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Abstract

The Advanced Encryption Standard (AES) is one of the most studied symmetric encryption
schemes. During the last years, several attacks have been discovered in different adversarial
models. In this paper, we focus on related-key differential attacks, where the adversary
may introduce differences in plaintext pairs and also in keys. We show that Constraint
Programming (CP) can be used to model these attacks, and that it allows us to efficiently
find all optimal related-key differential characteristics for AES-128, AES-192 and AES-256.
In particular, we improve the best related-key differential for the whole AES-256 and give
the best related-key differential on 10 rounds of AES-192, which is the differential trail with
the longest path. Those results allow us to improve existing related-key distinguishers, basic
related-key attacks and q-multicollisions on AES-256.
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Introduction

As attacking the Advanced Encryption Standard (AES) in the unknown key model seems
to be out of reach at this time, many recent results focus on the so-called related-key, known-
key or chosen-key models [1, 2, 3]. During the last decade, many results bring some grist to this
research direction. In particular, the notion of differential q-multicollisions was introduced
in [4]. A differential q-multicollision for a cipher EK(·) is defined by a non zero key difference
δK, a non zero plaintext difference δX and a set of q distinct pairs (X i, Ki) with i ∈ [1, q]
such that all EKi(X i)⊕EKi⊕δK(X i⊕ δX) are equal. Constructing such a q-multicollision for

an ideal n-bit block cipher has a time complexity of O(q · 2
q−2
q+2

n). However, for AES-256 the
number of required AES encryptions has been shown to be equal to q · 267 in [4].

Building such q-multicollisions requires finding optimal (in terms of probability) related-
key differential characteristics. This challenging task was tackled for AES-128 with a graph
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AES-192
Attack Nb rounds Nb keys Data Time Memory Source
RK rectangle 10 64 2124 2183 N/A [6]
RK amplified
boomerang

12 4 2123 2176 2152 [7]

RK distinguisher 10 280 2108∗ 2108∗ - Section 2.1
basic RK differential 10 244 2156 2156 265 Section 2.1

AES-256
Attack Nb rounds Nb keys Data Time Memory Source
RK boomerang 14 4 299.5 299.5 277 [7]
RK distinguisher 14 235 2119∗ 2119∗ - [4]
basic RK differential 14 235 2131 2131 265 [4]
q-multicollisions 14 2q 2q q267 - [4]

RK distinguisher 14 232 2114∗ 2114∗ - Section 2.2
basic RK differential 14 232 2125 2125 265 Section 2.2
q-multicollisions 14 2q 2q q266 - Section 2.2

Table 1: Summary of existing attacks against AES-192 and AES-256 in the related-key and chosen-
key models. RK stands for Related-Key, N/A means Not Available and ∗ means for each key.

traversal approach in [3], and for AES-128, AES-192, and AES-256 with a depth-first search
approach in [4]. However, the 4-round solution for AES-128 claimed to be optimal in [4, 3]
has been shown to be sub-optimal in [5]. In [5], the authors used Constraint Programming
(CP) to efficiently enumerate related-key differential characteristics on AES-128.

In this paper, we further investigate the interest of using CP for finding optimal related-
key differential characteristics for AES-192 and AES-256 whereas [5] has only focused on
AES-128. We give new optimal solutions found with our CP approach. Table 1 sums up our
new results in different attack models.

In Section 1, we give a brief overview of how our CP models work. In Section 2, we show
how to use the solutions found by our CP models to improve existing related-key differential
attacks for AES-192 and AES-256.

1. CP models for finding AES related-key differential paths

Mounting related-key differential attacks requires finding a related-key differential char-
acteristic [8, 1], i.e. a plaintext difference δX = X ⊕X ′ and a key difference δK = K ⊕K ′,
such that δX becomes δXr after r rounds with a probability as high as possible. The AES
operations ShiftRows (SR), MixColumns (MC), AddRoundKey (ARK) are linear, i.e., they
propagate differences in a deterministic way (with probability 1). The only non-linear oper-
ation is SubBytes (SB) where the used S-box S transforms a given difference into another
one in a probabilistic way. Even if the most important part of the AES KeySchedule (KS)
is linear, it also makes regular calls to the S-box S.

To find optimal related-key differential characteristics and as done in [9] and [3], we use
a two-step solving process. Step 1 works with a boolean representation of differences: We
denote ∆A the boolean representation of the byte difference δA such that ∆A = 0⇔ δA = 0
and ∆A = 1 ⇔ δA ∈ [1, 255]. These boolean variables give difference positions. The goal
of Step 1 is to find a Boolean solution that assigns values to Boolean variables such that the
AES transformation rules are satisfied. During this first step, the SubBytes operation SB is
not considered. Indeed, it does not introduce nor remove differences.
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Then, Step 2 uses these positions to determine difference values at the byte level, i.e., to
find the actual value δA ∈ [1, 255] for each boolean variable ∆A which is equal to 1. Note
that some solutions at the boolean level (found during Step 1) cannot be transformed into
solutions at the byte level during Step 2. These solutions are said to be byte inconsistent.

1.1. Basic CP Model for Step 1

A first CP model for Step 1 may be derived from the AES transformations in a rather
straightforward way. We extend the model described in [5] for AES-128 to AES-192 and AES-
256. A CP model is defined by a set of variables, such that each variable x has a domain D(x),
and a set of constraints, i.e., relations that restrict the values that may be simultaneously
assigned to the variables. For each differential byte δB, we define a Boolean variable ∆B
whose domain is D(∆B) = {0, 1}: it is assigned to 0 if δB = 0, and to 1 otherwise.

The XOR constraint for ARK and KS. We first define a XOR constraint for ARK and KS. Let
us consider three differential bytes δA, δB and δC such that δA⊕ δB = δC. If δA = δB = 0,
then δC = 0. If (δA = 0 and δB 6= 0) or (δA 6= 0 and δB = 0) then δC 6= 0. However, if
δA 6= 0 and δB 6= 0, then we cannot know if δC is equal to 0 or not: This depends on whether
δA = δB or not. When abstracting differential bytes δA, δB and δC with Boolean variables
∆A, ∆B and ∆C (which only model the fact that there is a difference or not), we obtain the
following definition of the XOR constraint: XOR(∆A,∆B,∆C)⇔ ∆A+ ∆B + ∆C 6= 1.

Both ARK and KS are directly modeled with XOR constraints. The definition of KS
depends on the key kength. The CP model defined in [5] only considers 128 bit key length.
We have extended it to 192 and 256 bit lengths in a rather straightforward way.

ShiftRows and MixColumns. SR simply shifts variables. The MDS property of MC is en-
sured by posting a constraint on the sum of all variables on a same column before and after
MC, which must belong to the set {0, 5, 6, 7, 8}.

Objective function. The goal is to minimize the number of S-boxes that must be crossed by
Boolean differential paths. This is done in CP by introducing an integer variable objStep1
which is constrained to be equal to the sum of all boolean variables associated with bytes on
which an non linear transformation S is applied.

Limitations of the basic CP model. This basic CP model CPbasic is complete, i.e., for any
solution at the byte level (on δ variables), there exists a solution at the Boolean level (on
∆ variables). However, preliminary experiments reported in [5] have shown us that there
is a huge number of Boolean solutions which are byte inconsistent. For example, when the
number of rounds is r = 4 for AES-128, the optimal cost is objStep1 = 11, and there are more
than 90 millions of Boolean solutions with objStep1 = 11. However, none of these solutions is
byte-consistent. In this case, most of the Step 1 solving time is spent at generating useless
Boolean solutions which are discarded in Step 2.
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1.2. Additional Constraints for Step 1

We have introduced in [5] a second model called CPEQ for AES-128. This model removes
many byte-inconsistent solutions by propagating equality constraints at the byte level. In this
paper, we extend it to AES-192 and AES-256. A full version of this model could be found in
[10] and in [11]1.

New equality variables. For each couple of differential bytes (δA, δB), we introduce a Boolean
equality variable EQδA,δB which is equal to 1 if δA = δB, and to 0 otherwise. These variables
are constrained to define an equivalence relation by adding a symmetry constraint (EQδA,δB =
EQδB ,δA) and a transitivity constraint (if EQδA,δB = EQδB,δC = 1 then EQδA,δC = 1). Also,
EQ variables are related to ∆ variables by adding the constraints:

(EQδA,δB = 1)⇒ (∆A = ∆B) and EQδA,δB + ∆A+ ∆B 6= 0

Revisiting the XOR constraint. When defining the constraint XOR(∆A,∆B,∆C), if ∆A =
∆B = 1, then we cannot know if ∆C is equal to 0 or 1. However, whenever ∆C = 0
(resp. ∆C = 1), we know for sure that the corresponding byte δC is equal to 0 (resp.
different from 0), meaning that the two bytes δA and δB are equal (resp. different), i.e., that
EQδA,δB = 1 (resp. EQδA,δB = 0). The same reasoning may be done for ∆A and ∆B because
(δA ⊕ δB = δC) ⇔ (δB ⊕ δC = δA) ⇔ (δA ⊕ δC = δB). Therefore, we redefine the XOR

constraint as follows:

XOR(∆A,∆B,∆C)⇔ ((∆A+ ∆B + ∆C 6= 1)∧ (EQδA,δB = 1−∆C)

∧ (EQδA,δC = 1−∆B)∧ (EQδB,δC = 1−∆A))

Propagation of MDS at Byte Level. The MDS property ensures that, for each column, the
total number of bytes which are different from 0, before and after applying MC, is either equal
to 0 or strictly greater than 4. This property also holds for any xor difference between two
different columns at different rounds. To propagate this property, for each pair of columns,
we add a constraint on the sum of equality variables between bytes of these columns.

Constraints derived from KS. The KeySchedule mainly performs xor and S-box operations.
As a consequence, each subkey byte δKi[j][k] at round i may be expressed as a xor be-
tween bytes of the original key difference δK[j][k], and bytes that have passed through an
S-box at round i − 1, denoted by δS(Ki−1[j][k]). Hence, for each byte δKi[j][k], we pre-
compute the set V (i, j, k) such that V (i, j, k) only contains bytes of δK and δS(Ki−1) and
δKi[j][k] =

⊕
δA∈V (i,j,k) δA. For each set V (i, j, k), we introduce a set variable V1(i, j, k) which

is constrained to contain the subset of V (i, j, k) corresponding to the Boolean variables equal
to 1. We use these set variables to infer that two differential key bytes that have the same V1
set are equal. Also, if V1(i, j, k) is empty (resp. contains one or two elements), we infer that
∆Ki[j][k] is equal to 0 (resp. a variable, or a xor between 2 variables).

1The code of [11] is available through http://www.gerault.net/Doctoral_Program_CP17.zip.
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1.3. CP Model for Step 2

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-consistent
solution with the highest probability (or proving that there is no byte-consistent solution).
Hence, for each Boolean variable ∆A of Step 1, we define an integer variable δA whose
domain depends on the value of ∆A: If ∆A = 0, then D(δA) = {0} (i.e., δA is also assigned
to 0); otherwise, D(δA) = [1, 255]. As we look for a byte-consistent solution with maximal
probability, we also add an integer variable PA for each byte A that passes through an S-
box: This variable corresponds to the base 2 logarithm of the probability Pr(δA → δSA)
of obtaining the output difference δSA when the input difference is δA. If ∆A = 0, then
Pr(0 → 0) = 1 and therefore D(PA) = {0}; otherwise, Pr(δA → δSA) ∈ { 2

256
, 4
256
} and

D(PA) = {−7,−6}.
At byte level, the SubBytes transformation, which has no effect at the Boolean level,

must be modeled. This is done thanks to a ternary table constraint which extensively lists
all triples (A, SA, PA) such that there exist two bytes B1 and B2 whose differences before and
after passing through the S-box S are equal to A and SA, respectively with a log2 probability
equal to PA. To find a byte-consistent solution with maximal differential probability, we
maximize the sum of all PA variables.

2. From related-key differentials to related-key attacks

In this Section, we summarize the new AES related-key differential paths that we have
computed with the new CP models previously described, and give new basic related-key
attacks, related-key distinguishers and q-multicollisions that we are able to mount by using
them for AES-192 and AES-256.

2.1. AES-192

Summary of related-key differential paths computed with CP. Using our CP approach, we
found that the best related-key differential trail is on 10 rounds with 29 active S-boxes and
a highest probability equal to 2−176: 2−37 coming from the keys and 2−139 from the ciphering
part. The best differential characteristic is given in Table A.3 of Appendix A. We also give
another trail with 30 active S-boxes where the differential characteristic has a probability
equal to 2−188: 2−80 coming from the keys and 2−108 from the ciphering part. This trail is
optimal for the probability in the state and is given in Table A.4 of Appendix A.

The first differential characteristic, which has an optimal probability, allows us to mount
a basic related-key differential attack as done in [4]. The second one allows us to build a
related-key distinguisher as it minimizes the probability in the state. We also provide in
Table A.5 of Appendix A, the best differential characteristic on 9 rounds of AES-192. This
characteristic has a probability of 2−146 with 24 active S-boxes and is better than the one
presented in [12].

Related-key distinguisher on 10 rounds. For this distinguisher, we use the related key differ-
ential characteristic given in Table A.4 in Appendix A which has a probability equal to 2−188.
Considering the related-key distinguisher model, the probability that the differences correctly
propagate through the internal states is 2−108 = 2−18·6 as we have 18 active S-boxes in the
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internal states, all with probability 2−6. It works for 1 out of 280 = 26·4 · 27·8 keys as we have
12 additional active S-boxes in the key schedule: 8 with probability 2−7 and the 4 others with
probability 2−6. Therefore, the related-key distinguisher works with complexity 2108 for 1 out
of 280 related-key pairs on average.

Basic related-key differential attack on 10 rounds. We first change the trail given in Table A.3
of Appendix A in the deciphering direction to get more active S-boxes in the two last rounds
to recover the key bytes implied at the input of those S-boxes. The new trail has eight active
S-boxes in the last round on two anti-diagonals and two active S-boxes in the penultimate
round.

Thus, we must find the 10 key bytes K∗10[0][2], K∗10[1][3], K∗10[2][0], K∗10[3][1], K∗10[0][3],
K∗10[1][0], K∗10[2][1], K∗10[3][2], K∗9 [0][2] and K∗9 [0][3]2. We use the following procedure from
the ciphertexts for each of the 237 × 27 key pairs3:

1. Repeat 247 times:

(a) Compose two structures of 264 ciphertexts with all possible values for the first and
second anti-diagonals. Decrypt the first structure with K and the second one with
K ′.

(b) Sort the plaintexts and check for a pair with the correct input difference. Save
these valid pairs if any.

2. For each of these pairs, derive 216 variants for the 10 key bytes. There are 10 S-boxes
in the two last rounds for which we know the input and output differences. Therefore,
there are 210 · 8 · 8 = 216 possibilities for the 80 key bits per candidate pair without false
alarms.

3. Pick the key candidate with the best occurrence.

The overall complexity of the whole procedure, which is repeated 244 times, is 247+65 = 2112

in data and time and 265 in memory. We need to repeat 247 times step 1.(a) and 1.(b) to keep
on average 247 · 264−109 = 24 = 16 right pairs and 247 wrong pairs and to completely discard
false alarms. This gives us 80 key bits.

2.2. AES-256

Summary of related-key differentials computed with CP. The optimal byte solution for 14
rounds of AES-256 has a probability of 2−146, and it is given in Table A.2 of Appendix A.
Note that the one given in [4] has a probability of 2−154 to happen. We also obtain 43 solutions
with a probability of 2−147. We experimentally checked that the 7 bottom rounds of the AES
conform to the expected probability by producing the wanted difference after 230 pairs on
average, as predicted by the trail.

2where ∗ stands for the classical InvMixColumns transformation applied on the keys.
3the 27 term comes from all the possible unknown differences at the S-box output generated through the

key schedule for the possible values of δK∗
10[0][2], δK∗

10[1][3], δK∗
10[0][3] and δK∗

10[3][2].
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q-multicollisions. Using this optimized byte consistent differential solution, we are able to
improve the attacks proposed in [4]. More precisely, the cost to compute a q-multicollision
given in [4] depends on 11 active S-boxes with probability 2−67. With the new differential
characteristic, we gain a factor 2 on this complexity leading to a time complexity equal to
q · 266 encryptions. In the same way, the time complexity to find partial q-multicollisions
becomes q · 236 instead of q · 237.

Related-key distinguisher. Considering the related-key distinguisher, the probability that the
differences correctly propagate through the internal states is 2−19·6 = 2−114 and it works for
1 out of 232 = 214 · 218 keys as we have 5 additional active S-boxes: 2 with probability 2−7

and 3 with probability 2−6. Hence, the related-key distinguisher has a data/time complexity
equal to 2146 = 2114 · 232.

Related-key attack. The related-key attack described in [4] may be directly applied using our
new differential characteristic. The procedure is about to be the same than the one of [4] and
for the basic related-key attack given for 10 AES-192 rounds except that the two modified
rounds are rounds 0 and 1. In this case, the number of key bits to test in the two first rounds
is equal to 80 and for each of the 232 possible key pairs, we need to repeat 228 times the process
with two structures of 264 plaintexts. Thus after Step 1, we have on average 4 right pairs, and
for each pair we derive 216 possible values for the ten key bytes without false alarms. Thus,
the overall complexity of this attack becomes 2125 in data and time while testing 232 keys.
The required memory is 265.
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Appendix A. Our New Related-Key Differential Paths for AES-192 and AES-
256

Round δXi = Xi ⊕X ′i δKi = Ki ⊕K ′i Pr(States) Pr(Key)
init. addbdb76 addbdb76 addbdb76 addbdb76

i = 0 69000000 00000000 69000000 00000000 c4dbdb76 addbdb76 c4dbdb76 addbdb76 2−6·2 −
1 9a000000 00000000 9a000000 00000000 b59a9ab5 00000000 b59a9ab5 00000000 2−6·2 −
2 69000000 69000000 00000000 00000000 c4dbdb76 69000000 addbdb76 00000000 2−6·2 −
3 9a000000 9a000000 00000000 00000000 b59a9ab5 b59a9ab5 00000000 00000000 2−6·2 −
4 69000000 00000000 00000000 00000000 c4dbdb76 addbdb76 00000000 00000000 2−6 −
5 9a000000 00000000 00000000 00000000 b59a9ab5 00000000 00000000 00000000 2−6 −
6 69000000 69000000 69000000 69000000 c4dbdb76 69000000 69000000 69000000 2−6·4 2−6

7 00000000 00000000 00000000 00000000 2f9a9ab5 2f9a9ab5 2f9a9ab5 2f9a9ab5 − 2−7·2 × 2−6·2

8 69000000 00000000 69000000 00000000 69000000 00000000 69000000 00000000 2−6·2 −
9 00000000 00000000 00000000 00000000 2f9a9ab5 00000000 2f9a9ab5 00000000 − −
10 69000000 69000000 00000000 00000000 69000000 69000000 00000000 00000000 2−6·2 −
11 00000000 00000000 00000000 00000000 2f9a9ab5 2f9a9ab5 00000000 00000000 − −
12 69000000 00000000 00000000 00000000 69000000 00000000 00000000 00000000 2−6 −
13 00000000 00000000 00000000 00000000 2f9a9ab5 00000000 00000000 00000000 − −

End/14 69000000 69000000 69000000 69000000 69000000 69000000 69000000 69000000 − −

Table A.2: Our own related-key differential on 14 AES-256 rounds that happens with a probability
2−146.
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Round δXi = Xi ⊕X ′i δKi = Ki ⊕K ′i Pr(States) Pr(Key)
init. c816ad91 dc02027a d8000000 00000000

i = 0 d800a300 d800007a 00000000 00000000 10160e91 04020200 d8000000 00000000 2−6·4 −
1 00000000 00000000 d4000000 00000000 04020206 04020206 04020200 00000000 2−7 2−7 × 2−6·3

2 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 dc020206 d8000000 2−6·4 2−6

3 00000000 00000000 d8000000 00000000 04020206 04020206 dc020206 04020206 2−6 −
4 d8000000 00000000 00000000 00000000 d8000000 00000000 04020206 00000000 2−6 −
5 d8000000 d8000000 00000000 00000000 dc020206 d8000000 00000000 00000000 2−6·2 −
6 00000000 00000000 d8000000 00000000 04020206 04020206 d8000000 00000000 2−6 −
7 00000000 00000000 00000000 00000000 00000000 00000000 04020206 00000000 − −
8 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 2−6·4 2−6

9 00000002 00000002 d8000002 00000002 04020204 04020204 dc020204 04020204 2−6·5 −
End/10 d8000400 06000400 ???????? ???????? dc020204 04020204 ???????? ???????? − −

Table A.3: Our first related-key differential on 10 AES-192 rounds that happens with a probability
2−176.

Round δXi = Xi ⊕X ′i δKi = Ki ⊕K ′i Pr(States) Pr(Key)
init. e00411ef 00000000 140a0a1e 00000000

i = 0 00000000 e4000000 00000000 00000000 e00411ef e4000000 140a0a1e 00000000 2−6 −
1 e4000000 e4000000 e4000000 00000000 e4000000 f00a0a1e e4000000 00000000 2−6·3 2−7·2 × 2−6·2

2 00000000 00000000 e4000000 00000000 140a0a1e 140a0a1e f00a0a1e 00000000 2−6 −
3 e4000000 e4000000 e4000000 e4000000 e4000000 e4000000 f00a0a1e e4000000 2−6·4 −
4 00000000 00000000 e4000000 00000000 140a0a1e 140a0a1e f00a0a1e 140a0a1e 2−6 2−7·3 × 2−6

5 e4000000 00000000 00000000 00000000 e40000000 00000000 140a0a1e 00000000 2−6 −
6 e4000000 e4000000 00000000 00000000 f00a0a1e e4000000 00000000 00000000 2−6·2 2−7·3 × 2−6

7 00000000 00000000 e4000000 00000000 140a0a1e 140a0a1e e4000000 00000000 2−6 −
8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 − −
9 e4000000 e4000000 e4000000 e4000000 e4000000 e4000000 e4000000 e4000000 2−6·4 −

End/10 e4000000 e4000000 ???????? ???????? f00a0a1e f00a0a1e ???????? ???????? − −

Table A.4: Our related-key differential on 10 AES-192 rounds with 30 active S-boxes and a proba-
bility of 2−188.

Round δXi = Xi ⊕X ′i δKi = Ki ⊕K ′i Pr(States) Pr(Key)
init. 8e1b400c 9603039e 90000000 00000000

i = 0 90004b00 9000009e 00000000 00000000 1e1b0b0c 06030300 90000000 00000000 2−6·4 −
1 00000000 00000000 be000000 00000000 06030305 06030305 06030300 00000000 2−7 2−7 × 2−6·3

2 90000000 90000000 90000000 900000000 90000000 90000000 96030305 90000000 2−6·4 2−6

3 00000000 00000000 90000000 00000000 06030305 06030305 96030305 06030305 2−6 −
4 90000000 00000000 00000000 00000000 90000000 00000000 06030305 00000000 2−6 −
5 90000000 90000000 00000000 00000000 96030305 90000000 00000000 00000000 2−6·2 −
6 00000000 00000000 90000000 00000000 06030305 06030305 90000000 00000000 2−6 −
7 00000000 00000000 00000000 00000000 00000000 00000000 06030305 00000000 − −
8 90000000 90000000 90000000 90000000 90000000 90000000 90000000 90000000 2−6·4 2−6

End/9 06030305 06030305 06030305 06030305 00000000 00000000 00000000 00000000 − −

Table A.5: Our related-key differential on 9 AES-192 rounds with 24 active S-boxes and a probability
of 2−146.
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