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Abstract. Cryptographic protocols are small programs which involve
a high level of concurrency and which are difficult to analyze by hand.
The most successful methods to verify such protocols rely on rewriting
techniques and automated deduction in order to implement or mimic the
process calculus describing the protocol execution.
We focus on the intruder deduction problem, that is the vulnerability to
passive attacks, in presence of several variants of AC -like axioms (from
AC to Abelian groups, including the theory of exclusive or) and homo-
morphism which are the most frequent axioms arising in cryptographic
protocols. Solutions are known for the cases of exclusive or, of Abelian
groups, and of homomorphism alone. In this paper we address the com-
bination of these AC -like theories with the law of homomorphism which
leads to much more complex decision problems.
We prove decidability of the intruder deduction problem in all cases con-
sidered. Our decision procedure is in EXPTIME, except for a restricted
case in which we have been able to get a PTIME decision procedure
using a property of one-counter and pushdown automata.

1 Introduction

Cryptographic protocols are ubiquitous in distributed computing applications.

c© Springer-Verlag

They are employed for instance in internet banking, video on demand services,
wireless communication, or secure UNIX services like ssh or scp. Cryptographic
protocols can be described as relatively simple programs which are executed in
an untrusted environment. These protocols use cryptographic primitives in order
to implement symmetric (shared-key) encryption, and asymmetric (public-key)
encryption and signatures.

Verifying protocols is notoriously difficult, and even very simple protocols
which look completely harmless may have serious security flaws, as it was dra-
matically demonstrated by the bug of the Needham-Schroeder protocol found
by Lowe [14] using a model-checking tool. It took 17 years since the protocol was
published to find the flaw, a so-called man in the middle attack. An overview of
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authentication protocols known a decade ago can be found in [5], a more recent
data base of protocols and known flaws is [11]. These protocols are often im-
plemented in small variants which differ from the originally proposed protocol,
or are used in combination with other protocols. As a consequence, there is a
multitude of verification problems, which raises the need for automatic tools.

There are different approaches to modeling cryptographic protocols and ana-
lyzing their security properties: process calculi like the spi-calculus [1], so-called
cryptographic proofs (see, for instance, [2]), and the approach of Dolev and Yao
[10] which consists in modeling an attacker by a deduction system. This deduc-
tion system specifies how the attacker can obtain new information from previous
knowledge, which he has either obtained by silently eavesdropping the commu-
nication between honest protocol participants (in case of a passive attacker),
or by eavesdropping and fraudulently emitting messages, thus provoking honest
protocol participants to reply according to the protocol rules (this is the case
of a so-called active attacker). We call intruder deduction problem the question
whether a passive eavesdropper can obtain a certain information from knowl-
edge that he observes on the network. The Dolev-Yao approach lends itself to
automation since the question whether the intruder can obtain a certain infor-
mation now reduces to the question whether this information can be deduced
using a certain deduction system.

Classically, the verification of cryptographic protocols was based on the so-
called perfect cryptography assumption which states that it is impossible to ob-
tain any information about an encrypted message without knowing the exact
key necessary to decrypt this message. This assumption allowed a separation of
verification tasks into proving lower bounds for the cryptanalysis of the crypto-
graphic primitives on the one hand, and verification of a distributed program on
the other hand. Unfortunately, this perfect cryptography assumption has proven
too idealistic: there are protocols which can be proven secure under the perfect
cryptography assumption, but which are in reality insecure since an attacker can
use properties of the cryptographic primitives in combination with the protocol
rules in order to obtain knowledge of a secret. These properties are typically
expressed as equational axioms (so-called algebraic properties), like for instance
associativity and commutativity of certain operators. Algebraic properties may
be essential for the executability of the protocol, or may just come into play
because the cryptographic primitives employed by the protocol happen to sat-
isfy these properties. A recent overview of algebraic properties of cryptographic
primitives, their use to mount attacks on protocols, and existing results on verifi-
cation of cryptographic protocols in presence of equational axioms can be found
in [8].

A number of results have been obtained, both for the intruder deduction
problem and for the preservation of secrecy under active attacks. We here only
mention some results which are of particular relevance to the problems studied
in this work: the intruder deduction problem in case of the equational axioms of
exclusive or is decidable [6] in polynomial time [4], and in case of the equational



axioms of Abelian groups is decidable [6]3 in polynomial time [19]. Likewise, the
intruder deduction problem is decidable in polynomial time [7] in the case of
the equational theory of an homomorphism. Note that the two equational theo-
ries of exclusive or and of homomorphism model basic properties of important
cryptographic primitives:

– Exclusive or is a basic building block in many symmetric encryption methods
(for instance DES or the more recent AES) or even used directly as an
encryption method;

– Homomorphisms are ubiquitous in cryptography, by example the ElGamal
encryption method has this property. Note that many protocols combine
symmetric and asymmetric encryption.

– Symmetric encryption methods which often work on data blocks of fixed
size are in the simplest of cases (the so-called electronic codebook mode)
homomorphically extended to data streams of arbitrary size.

Some examples of attacks against protocols using the equational theories con-
sidered in this paper can be found in [8].

In this paper we investigate the intruder deduction problem in presence of
several variants of the equational theory of associativity and commutativity
(short AC ) of a binary operator ⊗, plus the homomorphism property of a unary
function symbol over the AC operator. The variants of AC which we consider
are: pure AC, the theory of exclusive or (also called ACUN ), and the theory
of Abelian groups. We are furthermore interested in the combination of these
AC -like theories with a generalization of one homomorphic function to some
form of distributivity of the encryption operator over the binary operator ⊗.
The homomorphism law is then replaced by a law stating that the encryption of
the ⊗ of two messages is equal to the ⊗ of the encryptions of the two messages
using the same encryption key. We do not assume that the set of encryption keys
is finite. Rather, any term can be used as an encryption key. This can be seen
as the extension to an infinite family of homomorphisms, one for each possible
encoding key. Our results can be summarized as follows:

1. The intruder deduction problem is decidable. It is NP-complete in case of
the theory AC plus homomorphism, and we have an exponential-time upper
bound for the equational theory ACUN plus homomorphism and Abelian
groups plus homomorphism.

2. The intruder deduction problem is in all three cases decidable in polyno-
mial time if we restrict the class of problems to the so-called binary case,
that is the case where the set of assumptions and the goal do not contain
applications of ⊗ to more than two terms.

3. The first two sets of results carry over to the generalization which consists
in replacing the homomorphic function by an encryption operation which
distributes over ⊗.

3 In fact, the NP-decision procedure in the case of Abelian groups given by [6] can
also be improved to deterministic polynomial time using the techniques explained
in this report.



We follow the approach of [6] and [7] which consists in a generalization of
McAllester’s locality method explained in Section 3.

Plan of the paper: We present in Section 2 the Dolev-Yao model of intruder
capacities extended by a rewrite system modulo AC and list the rewrite sys-
tems investigated in this paper. In Section 3 we explain the generalization of
McAllester’s proof technique. We apply this technique in Sections 4, 5 and 6
to obtain decidability and complexity results for the case of exclusive or plus
homomorphism. We discuss in Section 7 how these results can be transfered to
some other related rewrite systems. Finally, we conclude in Section 8.

The full version of this paper with all proofs can be found at [13]. We use
standard notation from rewriting. The reader may consult [9, 3] if necessary.

2 A Dolev-Yao Model for Rewriting Modulo AC

We consider the classic model of deduction rules [10] introduced by Dolev and
Yao in order to model the deductive capacities of a passive intruder. We present
here an extension of this model where we assume an associative and commutative
operator ⊗, and an equational theory E which can be exploited by the intruder
to mount an attack. Knowledge of the intruder is represented by terms built over
a finite signature Σ of the form

Σ = {〈·, ·〉, {·}·,⊗, f} ] Σ0

where Σ0 is a set of constant symbols. The term 〈u, v〉 represents the pair of
the two terms u and v, and {u}v represents the encryption of the term u by the
term v. For the sake of simplicity we here only consider symmetric encryption;
the results and techniques can be easily transferred to the case of asymmetric
encryption.

The equational theory E is represented by a convergent rewrite system R
modulo AC, that is R is terminating and confluent modulo associativity and
commutativity of ⊗, and for all terms t, s ∈ T (Σ) we have that t =E s iff
t ↓R/AC =AC s ↓R/AC .

The deduction system describing the deductive capacities of an intruder is
given in Figure 1. This deduction system is composed of the following rules: (A)
the intruder may use any term which is in his initial knowledge, (P) the intruder
can build a pair of two messages, (UL, UR) he can extract each member of a
pair, (C) he can encrypt a message u with a key v, (D) if he knows a key v he
can decrypt a message encrypted by the same key, (F) he can construct a new
term using the function symbol f . Since we distinguish a special binary operator
⊗ we here furthermore add a family of rules (GX) which allows the intruder to
build a new term from an arbitrary number of already known terms by using
the (associative) ⊗ operator. The need for such a variadic rule (instead of just
a binary rule) will become apparent in Section 3.

In fact, this deductive system is equivalent in deductive power to a variant
of the system in which terms are not automatically normalized, but in which
arbitrary equational proofs are allowed at any moment of the deduction. The



(A) u ∈ T
T ` u ↓R/AC

(UL) T ` r
T ` u ↓R/AC

if〈u, v〉 = r ↓R/AC

(P) T ` u T ` v

T ` 〈u, v〉 ↓R/AC

(UR) T ` r
T ` v ↓R/AC

if〈u, v〉 = r ↓R/AC

(C) T ` u T ` v

T ` {u}v ↓R/AC

(D) T ` r T ` v
T ` u ↓R/AC

if{u}v = r ↓R/AC

(F) T ` u

T ` f(u) ↓R/AC

(GX) T ` u1 · · · T ` un

T ` (u1 ⊗ . . . ⊗ un) ↓R/AC

Fig. 1. A Dolev-Yao proof system working on normal forms by a rewrite system R

modulo AC

f(x ⊗ y) → f(x) ⊗ f(y)

(a) ACh

0 ⊗ x → x

x ⊗ x → 0
f(0) → 0
f(x ⊗ y) → f(x) ⊗ f(y)

(b) ACUNh

0 ⊗ x → x

x ⊗ x → 0
I(0) → 0
I(x ⊗ y) → I(x) ⊗ I(y)
I(I(x)) → x

f(I(x)) → I(f(x))
f(0) → 0
f(x ⊗ y) → f(x) ⊗ f(y)

(c) AGh

Fig. 2. The three rewrite systems modulo AC

equivalence of the two proof systems has been shown in [7] without AC axioms;
in [13] this has been extended to the case of a rewrite system modulo AC.

In the rest of the paper, we will investigate the Dolev-Yao deduction system
modulo the rewrite systems presented in Figure 2, which correspond respectively
to AC plus homomorphism of f over ⊗, the theory of exclusive or plus homo-
morphism of f over ⊗, and the theory of Abelian groups plus homomorphism of
f over ⊗. We will omit the index R/AC and write → instead of →R/AC .

3 Locality and Complexity of Deduction Problems

Our starting point is the locality technique introduced by David McAllester [15].
He considers deduction systems which are represented by finite sets of Horn
clauses. He shows that there exists a polynomial-time algorithm to decide the
deducibility of a term w from a finite set of terms T0 if the deduction system
has the so-called locality property. A deduction system has the locality property



if any proof of T0 ` w can be transformed into a local proof where a local proof
is a proof where all the nodes are syntactic subterms of T0 and w.

The idea of his proof is as follows: Checking existence of a proof amounts to
checking existence of a local proof. Let us call for the moment a relevant instance
of a deduction rule an instance of a rule where all terms are syntactic subterms
of T0 or w. Only these relevant instances are needed to construct a local proof.

We say that w is one-step deducible from some set T , if we can obtain w from
T with only one application of a rule of the proof system. To check the existence
of a local proof of T0 ` w it is now sufficient to saturate T0 by the one-step
deduction relation, where in addition it is sufficient to just consider the relevant
instances of the deduction rules.

This approach suffers from two main restrictions:

– The deduction system must be finite.
– The notion of locality is restricted to syntactic subterms.

These restrictions raise a serious problem when we want to work modulo
AC. If we used only a binary rule (GX) we would have to consider all possible
subterms modulo AC. Unfortunately, there is in general an exponential number
of subterms modulo AC of a given term. The solution proposed in [6], and
which we also adopt here, is to use the rule (GX) with an arbitrary number
of hypotheses. In this way, we can avoid the exponential number of subterms.
However, we are now stuck with an infinite number of rules. Fortunately, we can
still obtain an polynomial algorithm by implementing in a clever way the test
whether a term w is one-step deducible from a set T .

Definition 1. Let S be a function which maps a set of terms to a set of terms.
A proof P of T ` w is S-local if all nodes are labeled by some T ` v, with
v ∈ S(T ∪ {w}). A proof system is S-local if whenever there is a proof of T ` w
then there also is some S-local proof of T ` w.

Theorem 1. Let S be a function mapping a set of terms to a set of terms, and
P a proof system. If

– the set S(T ) can be constructed in time K1,
– P is S-local,
– one-step deducibility in P is decidable in time K2,

then provability in the proof system P is decidable in time max(K1,K2).

This theorem generalizes McAllester’s result because in his case the size of
the set of syntactic subterms of the set T is polynomial in the size of T , and since
one-step deducibility is decidable in polynomial time for a finite proof system.
Hence, in McAllester’s case, it remained only the S-locality to show.

4 Proof Transformations

The following definitions and transformations can be applied to the cases ACh
and ACUNh. The case of AGh requires an extension briefly discussed in Subsec-
tion 7.2.



Definition 2. The size of a proof P is the number of nodes in P , denoted
by |P |. A proof P of T ` u is minimal if there is no proof P ′ of T ` u such that
|P ′| < |P |.

Definition 3. Let P be a proof of T ` w, P is a

– simple proof if each node T ` v occurs at most once on each branch.
– flat proof if there is no (GX) rule immediately above another (GX) rule,
– ⊗-lazy proof if P is flat and there is no (GX) rule immediately above an (F)

rule in P ,
– ⊗-eager proof if P is flat and if there is at most one (F) rule immediately

above a (GX) rule in P .

Since two successive (GX) rules can be merged into a single (GX) rule a
minimal proof is a flat proof. Obviously any minimal proof is simple. Intuitively,
in a ⊗-lazy proof the (GX) rule is applied as late as possible, and in a ⊗-eager
proof the (GX) rule is applied as early as possible.

Lemma 1. If there is a proof of T ` w then there is also a ⊗-lazy proof and a
⊗-eager proof of T ` w.

Proof. Successive (GX) rules can obviously be merged. We can obtain a ⊗-lazy
proof by applying the following proof transformation rule:

T ` x1 . . . T ` xn

(GX)
T ` x1 ⊗ . . . ⊗ xn

(F)
T ` f(x1) ⊗ . . . ⊗ f(xn)

=⇒

T ` x1

(F)
T ` f(x1)

. . .

T ` xn

(F)
T ` f(xn)

(GX)
T ` f(x1) ⊗ . . . ⊗ f(xn)

We obtain a ⊗-eager proof by applying the following proof transformation,
where the rules (Gi) are all different from (F ):

T ` x1

(F)
T ` f(x1)

. . .

T ` xn

(F)
T ` f(xn)

T ` y1

(G1)
T ` z1

. . .

T ` ym

(Gm)
T ` zm

(GX)
T ` f(x1) ⊗ . . . ⊗ f(xn) ⊗ z1 ⊗ . . . ⊗ zm

⇓
T ` x1 . . . T ` xn

(GX)
T ` x1 ⊗ . . . ⊗ xn

(F)
T ` f(x1) ⊗ . . . ⊗ f(xn)

T ` y1

(G1)
T ` z1

. . .

T ` ym

(Gm)
T ` zm

(GX)
T ` f(x1) ⊗ . . . ⊗ f(xn) ⊗ z1 ⊗ . . . ⊗ zm



5 Locality for the Rewrite System ACUNh

Definition 4. Let u be a term in normal form, u is headed with ⊗ if u is of
the form u1 ⊗ . . . ⊗ un with n > 1. Otherwise u is not headed with ⊗.

We define the function atoms(u) as following :

– If u = u1 ⊗ . . . ⊗ un, where each of the ui is not headed with ⊗, then
atoms(u) = {u1, . . . , un}. The terms ui are called the atoms of u.

– If u is not headed with ⊗, then atoms(u) = {u}.

The definition of atoms(T ) generalizes in a natural way to sets of terms T in
normal form by atoms(T ) :=

⋃

t∈T atoms(t).

Definition 5. We define for any T ⊆ T (Σ) the set ST (T ) as the smallest set
which contains T , is closed under syntactic subterms, and such that if f(u1) ⊗
. . . ⊗ f(un) ∈ ST (T ) then u1 ⊗ . . . ⊗ un ∈ ST (T ).

Lemma 2. Let P be a proof which is minimal among all ⊗-lazy proofs of T ` w,
and such that the last rule applied in P is of the form (X) T`N1...T`Nn

T`w , where
(X) is one of (UL), (UR), or (D). Then Ni ∈ ST (T ) for all i.

This has been shown [7] in the setting of exclusive or without an homomorphism.
The proof is very easily extended (see [13]) to our setting of ACUNh.

Lemma 3. Let P be a proof which is minimal among all ⊗-lazy proofs of T ` w,
and let P ′ be a subproof of P with root label T ` N . If the last rule applied in
P ′ is (P), (C), or (GX) then N ∈ ST (T ∪ {w}).

This is a central technical lemma. The proof is given in [13].

Lemma 4. Let P be a proof which is minimal among all ⊗-lazy proofs of T ` w,
and let P ′ be a subproof of P with root label T ` N such that the last rule applied
in P ′ is (F). If either

1. all nodes from the root of P ′ to the root of P are (F),
2. or if the first successor not labeled by (F) of the root of P ′ in P is labeled by

a rule different from (GX),

then N ∈ ST (T ∪ {w}).

The two cases of the lemma can be illustrated like this:

P’ P

(F)

P’ P

(X)

(F)

In the right picture, (X) denotes a rule different from (F) and from (GX). The
lemma states that (F) nodes are in ST (T ∪ {w}) as long as they do not produce



an hypothesis of a (GX) rule via a succeeding sequence of (F) nodes. This follows
easily from Lemma 2 and Lemma 3 (see [13]).

Example 1 The following proof of T = {u ⊗ v, f(v)} ` f(u) is minimal:

u ⊗ v ∈ T

(A)
T ` u ⊗ v

(F)
T ` f(u) ⊗ f(v)

f(v) ∈ T

(A)
T ` f(v)

(GX)
T ` f(u)

We obtain ST (T ∪ {w}) = {u, v, u ⊗ v, f(u), f(v)}. This proof is not ST -local
since f(u) ⊗ f(v) 6∈ ST (T ∪ {w}).

As can be seen in the above example, the problem in defining S-locality for a
polynomial-size S is to bound the number of applications of the (F) proof rule
when constructing hypotheses to a (GX) rule.

5.1 Locality in the Binary Case

In the binary case, that is when all terms in ST (T∪{w}) have at most two atoms,
we can actually find an upper bound for the number of applications of (F).

Definition 6. A term t is binary if every s ∈ ST (t) either is not headed with
⊗, or is of the form s1 ⊗ s2 where s1, s2 are not headed with ⊗. A set of terms
is binary if each of its elements is binary. A proof is binary if each of its nodes
is labeled by a sequent T ` w where T and w are binary.

Proposition 1. If T and w are binary then every proof which is minimal among
the ⊗-lazy proofs of T ` w is binary.

We define for any term t the term Stripf (f(t)) = Stripf (t), and Stripf (t) = t if t
does not have root symbol f . Furthermore, #f (f(t)) = 1 + #f (t), and #f (t) =
0 when t is not headed by f . In the binary case we associate a one-counter
automaton to the set ST (T ∪{w}). The idea is that states of the automaton are
terms in Stripf (atoms(ST (T ∪{w}))), and the counter represents the number of
applications of f to a term.

Definition 7. Let T be a set of terms such that every term in T has at most
two atoms. We partition T = T1]T2 where T1 is the set of terms not headed with
⊗, and T2 is the set of terms headed with ⊗. The automaton associated with T ,
abbreviated AT , is a one-counter automaton without input defined as follows:

The set of states QT of AT is

{init} ∪ {p′ | p ∈ Stripf (T1)} ∪ {r | r ∈ Stripf (T1) ∪ Stripf (atoms(T2))}



where init is the initial state of AT . The set of transitions is:

From To Condition Action
∀t ∈ T1 : init (Stripf (t))′ c ≥ 0 c := c
∀t ∈ T1 : (Stripf (t))′ (Stripf (t))′ c ≥ 0 c := c + 1
∀t ∈ T1 : (Stripf (t))′ Stripf (t) c ≥ #f (t) c := c
∀t ⊗ s ∈ T2 : Stripf (t) Stripf (s) c ≥ #f (t) c := c − #f (t) + #f (s)

Note that in the last line of the above transition table the statement “t⊗s ∈ T2”
is to be understood modulo AC, such that we obtain from a binary clause a back
and a forth transition.

Example 2 The automaton AT for T = {a ⊗ f2(b), a} is as follows, where I
denotes the initial state:

I a’ a b

c ≥ 0
c := c

c ≥ 0
c := c + 1

c ≥ 0
c := c

c ≥ 0
c := c + 2

c ≥ 2
c := c − 2

One of the two lemmata relating the proof system with our automata con-
struction is:

Lemma 5. Let T be a set of binary terms. For all t0, . . . , tn ∈ Stripf (atoms(T ))
and all natural numbers c0, . . . , cn we have that

AT |= (t0, c0) → (t1, c1) → . . . → (tn, cn)

iff there are terms s1, . . . , sn ∈ T and natural numbers d1, . . . , dn such that:

1. for 1 ≤ i ≤ n the term si is headed with ⊗ and has exactly two atoms, that
is si = s1

i ⊗ s2

i

2. ∀1 ≤ i ≤ n : fdi(s1

i ) = f ci−1(ti−1)
3. ∀1 ≤ i ≤ n : fdi(s2

i ) = f ci(ti)

As a consequence and using the axiom x ⊗ x = 0, we obtain that

n
⊕

i=1

fdi(si) ↓ = fd1(s1

1
) ⊗ fdn(s2

n) = f c0(t0) ⊗ f cn(tn)

Lemma 6. Let A be a one-counter automaton and π : (q, cq) →
? (r, cr) a path

between the state q with the counter cq ≥ 0 and the state r with the counter
cr ≥ 0. Then there exists a path from (q, cq) to (r, cr) such that everywhere along
the path the value of the counter is bounded by p(|A|), where p is a polynomial
function.



We believe this lemma to be folklore but were unable to find a proof in the liter-
ature. A proof, along with a definition of the polynomial function p, is included
in the complete version [13]. We can now define:

Definition 8. We define for any finite subset U of T (Σ):

Sf (U) = {f i(u) ↓ | u ∈ ST (U), 0 ≤ i ≤ p(|AT |)}

where the function p is as in Lemma 6.

Note that the size of Sf (U) is polynomial in the size of U . Combining Lemmata 2
through 6 we obtain:

Lemma 7. Let T ⊆ T (Σ) and w ∈ T (Σ) be binary, and let P be a proof which
is minimal among all ⊗-lazy proofs of T ` w. All nodes of P are in Sf (T ∪{w}).

5.2 Locality in the General Case

Definition 9. We define for any finite subset U of T (Σ):

S⊗(U) = {u1 ⊗ . . . ⊗ un|u1, . . . , un ∈ ST (U)}

Note that the size of S⊗(T ) is exponential in the size of T .

Lemma 8. Let M ⊆ T (Σ), t0 ∈ T (Σ), and t1, . . . , tn ∈ ST (M).
If (t0 ⊗ t1 ⊗ . . . ⊗ tn) ↓ ∈ S⊗(M) then t0 ∈ S⊗(M).

The easy proof can be found in [13]. This lemma, together with the previous
lemmata, is the key for proving the following lemma which states that any proof
which is minimal among the ⊗-eager proofs of T ` w contains only nodes in
S⊗(T ∪ {w}).

Lemma 9. The Dolev-Yao proof system in case of ACUNh is S⊗-local.

6 One-Step Deducibility in Case of ACUNh

We follow the well-known method for solving unification problems modulo AC -
like theories [16]. We only show how to decide one-step deducibility for the family
of rules (GX), since checking one-step deducibility for the remaining deduction
rules is straightforward. We transform the problem of testing one-step deducibil-
ity into the satisfiability of a system of linear Diophantine equations.

Let t ∈ T (Σ) and u ∈ T (Σ) not headed with ⊗. We denote by δ(u, t) the
number of occurrences of u in atoms(t) (which is, in the case ACUNh, either 0
or 1).

Definition 10. Let s ∈ T (Σ) and T = {t1, . . . , tn} be a finite subset of T (Σ).
Let atoms(T ∪ {s}) = {a1, . . . , am}. The equation system D(T, s) over the vari-
ables x1, . . . , xn is

D(T, s) :=

m
∧

i=1

n
∑

j=1

δ(ai, tj) ∗ xj = δ(ai, s)



Example 3 Let T = {a1 ⊗ a2 ⊗ a3, a1 ⊗ a4, a2 ⊗ a4} and s = a1 ⊗ a2, where all
the ai are not headed with ⊗. We introduce numerical variables x1, x2, x3, that
is one numerical variable for each element of T :

x1 for a1 ⊗ a2 ⊗ a3

x2 for a1 ⊗ a4

x3 for a2 ⊗ a4

For every atom ai we create an equation. This yields the following equation
system:















a1 : x1 + x2 = 1
a2 : x1 + x3 = 1
a3 : x1 = 0
a4 : x2 + x3 = 0

Lemma 10. Let s ∈ T (Σ) and T a finite subset of T (Σ). Then s is deducible
with one application of a rule (GX) from T if and only if D(T, s) is solvable over
Z/2Z.

Since satisfiability of a system of linear Diophantine equations over Z/2Z is
in PTIME [12], we obtain from Lemma 10, Theorem 1, and Lemma 9 that:

Theorem 2. The question whether T ` w is deducible form T in case of the
rewrite system ACUNh is decidable in EXPTIME.

In the binary case we obtain from Lemma 10, Theorem 1, Lemma 7, and Propo-
sition 1 that:

Theorem 3. The question whether T ` w is deducible form T in case of the
rewrite system ACUNh, where T and w are binary, is decidable in PTIME.

7 Variants and Extensions

7.1 The Rewrite System ACh

The case of the rewrite system ACh is much simpler than the case ACUNh
since with ACh it is not possible that terms are canceled out when applying the
constructor ⊗. Hence we do not get the difficulty seen in Example 1.

Lemma 11. The extended Dolev-Yao proof system in case of ACh is ST -local.

The downside is that, in order to decide one-step deducibility, we now have to
solve linear Diophantine equation systems over N. This problem is in general
NP-complete [17]. Furthermore, it is quite easy to reduce satisfiability of linear
Diophantine equations over N to the intruder deduction problem modulo ACh.

An exception is again the binary case, where one-step deducibility is decidable
in polynomial time (which is trivial to prove in this case). We hence obtain:

Theorem 4. The problem whether T ` w in case of the rewrite system ACh is
NP-complete, and decidable in PTIME if we restrict the problem to the binary
case.



7.2 The Rewrite System AGh

The case of the rewrite system AGh is very similar to the case of ACUNh. The
lemmata and techniques can be adapted easily when we change the definitions
of ST , Sf , and S⊗ and require now in addition that they are closed under appli-
cation of the inversion function and subsequent normalization of the term.

We can test one-step deducibility essentially as in Section 6. The major differ-
ence is that we now have to check our equation system D(T, s) for satisfiability
in Z, which again is in PTIME [18].

Theorem 5. The problem whether T ` w in case of the rewrite system AGh is
decidable in EXPTIME, and decidable in PTIME if we restrict the problem to
the binary case.

7.3 Extension to an Encryption Operation which is Homomorphic

over ⊗

This extension consists of replacing, in the three rewrite systems given at the
end of Section 2, the rewrite rule

f(x ⊗ y) → f(x) ⊗ f(y)

by the new rule
{x ⊗ y}z → {x}z ⊗ {y}z

On a technical level, this introduces the additional difficulty that we can now
decompose in certain cases a sum built by ⊗, as for instance

T ` {a}k ⊗ {b}k ⊗ {c}k T ` k

(D)
T ` a ⊗ b ⊗ c

However, we obtain for this extension lemmata and results which are analogous
to the ones in the previous sections. The construction of the automaton for the
binary case explained in Section 5 has now to be generalized since we now have
an a priori infinite family of homomorphisms. In the case of Section 5 one counter
was enough to count the number of applications of the homomorphic function f .
In the extended case, we have to represent the sequence of encryption keys used
in a stack of encryption operations, which can now be done with a pushdown
automaton. We can find a lemma analogous to Lemma 6 also for the class of
pushdown automata. The only remaining difficulty is to show that the stack
alphabet, which consists of the encryption keys used in a minimal and ⊗-lazy
proof, is finite. This is not obvious since we may use any term as an encryption
key. However, we obtain easily by the Lemmata which correspond to Lemmata 2,
3, and 4 that:

Lemma 12. Let P be a proof which is minimal among the ⊗-lazy proofs of
T ` w. All the encryption keys used in the proof P are in ST (T ∪ {w}).

As a consequence, the Theorems 2, 3, 4, and 5 still hold for this extension.



8 Conclusion

A summary of the results obtained on the complexity of the intruder deduction
problem modulo AC -like equational theories with homomorphism is given in the
following table. The results for homomorphism only (without AC axioms) have
been shown in a different paper [7] and are here cited only for completeness.

Complexity of the intruder deduction problem

Binary case General case
h PTIME [7]
ACh PTIME NP -Complete
ACUNh PTIME EXPTIME
AGh PTIME EXPTIME

The reason for the high complexity in the general case is a different one for
the different equational theories considered, as shown in the following table:

Complexity in the general case

Computation of subterms One step deducibility General deducibility
h PTIME [7] PTIME [7] PTIME [7]
ACh PTIME NP-Complete NP-Complete
ACUNh EXPTIME PTIME EXPTIME
AGh EXPTIME PTIME EXPTIME

As future work, we plan to investigate the case of an active intruder. We
can yet observe that it has been shown in [8] that decidability of unification
modulo an equational theory E is a necessary condition for the decidability of
the security of a protocol for a bounded number of sessions and in presence of
this equational theory E. Since unification modulo AC plus homomorphism is
known undecidable [16], the security against active attackers is undecidable at
least for this equational theory as well.
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