace{0.1cm}\mathsf{\scriptscriptstyle\$}}{\leftarrow}} \mathsf{KGen}(\mathsf{pp},\ell)$
- $\sigma \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \operatorname{Sign}(\operatorname{sk},m)$
- $(m^*, \sigma^*) \leftarrow \mathsf{ChgRep}(m, \sigma, \mu, \mathsf{pk})$
- $b \leftarrow \text{Verify}(m, \sigma, \text{pk})$
- $\mathsf{sk} \leftarrow \mathsf{ConvertSK}(\mathsf{sk}, \rho)$

- pp $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ ParGen (1^{λ})
- $(sk, pk) \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}{\leftarrow} KGen(pp, \ell)$
- $\sigma \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \operatorname{Sign}(\operatorname{sk},m)$
- $(m^*, \sigma^*) \leftarrow \mathsf{ChgRep}(m, \sigma, \mu, \mathsf{pk})$
- $b \leftarrow \text{Verify}(m, \sigma, \text{pk})$
- $\mathsf{sk} \leftarrow \mathsf{ConvertSK}(\mathsf{sk}, \rho)$
- $\mathsf{pk} \leftarrow \mathsf{ConvertPK}(\mathsf{pk}, \rho)$

- pp $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ ParGen (1^{λ})
- (sk, pk) $\stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow}$ KGen(pp, ℓ)
- $\sigma \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \operatorname{Sign}(\operatorname{sk},m)$
- $(m^*, \sigma^*) \leftarrow ChygRep(m, \sigma, \mu, \rho, \mathsf{pk})ChgRep(m, \sigma, \mu, \rho, \mathsf{pk})$
- $b \leftarrow \text{Verify}(m, \sigma, \text{pk})$
- $\mathsf{sk} \leftarrow \mathsf{ConvertSK}(\mathsf{sk}, \rho)$
- $\mathsf{pk} \leftarrow \mathsf{ConvertPK}(\mathsf{pk}, \rho)$

• Unforgeability: Given the set of queries Q that \mathcal{A} issues to the signing oracle SIGN, the following probability is negligible

$$\mathsf{Pr}\left[\begin{array}{l}\mathsf{pp} \stackrel{\$}{\leftarrow} \mathsf{ParGen}(1^{\lambda}),\\ (\mathsf{sk},\mathsf{pk}) \stackrel{\$}{\leftarrow} \mathsf{KGen}(\mathsf{pp},\ell),\\ (m^*,\sigma^*) \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathrm{SIGN}(\mathsf{sk},\cdot)}(\mathsf{pk})\end{array} : \begin{array}{l} [m^*]_{\mathcal{R}} \neq [m]_{\mathcal{R}} \ \forall \ m \in \mathsf{Q}\\ \land \ \mathsf{Verify}(m^*,\sigma^*,\mathsf{pk}) = 1\end{array}\right]$$

• Perfect adaption of signatures (1)

- Perfect adaption of signatures (1)
 - For all tuples (pp, pk, m, σ, μ) s.t. pp $\stackrel{s}{\leftarrow}$ ParGen(1^{λ}) and Verify(m, σ, pk) = 1, the following holds:

- Perfect adaption of signatures (1)
 - For all tuples (pp, pk, m, σ, μ) s.t. pp $\stackrel{s}{\leftarrow}$ ParGen(1^{λ}) and Verify(m, σ, pk) = 1, the following holds:

- Perfect adaption of signatures (1)
 - For all tuples (pp, pk, m, σ, μ) s.t. pp $\stackrel{s}{\leftarrow}$ ParGen(1^{λ}) and Verify(m, σ, pk) = 1, the following holds: ($\mu m, \sigma^*$) \leftarrow ChgRep(m, σ, μ, pk), with σ^* being a uniformly random element in the space of signatures, conditioned on Verify($\mu m, \sigma^*, pk$) = 1
- Perfect adaption of signatures (2)

- Perfect adaption of signatures (1)
 - For all tuples (pp, pk, m, σ, μ) s.t. pp ^s→ ParGen(1^λ) and Verify(m, σ, pk) = 1, the following holds: (μm, σ^{*}) ← ChgRep(m, σ, μ, pk), with σ^{*} being a uniformly random element in the space of signatures, conditioned on Verify(μm, σ^{*}, pk) = 1
- Perfect adaption of signatures (2)
 - For all tuples (pp, pk, m, σ, μ, ρ) s.t. pp $\stackrel{s}{\leftarrow}$ ParGen(1^{λ}) and Verify(m, σ, pk) = 1, the following holds:

- Perfect adaption of signatures (1)
 - For all tuples (pp, pk, m, σ, μ) s.t. pp ^s→ ParGen(1^λ) and Verify(m, σ, pk) = 1, the following holds: (μm, σ^{*}) ← ChgRep(m, σ, μ, pk), with σ^{*} being a uniformly random element in the space of signatures, conditioned on Verify(μm, σ^{*}, pk) = 1
- Perfect adaption of signatures (2)
 - For all tuples (pp, pk, m, σ, μ, ρ) s.t. pp $\stackrel{s}{\leftarrow}$ ParGen(1^{λ}) and Verify(m, σ, pk) = 1, the following holds:

- Perfect adaption of signatures (1)
 - For all tuples (pp, pk, m, σ, μ) s.t. pp ⁵ ParGen(1^λ) and Verify(m, σ, pk) = 1, the following holds: (μm, σ^{*}) ← ChgRep(m, σ, μ, pk), with σ^{*} being a uniformly random element in the space of signatures, conditioned on Verify(μm, σ^{*}, pk) = 1
- Perfect adaption of signatures (2)
 - For all tuples (pp, pk, m, σ, μ, ρ) s.t. pp $\stackrel{s}{\leftarrow}$ ParGen(1^{λ}) and Verify(m, σ, pk) = 1, the following holds: ($\mu m, \sigma^*$) \leftarrow ChgRep(m, σ, μ, ρ, pk), with σ^* being a uniformly random element in the space of signatures, conditioned on Verify($\mu m, \sigma^*$, ConvertPK(pk, ρ)) = 1

The ABC framework from [?]

• A credential is a **signature** on a (randomizable) accumulator representing a **set of attributes**

- A credential is a **signature** on a (randomizable) accumulator representing a **set of attributes**
- A credential showing involves the joint randomization of a message-signature pair

- A credential is a **signature** on a (randomizable) accumulator representing a **set of attributes**
- A credential showing involves the joint randomization of a message-signature pair
- The accumulator uses batch membership proofs to allow **constant-size** showings

- A credential is a **signature** on a (randomizable) accumulator representing a **set of attributes**
- A credential showing involves the joint randomization of a message-signature pair
- The accumulator uses batch membership proofs to allow **constant-size** showings
- Security properties: Unforgeability & Anonymity

- A credential is a **signature** on a (randomizable) accumulator representing a **set of attributes**
- A credential showing involves the joint randomization of a message-signature pair
- The accumulator uses batch membership proofs to allow **constant-size** showings
- Security properties: Unforgeability & Anonymity
- Main drawback: expressiveness is limited

Towards improved constructions

• We focused on improving the following aspects:

- We focused on improving the following aspects:
 - expressiveness (extending the accumulator)

- We focused on improving the following aspects:
 - expressiveness (extending the accumulator)
 - efficiency (leveraging user/verifier costs)

- We focused on improving the following aspects:
 - expressiveness (extending the accumulator)
 - efficiency (leveraging user/verifier costs)
 - security model (GGM Standard model + CRS)

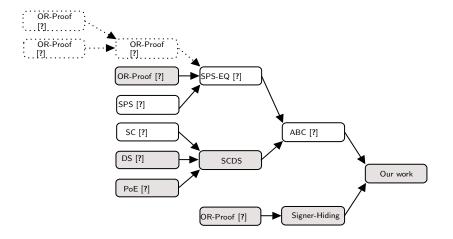
• Obtained a SPS-EQ acting on the message and key spaces

- Obtained a SPS-EQ acting on the message and key spaces
- Extended the accumulator from [?] to support batch non-membership proofs

- Obtained a SPS-EQ acting on the message and key spaces
- Extended the accumulator from [?] to support batch non-membership proofs
- Incorporated a proof of exponentiation to outsource computational cost from the verifier to the user

- Obtained a SPS-EQ acting on the message and key spaces
- Extended the accumulator from [?] to support batch non-membership proofs
- Incorporated a proof of exponentiation to outsource computational cost from the verifier to the user
- Proposed a 1-out-of-*n* NIZK OR-proof so that **users can hide the issuer identity** during a showing

- Obtained a SPS-EQ acting on the message and key spaces
- Extended the accumulator from [?] to support batch non-membership proofs
- Incorporated a proof of exponentiation to outsource computational cost from the verifier to the user
- Proposed a 1-out-of-*n* NIZK OR-proof so that **users can hide the issuer identity** during a showing
- Extended the security model from [?]



Octavio Perez Kempner

A SPS-EQ from standard assumptions

• [?] presented a SPS based on an OR-Proof

- [?] presented a SPS based on an OR-Proof
- [?] extended [?] to obtain a SPS-EQ for the message space

- [?] presented a SPS based on an OR-Proof
- [?] extended [?] to obtain a SPS-EQ for the message space
 - Key idea: use a malleable OR-Proof

- [?] presented a SPS based on an OR-Proof
- [?] extended [?] to obtain a SPS-EQ for the message space
 - Key idea: use a malleable OR-Proof
- We extended [?] to support EQ's on the key space

- [?] presented a SPS based on an OR-Proof
- [?] extended [?] to obtain a SPS-EQ for the message space
 Key idea: use a malleable OR-Proof
- We extended [?] to support EQ's on the key space
- We replaced the OR-Proof from [?] using [?]

- [?] presented a SPS based on an OR-Proof
- [?] extended [?] to obtain a SPS-EQ for the message space
 Key idea: use a malleable OR-Proof
- We extended [?] to support EQ's on the key space
- We replaced the OR-Proof from [?] using [?]

- [?] presented a SPS based on an OR-Proof
- [?] extended [?] to obtain a SPS-EQ for the message space
 Key idea: use a malleable OR-Proof
- We extended [?] to support EQ's on the key space
- We replaced the OR-Proof from [?] using [?]

Scheme	$ \sigma $	pk	Sign	Verify	ChgRep	Assumptions
[?]	$8 \mathbb{G}_1 +6 \mathbb{G}_2 $	$2 \mathbb{G}_1 +(9+\ell) \mathbb{G}_2 $	28E	9P	N/A	SXDH
[?]	$8 \mathbb{G}_1 +9 \mathbb{G}_2 $	$(2+\ell) \mathbb{G}_2 $	29E	11P	19P+38E	SXDH
Our work	$9 \mathbb{G}_1 +4 \mathbb{G}_2 $	$(2+\ell) \mathbb{G}_2 $	10E	11P	19P+21E	extKerMDH, SXDH

• For a set \mathcal{X} with elements in \mathbb{Z}_p let $Ch_{\mathcal{X}}(X) = \prod_{x \in \mathcal{X}} (X + x) = \sum_{i=0}^{i=n} c_i \cdot X^i$

• For a set \mathcal{X} with elements in \mathbb{Z}_p let

$$\mathsf{Ch}_{\mathcal{X}}(X) = \prod_{x \in \mathcal{X}} (X + x) = \sum_{i=0}^{i=n} c_i \cdot X^i$$

• $Ch_{\mathcal{X}}(s)P$ can be efficiently computed when given $(s^iP)_{i=0}^{|\mathcal{X}|}$

• For a set \mathcal{X} with elements in \mathbb{Z}_p let

$$Ch_{\mathcal{X}}(X) = \prod_{x \in \mathcal{X}} (X + x) = \sum_{i=0}^{i=n} c_i \cdot X^i$$

- $Ch_{\mathcal{X}}(s)P$ can be efficiently computed when given $(s^iP)_{i=0}^{|\mathcal{X}|}$
- To randomize $Ch_{\mathcal{X}}(s)P$ multiply by $\rho \stackrel{s}{\leftarrow} \mathbb{Z}_{p}^{*}$

• For a set \mathcal{X} with elements in \mathbb{Z}_p let

$$Ch_{\mathcal{X}}(X) = \prod_{x \in \mathcal{X}} (X + x) = \sum_{i=0}^{i=n} c_i \cdot X^i$$

- $Ch_{\mathcal{X}}(s)P$ can be efficiently computed when given $(s^{i}P)_{i=0}^{|\mathcal{X}|}$
- To randomize $Ch_{\mathcal{X}}(s)P$ multiply by $\rho \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_p^*$
- Schwartz-Zippel: Let q₁(x), q₂(x) be two d-degree polynomials from Z_p[X] with q₁(x) ≠ q₂(x), then for s ^{\$} Z_p, Pr[q₁(s) = q₂(s)] is at most d/p

• Batch membership:

• Batch membership:

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership:

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership:

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \cap \mathcal{X} = \emptyset$
 - Witness: use the EEA to compute $q_1(X)$ and $q_2(X)$ s.t. $Ch_{\mathcal{X}}(X) \cdot q_1(X) + Ch_{\mathcal{S}}(X) \cdot q_2(X) = 1$

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \cap \mathcal{X} = \emptyset$
 - Witness: use the EEA to compute $q_1(X)$ and $q_2(X)$ s.t. $Ch_{\mathcal{X}}(X) \cdot q_1(X) + Ch_{\mathcal{S}}(X) \cdot q_2(X) = 1$
- $Ch_{\mathcal{S}}(X)$ has to be computed by the verifier in both cases

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \cap \mathcal{X} = \emptyset$
 - Witness: use the EEA to compute $q_1(X)$ and $q_2(X)$ s.t. $Ch_{\mathcal{X}}(X) \cdot q_1(X) + Ch_{\mathcal{S}}(X) \cdot q_2(X) = 1$
- $Ch_{\mathcal{S}}(X)$ has to be computed by the verifier in both cases
- Proof of exponentiation: the prover computes Ch_S(X) and sends a proof of correctness

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \cap \mathcal{X} = \emptyset$
 - Witness: use the EEA to compute $q_1(X)$ and $q_2(X)$ s.t. $Ch_{\mathcal{X}}(X) \cdot q_1(X) + Ch_{\mathcal{S}}(X) \cdot q_2(X) = 1$
- $Ch_{\mathcal{S}}(X)$ has to be computed by the verifier in both cases
- Proof of exponentiation: the prover computes $Ch_{\mathcal{S}}(X)$ and sends a proof of correctness

• Let
$$Q \leftarrow Ch_{\mathcal{X}}(s)P_2$$
 and $h(X)$ and β s.t.
 $Ch_{\mathcal{X}}(X) = (X + \alpha) \cdot h(X) + \beta$

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \cap \mathcal{X} = \emptyset$
 - Witness: use the EEA to compute $q_1(X)$ and $q_2(X)$ s.t. $Ch_{\mathcal{X}}(X) \cdot q_1(X) + Ch_{\mathcal{S}}(X) \cdot q_2(X) = 1$
- $Ch_{\mathcal{S}}(X)$ has to be computed by the verifier in both cases
- Proof of exponentiation: the prover computes $Ch_{\mathcal{S}}(X)$ and sends a proof of correctness

• Let
$$Q \leftarrow Ch_{\mathcal{X}}(s)P_2$$
 and $h(X)$ and β s.t.
 $Ch_{\mathcal{X}}(X) = (X + \alpha) \cdot h(X) + \beta$

• Let
$$\pi_Q \leftarrow h(s)P_2$$

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \cap \mathcal{X} = \emptyset$
 - Witness: use the EEA to compute $q_1(X)$ and $q_2(X)$ s.t. $Ch_{\mathcal{X}}(X) \cdot q_1(X) + Ch_{\mathcal{S}}(X) \cdot q_2(X) = 1$
- Ch_S(X) has to be computed by the verifier in both cases
- Proof of exponentiation: the prover computes $Ch_{\mathcal{S}}(X)$ and sends a proof of correctness
 - Let $Q \leftarrow Ch_{\mathcal{X}}(s)P_2$ and h(X) and β s.t. $Ch_{\mathcal{X}}(X) = (X + \alpha) \cdot h(X) + \beta$
 - Let $\pi_Q \leftarrow h(s)P_2$
 - Send (π_Q, Q)

- Batch membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \subseteq \mathcal{X}$
 - Witness: $Ch_{\mathcal{X} \setminus \mathcal{S}}(s)P_1$
- Batch non-membership: $Ch_{\mathcal{S}}(X)$ with $\mathcal{S} \cap \mathcal{X} = \emptyset$
 - Witness: use the EEA to compute $q_1(X)$ and $q_2(X)$ s.t. $Ch_{\mathcal{X}}(X) \cdot q_1(X) + Ch_{\mathcal{S}}(X) \cdot q_2(X) = 1$
- Ch_S(X) has to be computed by the verifier in both cases
- Proof of exponentiation: the prover computes $Ch_{\mathcal{S}}(X)$ and sends a proof of correctness
 - Let $Q \leftarrow Ch_{\mathcal{X}}(s)P_2$ and h(X) and β s.t. $Ch_{\mathcal{X}}(X) = (X + \alpha) \cdot h(X) + \beta$
 - Let $\pi_Q \leftarrow h(s)P_2$
 - Send (π_Q, Q)
 - Use $\beta \leftarrow Ch_{\mathcal{S}}(X) (mod (X + \alpha))$

Signer-Hiding

• Randomize the credential and issuer's public-key consistently

- Randomize the credential and issuer's public-key consistently
- Present them to the verifier alongside a proof of correct randomization of issuer's public-key

- Randomize the credential and issuer's public-key consistently
- Present them to the verifier alongside a proof of correct randomization of issuer's public-key

• The 1-out-of-n OR-proof is a fully adaptive NIZK argument

- Randomize the credential and issuer's public-key consistently
- Present them to the verifier alongside a proof of correct randomization of issuer's public-key
- The 1-out-of-n OR-proof is a fully adaptive NIZK argument
- Users can select arbitrary long sets of public keys to compute a proof with linear cost

An ABC system supports signer-hiding if for all $\lambda > 0$, all q > 0, all n > 0, all t > 0, all \mathcal{X} with $0 < |\mathcal{X}| \le t$, all $\emptyset \neq S \subset \mathcal{X}$ and $\emptyset \neq \mathcal{D} \nsubseteq \mathcal{X}$ with $0 < |\mathcal{D}| \le t$, and p.p.t adversaries \mathcal{A} , the following holds

$$\Pr\left[\begin{array}{l} \mathsf{pp} \stackrel{\$}{\leftarrow} \mathsf{Setup}(1^{\lambda}, 1^{q}); \\ \forall \ i \in [n] : (\mathsf{osk}_{i}, \mathsf{opk}_{i}) \stackrel{\$}{\leftarrow} \mathsf{Org}\mathsf{K}\mathsf{Gen}(\mathsf{pp}); \\ (\mathsf{usk}, \mathsf{upk}) \stackrel{\$}{\leftarrow} \mathsf{Usr}\mathsf{K}\mathsf{Gen}(\mathsf{pp}); j \stackrel{\$}{\leftarrow} [n]; \\ (\mathsf{cred}, \top) \stackrel{\$}{\leftarrow} (\mathsf{Obtain}(\mathsf{usk}, \mathsf{opk}_{j}, \mathcal{X}), \\ \mathsf{Issue}(\mathsf{upk}, \mathsf{osk}_{j}, \mathcal{X})); \\ j^{*} \stackrel{\$}{\leftarrow} \mathcal{A}^{\mathcal{O}_{\mathsf{Show}}}(\mathsf{pp}, \mathcal{S}, \mathcal{D}, \mathsf{opk}_{i})_{i \in [n]}) \end{array}\right] \leq \frac{1}{n}$$

Proposed ABC construction

ABC.Obtain(pp, usk, opk, \mathcal{X})		ABC.Issue(pp, upk, osk, \mathcal{X})			
$r_1, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*; a \leftarrow r_1 P_1$					
$c \leftarrow Commit(ck, a, r_2)$	\xrightarrow{c}				
$z \leftarrow r_1 + e \cdot usk$	←e	$e \mathbb{Z}_p^*$			
$(C, O) \leftarrow SCDS.Commit(scds_{pp}, \mathcal{X}; usk)$	C, R,				
$r_3 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*; R \leftarrow r_3 C$	$\xrightarrow{z,a,r_2}$	$\mathbf{if} \ (\mathbf{zP}_1 \neq \mathbf{a} + \mathbf{e} \cdot upk \ \lor \ \mathbf{c} \neq Commit(ck, \mathbf{a}, \mathbf{r}_2))$			
		return \perp			
		if $(e(C, P_2) \neq e(upk, Ch_{\mathcal{X}}(s)P_2)$			
		$\land \forall x \in \mathcal{X} : xP_1 \neq ek_1^0$) return \bot			
	(σ, τ)	$(\sigma, \tau) \leftarrow SPS-EQ.Sign(sps_{pp}, (C, R, P_1), osk)$			
check SPS-EQ.Verify(sps _{pp} (C, R, P_1), (σ, τ), opk)					
return cred = $(C, (\sigma, \tau), r_3, O)$					

Proposed ABC construction

29 / 1

Proposed ABC construction

ABC.Show(pp, usk, $(opk_i)_{i \in [n]}$, opk, S, D, cred) ABC. Verify(pp, $(opk_i)_{i \in [n]}, S, D$) **parse** cred = $(C, (\sigma, \tau), r, O); \mu, \rho \stackrel{\$}{\leftarrow} \mathbb{Z}_n^*$ if $O = (1, (o_1, o_2))$ then $O' = (1, (\mu \cdot o_1, o_2))$ else $O' = \mu \cdot O$ $\sigma' \xleftarrow{\sc sp}{\sc sp} SPS-EQ.ChgRep(sps_{DD}, (C, rC, P_1), \sigma, \tau, \mu, \rho, opk)$ $(C_1, C_2, C_3) \leftarrow \mu \cdot (C, rC, P_1)$ $\operatorname{cred}' \leftarrow (C_1, C_2, C_3, \sigma'); \operatorname{opk}' \leftarrow \operatorname{ConvertPK}(\operatorname{opk}, \rho)$ $\Pi \leftarrow \mathsf{SH}.\mathsf{PPrv}((\mathsf{opk}_i)_{i \in [n]}, \mathsf{opk}', \rho)$ wit \leftarrow SCDS.OpenSS(scds_{pp}, $\mu C, S, O'$) wit \leftarrow SCDS.OpenDS(scds_{pp}, $\mu C, D, O'$) $r_1, r_2, r_3, r_4 \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*; a_1 \leftarrow r_1 C_1; a_2 \leftarrow r_3 P_1$ $c_1 \leftarrow \text{Commit}(ck, a_1, r_2); c_2 \leftarrow \text{Commit}(ck, a_2, r_4)$ $\xrightarrow{\Sigma_1}$ $\Sigma_1 = (\text{cred}', \Pi, \text{opk}', \text{wit}, \text{wit}, c_1, c_2)$ parse $\Sigma_1 = (\text{cred}', \Pi, \text{opk}', \text{wit}, \text{wit}, c_1, c_2)$ e,ẽ $e, \tilde{e} \stackrel{\$}{\leftarrow} \mathbb{Z}_n^*$ $\pi_1 \leftarrow \text{SCDS.PoE}(\text{ek}, S, \tilde{e})$ parse cred' = (C_1, C_2, C_3, σ) $\pi_2 \leftarrow \text{SCDS.PoE(ek, <math>\mathcal{D}, \tilde{e})}$ $z_1 \leftarrow r_1 + e \cdot (r \cdot \mu); z_2 \leftarrow r_3 + e \cdot \mu$ $\Sigma_2 \rightarrow$ $\Sigma_2 = (z_i, a_i, r_i, \pi_i)_{i \in \{1,2\}}$ parse $\Sigma_2 = (z_i, a_i, r_i, \pi_i)_{i \in \{1,2\}}$ check $z_1 C_1 = a_1 + eC_2$; $z_2 P_1 = a_2 + eC_3$ $c_1 = \text{Commit}(ck, a_1, r_2); c_2 = \text{Commit}(ck, a_2, r_4)$ SH.PVer(crs, $(opk_i)_{i \in [n]}$, opk', Π_1) SPS-EQ.Verify(spsp, cred', opk) SCDS.VerifySS(scds_{nn}, C_1 , S, wit; π_1 , \tilde{e}) SCDS.VerifyDS(scds_{pp}, C_1 , S, wit; π_2 , \tilde{e})

Security properties

Theorem (**Unforgeability**)

If the q-co-DL assumption holds, the ZKPoK's have perfect ZK, SCDS is sound, and SPS-EQ is EUF-CMA secure, then the ABC is unforgeable.

Security properties

Theorem (Anonymity)

If the DDH assumption holds, the ZKPoK's have perfect ZK, and the SPS-EQ perfectly adapts signatures, then the ABC is anonymous.

Security properties

Theorem (**Signer-hiding**)

If the underlying signature scheme is a SPS-EQ which perfectly adapts signatures (under malicious keys in the honest parameter model), then the ABC supports signer-hiding.

Conclusions and Future Work

• Our results explore multiple paths to extend the ABC framework from [?]

- Our results explore multiple paths to extend the ABC framework from [?]
- We obtained a more flexible framework leveraging different trade-offs

- Our results explore multiple paths to extend the ABC framework from [?]
- We obtained a more flexible framework leveraging different trade-offs
- The proposed signer-hiding notion enables more use cases

- Our results explore multiple paths to extend the ABC framework from [?]
- We obtained a more flexible framework leveraging different trade-offs
- The proposed signer-hiding notion enables more use cases
- Exploring the use of aggregatable signatures with SPS-EQ in the multi-authority setting could enable even more use cases

- Our results explore multiple paths to extend the ABC framework from [?]
- We obtained a more flexible framework leveraging different trade-offs
- The proposed signer-hiding notion enables more use cases
- Exploring the use of aggregatable signatures with SPS-EQ in the multi-authority setting could enable even more use cases
- Devising other ways to define equivalence classes could lead to new and more efficient constructions

35 / 1

Thank you for your time!

Scheme	[?]	[?]	[?]	[?] & [?]	[?]	[?]	[?]	Ours	
	Issuing <i>n</i> -attr. credential								
Comm.	O(n)	<i>O</i> (<i>n</i>)	O(n)	0(1)	<i>O</i> (<i>n</i>)	0(1)	O(n)	0(1)	
User	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n)	<i>O</i> (<i>n</i>)					
Issuer	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n)	<i>O</i> (<i>n</i>)					
	Showing <i>k</i> -of- <i>n</i> attributes (selective disclosure)								
ek	O(n)	<i>O</i> (<i>n</i>)	O(n)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$O(n^2)$	O(n)	<i>O</i> (<i>n</i>)	
Comm.	<i>O</i> (<i>n</i>)	O(1)	O(k)	O(1)	O(1)	O(1)	O(1)	O(1)	
User	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(k)	O(n-k)	O(n-k)	O(n-k)	0(1)	$O(\max\{n-k,k\})$	
Verifier	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(k)	O(k)	O(k)	O(k)	<i>O</i> (<i>n</i>)	0(1)	

Table: Asymptotic complexities of ABC systems where n is the number of attributes in the credential and k the number of disclosed ones during a showing.

ABC	[?]	[?]	[?]	[?]	Ours					
Parameters size (<i>n</i> -attributes)										
ek	$(\frac{n^2+n+2}{2})_{\mathbb{G}_1}+n_{\mathbb{G}_2}$	$(2n + 2)_{\mathbb{G}_2}$	$(n + 1)_{G_1} +$	$(n + 1)_{G_1} +$	$(n + 1)_{G_1} +$					
			$(n+1)_{G_2}$	$(n + 1)_{G_2}$	$(n + 1)_{G_2}$					
Cred	2 _{G2}	4 _{G1}	$1_{\mathbb{G}_1} + 6_{\mathbb{Z}_p}$	$3_{\mathbb{G}_1} + 1_{\mathbb{G}_2} + 2_{\mathbb{Z}_p}$	$\frac{(n+1)_{\mathbb{G}_2}}{18_{\mathbb{G}_1}+6_{\mathbb{G}_2}+3_{\mathbb{Z}_p}}$					
Bandwidth										
Issue	$4_{\mathbb{G}_2} + 2_{\mathbb{Z}_p}$	$n_{\mathbb{G}_1}$	$3_{\mathbb{G}_1} + (n+3)_{\mathbb{Z}_p}$	$12_{G_1} + 1_{G_2} + 8_{Z_p}$						
Show	$2_{\mathbb{G}_1}+2_{\mathbb{G}_2}+1_{\mathbb{G}_T}+2_{\mathbb{Z}_p}$	$3_{\mathbb{G}_1} + 1_{\mathbb{Z}_p}$	$3_{\mathbb{G}_1}+5_{\mathbb{Z}_p}$	$10_{\mathbb{G}_1} + 1_{\mathbb{G}_2} + 8_{\mathbb{Z}_p}$	$18_{\mathbb{G}_1} + 14_{\mathbb{G}_2} + 4_{\mathbb{Z}_p}$					
k-of-n attributes (AND)										
Usr	$(2(n-k)+2)_{\mathbb{G}_1}, 2_{\mathbb{G}_2},$	6 _{G1}	(6+ <i>n</i> - <i>k</i>) _{ℂ1}	(11+ <i>n</i> -	$(20+n-k)_{G_1}$,					
		-	-	$(k)_{\mathbb{G}_1}, 1_{\mathbb{G}_2},$	_					
	1			8	(<i>k</i> −1) _{©2} , 19					
Ver	$(k+1)_{\mathbb{G}_1}, 1_{\mathbb{G}_T}, 5$	$4_{\mathbb{G}_1}, 2n_{\mathbb{G}_2}, 3$	$5_{\mathbb{G}_1},(k+1)_{\mathbb{G}_2},3$	$4_{\mathbb{G}_1}$, $(k+1)_{\mathbb{G}_2}$, 10	10 _{G1} , 16					
k-of-n attributes (NAND)										
Usr	N/A	N/A	(6+ <i>n</i>) _{€1}	N/A	$(31+n)_{G_1}$,					
			1		$(9+2k)_{\mathbb{G}_2}, 19$					
Ver	N/A	N/A	$(2k+5)_{\mathbb{G}_1},$ $(k+3)_{\mathbb{G}_2},$ 3	N/A	10 _{G1} ,17					
			(k+3) _{€2} , 3							

Table: Efficiency of ABCs considering issuing and showing interactions (the number of pairings is marked in bold).

$$\begin{array}{l} \underbrace{\mathsf{SPS-EQ}.\mathsf{ParGen}(1^{\lambda});}_{\mathsf{BG} \stackrel{\bullet}{\leftarrow} \mathsf{BGGen}(1^{\lambda}); \; \boldsymbol{A}, \boldsymbol{A}_0, \boldsymbol{A}_1 \stackrel{\bullet}{\leftarrow} \mathcal{D}_1 \\ (\mathsf{crs}, \mathsf{td}) \stackrel{\bullet}{\leftarrow} \mathsf{PGen}(1^{\lambda}; \mathsf{BG}) \\ \textbf{return} \; (\mathsf{BG}, [\boldsymbol{A}]_2, [\boldsymbol{A}_0]_1, [\boldsymbol{A}_1]_1, \mathsf{crs}) \end{array}$$

 $\begin{array}{l} \underbrace{\mathsf{SPS-EQ}.\mathsf{KGen}(\mathsf{pp},1^{\lambda}):}{\mathsf{K}_{0}\overset{\mathfrak{F}}{\rightarrow}\mathbb{Z}_{p}^{2\times2};\;\mathsf{K}\overset{\mathfrak{F}}{\rightarrow}\mathbb{Z}_{p}^{4\times2}}\\ [\mathsf{B}]_{2}\leftarrow[\mathsf{K}_{0}]_{2}[\mathsf{A}]_{2};\;[\mathsf{C}]_{2}\leftarrow[\mathsf{K}]_{2}[\mathsf{A}]_{2}\\ \mathsf{sk}\leftarrow(\mathsf{K}_{0},\mathsf{K});\;\mathsf{pk}\leftarrow([\mathsf{B}]_{2},[\mathsf{C}]_{2})\\ \textbf{return}\;(\mathsf{sk},\mathsf{pk}) \end{array}$

$$\begin{array}{l} & \underbrace{\mathsf{SPS-EQ.Sign}(pp, \mathsf{sk}, [\mathbf{m}]_1):}{r_1, r_2 \xleftarrow{}{}{}^{\mathcal{L}} \mathcal{Z}_p} \\ & [\mathbf{t}]_1 \leftarrow [\mathbf{A}_0]_1 r_1; [\mathbf{w}]_1 \leftarrow [\mathbf{A}_0]_1 r_2 \\ & \Omega \leftarrow \mathsf{PPro}(\mathrm{crs}, [\mathbf{t}]_1, r_1, [\mathbf{w}]_1, r_2) \\ & \mathsf{parse} \ \Omega = (\Omega_1, \Omega_2, [z_0]_2, [z_1]_2, Z_1) \\ & u_1 \leftarrow \mathbf{K}_0^\top [\mathbf{t}]_1 + \mathbf{K}^\top [\mathbf{m}]_1; u_2 \leftarrow \mathbf{K}_0^\top [\mathbf{w}]_1 \\ & \sigma \leftarrow ([u_1]_1, [\mathbf{t}]_1, \Omega_1, [z_0]_2, [z_1]_2, Z_1) \\ & \tau \leftarrow ([u_2]_1, [\mathbf{w}]_1, \Omega_2) \\ & \mathsf{return} \ (\sigma, \tau) \end{array}$$

 $\begin{array}{l} \underline{\mathsf{SPS-EQ.TParGen}(1^{\lambda})}:\\ & \mathsf{BG} \stackrel{\pounds}{\leftarrow} \mathsf{BGGen}(1^{\lambda}); \ \textbf{A}, \textbf{A}_0, \textbf{A}_1 \stackrel{\pounds}{\leftarrow} \mathcal{D}_1\\ & (\mathsf{crs}, \mathsf{td}) \stackrel{\pounds}{\leftarrow} \mathsf{PGen}(1^{\lambda}; \mathsf{BG})\\ & \mathsf{pp} \leftarrow (\mathsf{BG}, [\textbf{A}]_2, [\textbf{A}_0]_1, [\textbf{A}_1]_1, \mathsf{crs})\\ & \mathsf{return} \ (\mathsf{pp}, \mathsf{td}) \end{array}$

 $\begin{array}{l} \underbrace{\mathsf{SPS-EQ.Verify}(\mathsf{pp},[\mathbf{m}]_1,(\sigma,\tau),\mathsf{pk}):}_{\mathbf{parse}\ \sigma} = ([\mathbf{u}_1]_1,[\mathbf{t}]_1,\Omega_1,[z_0]_2,[z_1]_2,Z_1)\\ \mathbf{parse}\ \tau \in \{([\mathbf{u}_2]_1,[\mathbf{w}]_1,\Omega_2) \cup \bot\}\\ \mathbf{check}\ \mathsf{PRVer}(\mathsf{crs},[\mathbf{t}]_1,\Omega_1,[z_0]_2,[z_1]_2,Z_1)\\ \mathbf{check}\ e([\mathbf{u}_1]_1^\top,[\mathbf{A}]_2) = \\ e([\mathbf{t}]_1^\top,[\mathbf{B}]_2) + e([\mathbf{m}]_1^\top,[\mathbf{C}]_2)\\ \mathbf{if}\ \tau \neq \bot\ \mathbf{check}\\ \mathsf{PRVer}(\mathsf{crs},[\mathbf{w}]_1,\Omega_2,[z_0]_2,[z_1]_2,Z_1)\\ e([\mathbf{u}_2]_1^\top,[\mathbf{A}_2]) = e([\mathbf{w}]_1^\top,[\mathbf{B}]_2) \end{array}$

$$\label{eq:spectrum} \begin{split} &\frac{\mathsf{SPS}\text{-}\mathsf{EQ}\text{.}\mathsf{Convert}\mathsf{PK}(\mathsf{pk},\rho)\text{:}}{\mathsf{parse } \mathsf{pk} = ([\mathbf{B}]_2, [\mathbf{C}]_2)}\\ &\text{return } (\rho[\mathbf{B}]_2, \rho[\mathbf{C}]_2) \end{split}$$

 $\frac{\mathsf{SPS}\text{-}\mathsf{EQ}.\mathsf{Convert}\mathsf{SK}(\mathsf{sk},\rho):}{\mathsf{parse } \mathsf{sk} = (\mathsf{K}_0,\mathsf{K}); \ \mathsf{return} \ (\rho\mathsf{K}_0,\rho\mathsf{K})$

36 / 1

$$\begin{array}{lll} & {\displaystyle SPS-EQ.ChgRep(pp, [\mathbf{m}]_1, \sigma, \tau, \mu, pk):} \\ & {\displaystyle parse} \ \sigma = ([\mathbf{u}_1]_1, [\mathbf{t}]_1, \Omega_1, [z_0]_2, [z_1]_2, Z_1) \\ & {\displaystyle parse} \ \tau \in \{([\mathbf{u}_2]_1, [\mathbf{w}]_1, \Omega_2) \cup \bot\} \\ & {\displaystyle \Omega \leftarrow (\Omega_1, \Omega_2, [z_0]_2, [z_1]_2, Z_1) \\ & {\displaystyle check} \ PVer(crs, [\mathbf{t}]_1, [\mathbf{w}]_1, \Omega) \\ & {\displaystyle check} \ PVer(crs, [\mathbf{t}]_1, [\mathbf{w}]_1, \Omega) \\ & {\displaystyle check} \ e([\mathbf{u}_2]_1^\top, [\mathbf{A}]_2) \ \neq \ e([\mathbf{w}]_1^\top, [\mathbf{B}]_2) \\ & {\displaystyle check} \ e([\mathbf{u}_1]_1^\top, [\mathbf{A}]_2) \ \neq \ e([\mathbf{w}]_1^\top, [\mathbf{B}]_2) \\ & {\displaystyle check} \ e([\mathbf{u}_1]_1^\top, [\mathbf{A}]_2) \ \neq \ e([\mathbf{w}]_1^\top, [\mathbf{B}]_2) \\ & {\displaystyle check} \ e([\mathbf{u}_1]_1^\top, [\mathbf{A}]_2) \ \neq \ e([\mathbf{w}]_1^\top, [\mathbf{B}]_2) \\ & {\displaystyle check} \ e([\mathbf{u}_1]_1^\top, [\mathbf{A}]_2) \ \neq \ e([\mathbf{w}]_1^\top, [\mathbf{A}]_2) \ \neq \ e([\mathbf{t}]_1^\top, [\mathbf{B}]_2) + e([\mathbf{m}]_1^\top, [\mathbf{C}]_2) \\ & {\displaystyle \alpha, \beta \ \& \ \mathbb{Z}_p^* \\ & [\mathbf{u}_1'_1 \leftarrow \mu[\mathbf{u}_1]_1 + \beta[\mathbf{u}_2]_1 \\ & [\mathbf{t}_1'_1 \leftarrow \mu[\mathbf{t}]_1 + \beta[\mathbf{w}]_1 = [\mathbf{A}_0]_1(\mu r_1 + \beta r_2) \\ & {\displaystyle for \ all} \ i \in \{0, 1\} \\ & [z_i']_2 \leftarrow \alpha[z_i]_2 \\ & [\mathbf{a}_i']_2 \leftarrow \alpha[\mathbf{a}_i']_2 + \alpha\beta[\mathbf{a}_i^2]_2 \\ & [\mathbf{a}_i']_2 \leftarrow \alpha[\mathbf{a}_i']_2 + \alpha\beta[\mathbf{a}_i^2]_1 \\ & {\displaystyle \Omega' \leftarrow (([\mathbf{a}_i'_1]_1, [\mathbf{a}_i']_2, [\mathbf{z}_i']_2)_{i\in\{0,1\}}, \alpha Z_1) \\ & {\displaystyle \sigma' \leftarrow (([\mathbf{u}_1]_1, [\mathbf{t}_1']_1, \Omega') \\ & {\displaystyle return} \ (\mu[\mathbf{m}]_1, \sigma') \end{array} \right) \end{array} \right)$$

 $(crs, [m]_1, \sigma, \tau, \mu, \rho, pk):$ $]_1, \Omega_1, [z_0]_2, [z_1]_2, Z_1)$ $w]_1, \Omega_2) \cup \bot \}$ $[z_1]_2, Z_1$ $_{L}, [\mathbf{w}]_{1}, \Omega)$ $(\mathbf{w}_2) \neq e([\mathbf{w}]_1^\top, [\mathbf{B}]_2)$ $(2) \neq (2)$ $[\mathbf{n}]_1^{\top}, [\mathbf{C}]_2)$ $\beta[\mathbf{u}_2]_1$ $]_1 = [\mathbf{A}_0]_1(\mu r_1 + \beta r_2)$ $+ \alpha \beta [\mathbf{a}_i^2]_2$ $+ \alpha \beta [d_i^2]_1$ $[z'_i]_2)_{i \in \{0,1\}}, \alpha Z_1)$)