
Protego: Efficient, Revocable and Auditable
Anonymous Credentials with Applications to

Hyperledger Fabric

Abstract. Recent works to improve privacy in permissioned blockchains
like Hyperledger Fabric rely on Idemix, the only anonymous credential
system that has been integrated to date. The current Idemix implementa-
tion in Hyperledger Fabric (v2.4) only supports a fixed set of attributes;
it does not support revocation features, nor does it support anonymous
endorsement of transactions (in Fabric, transactions need to be approved
by a subset of peers before consensus). A prototype Idemix extension by
Bogatov et al. (CANS, 2021) was proposed to include revocation, au-
ditability, and to gain privacy for users. In this work, we explore how to
gain efficiency, functionality, and further privacy, departing from recent
works on anonymous credentials based on Structure-Preserving Signa-
tures on Equivalence Classes. As a result, we extend previous works to
build a new anonymous credential scheme called Protego. We also present
a variant of it (Protego Duo) based on a different approach to hiding the
identity of an issuer during showings. We also discuss how both can be
integrated into Hyperledger Fabric and provide a prototype implemen-
tation. Finally, our results show that Protego and Protego Duo are at
least twice as fast as state-of-the-art approaches based on Idemix.

Keywords: anonymous credentials, auditability, Hyperledger Fabric, mercurial
signatures, permissioned blockchains.

1 Introduction

When first introduced, the core use of blockchains was in the permissionless
setting; anyone could join and participate. Over the years, blockchains have
also found use within consortiums, where several authorized organizations wish
to share information among the group, but not necessarily to the public as
a whole. This need gave rise to permissioned blockchains whereby authorities
are established to define a set of participants. When a federation of authorities
(consortium), each in control of a subset of participants, shares the blockchain’s
governance, the term federated is also used to describe such blockchains.

The use of federated blockchains increased to address the need to run a
common business logic within a closed environment. As an example, one can
consider pharmaceutical companies that would like to trade sensitive information
about product developments and agree on supplies or prices in a consortium with
partial trust. A recurrent problem in such scenarios is that of privacy while being
compliant with regulations and Know Your Customer practices. Agreeing with

other entities to run a shared business logic should not imply that everything
needs be public within the consortium. Privacy still needs to be provided without
affecting existing regulations, e.g., when considering bilateral agreements.

The most developed permissioned platform is Hyperledger Fabric (or simply
Fabric). In Fabric, users submit transaction proposals to a subset of peers (called
endorsers) that vouch for their execution. By default, it provides no privacy fea-
tures as everything (users and transactions) is public. Reading the blockchain
anyone can know (1) who triggered a smart contract using which arguments
(transaction proposals are signed by the clients), (2) who vouched for its exe-
cution (endorsers also sign their responses) concerning reading and writing sets;
and (3) why a given transaction was marked as invalid (either because of invalid
read/write sets or because the endorsement policy check failed). Furthermore,
checking access control and endorsement policies links different organizations,
users and their attributes to concrete actions on the system.

Such limitations severely restrict the use of Fabric. From the user perspective
this impacts the enforcement of different regulations. For organizations, the case
is similar. Consider a consortium of pharmaceuticals that run a common business
logic to exchange information on medical research. If the entity behind a request
is known, other organizations can infer (based on the request) which drug the
entity in question is trying to develop. If the endorsers are known, information
about who executes what can disclose business relations.

Motivated by the need to protect business interests and to meet regulatory
requirements, some privacy features were integrated using the Identity Mixer
[21, 11] (or Idemix for short). This anonymous attribute-based credential (ABC)
scheme gave the first glimpse of privacy for users within a consortium. Idemix
allows a Membership Service Provider (MSP) to issue credentials enabling users
to sign transactions anonymously. In brief, users generate a zero-knowledge proof
attesting that the MSP issued them a credential on its attributes to sign a
transaction. Fabric’s support for Idemix was added in v1.3, providing the first
solution to tackle the problem of participant privacy. Unfortunately, as for v2.4
the Idemix implementation still suffers severe limitations:
1. It supports a fixed set of only four attributes.
2. It does not support revocation features.
3. Credentials leak the MSP ID, meaning that anonymity is local to users within

an organization. For this reason, current deployments can only use a single
MSP for the whole network, introducing a single point of failure.

4. It does not support the issuance of Idemix credentials for the endorsing peers,
meaning that the identity of endorsers is always leaked.
The most promising effort to extend the functionality of Idemix appeared in

[7]. Their aim was to extend the original credential system to support delegatable
credentials [9], while integrating revocation and auditability features (solving
three of the four limitations). Below we outline the main ideas introduced in [7].

Delegatable Credentials. In a bid to overcome the issue of Idemix credentials
leaking the MSP ID and thus the affiliation of the user, a trusted root author-
ity provides credentials to intermediate authorities. This way users can obtain

2

credentials from intermediate authorities. To sign a transaction, the user must
generate a zero-knowledge proof attesting that (1) the signer owns the creden-
tial; (2) the signature is valid; (3) all adjacent delegation levels are legitimate;
and (4) that the top-level public key belongs to the root authority.

Revocation and Auditability. To generate efficient proofs of non-revocation,
the system timeline is divided into epochs. Issued credentials are only valid for
a given epoch, and must be reissued as the timeline advances. For each epoch,
a user requests a revocation handler that binds their public key to the epoch.
When presenting a credential, the user also provides a proof of non-revocation.
To enable auditing of a transaction, users verifiably encrypt their public key
under an authorized auditor’s public key.

To date, some functionalities remain limited. (1) There is still no notion of
privacy for endorsers. (2) Delegatable credentials require proving knowledge of
a list of keys. (3) The root authority is still a single point of failure. (4) Selective
disclosure of attributes requires computation linear in the size of all the attributes
encoded in the credential. (5) Many zero-knowledge proofs need to be generated
for each transaction. (6) Many pairings need to be computed for verification.

Recent results [15, 14, 12] introduced newer models based on Structure-
Preserving Signatures on Equivalence Classes (SPS-EQ) to build ABC’s, pro-
viding a host of extra functionalities and more efficient constructions. The main
goal of this work is to leverage such results, position them in the blockchain
scenario and provide an alternative to Idemix (and its extension) to overcome
existing privacy and functional limitations while also improving efficiency.

Contributions. To build an ABC scheme that overcomes the inherent lim-
itations from Idemix and its extension, we argue that changing some of the
underlying building blocks is necessary. Therefore, we take the framework from
[15] as our starting point, incorporate the recent improvements from [12], and in-
clude the revocation extension originally proposed in [14]. From there, we extend
the ABC model to support audibility features and adapt it to non-interactive
showings. To do so, we rely on the random oracle model (already present in the
blockchain setting). We also present and discuss two alternatives to the use of
delegatable credentials (as used in [7]) to hide the identity of credential issuers,
following the formalizations from [12] and [6] but using new approaches.

When compared to [12], the modifications are: (1) we adapt the ABC model
to non-interactive showings, (2) we extend the model defining a revocation au-
thority as in [14], and an auditing authority (not considered in the previous
works), (3) we keep the SCDS scheme from [12] as it is but replace the signature
scheme with the one given in [13], and (4) we build a malleable NIZK argument
that can be pre-computed to obtain a more efficient issuer-hiding feature.

As a result, we build Protego, an ABC suitable for permissioned blockchains.
We also present Protego Duo, a variant based on a different approach to hide
the identity of credential issuers. Both support revocation and auditing features,
which are important to enable a broader variety of use cases for permissioned
blockchains. We discuss how to integrate our work with Fabric, compare it with

3

Idemix and its recent extensions, and provide a prototype implementation show-
ing that Protego and Protego Duo are faster than the latest Idemix extension
(see Section 5 for a detailed evaluation and benchmarks). Furthermore, a show-
ing proof in Protego Duo is constant-size (8.3 kB), surpassing [7] in which the
proof size grows linearly with the number of attributes and delegation levels.

Related work. We describe the related work following two main streams; the
results addressing privacy concerns in Fabric, and parallel research developments.

Privacy concerns in Fabric. The most closely related work appears with the in-
troduction of Idemix [21] and its extension to include revocation and auditabil-
ity [7]. Adding auditability is crucial for permissioned blockchains as they are
often used in heavily regulated industries. Privacy-preserving auditing for dis-
tributed ledgers was introduced in [18] under the guise of zkLedger. This general
solution offered great functionality in that it provided confidentiality of trans-
actions, and privacy of the users within the transaction. However, it assumed
low transaction volume between few participants and as such is quite limited in
scalability. Fabric-friendly auditable token payments were introduced in [2] and
were based on threshold blind signatures. The core idea to achieve auditability
was to encrypt the user’s public key under the public key of an auditor. This is
the same approach in [7], which we also use in this work. Although the auditing
ideas are similar, the construction pertains solely to transaction privacy and of-
fers no identity privacy for a user. Following the approach of gaining auditability
of transactions, auditable smart contracts were captured by FabZK [16] which
is based on Pedersen commitments and zero-knowledge proofs. To achieve au-
ditability, the structure of the ledger is modified, and as such, would need to
make considerable changes to existing used permissioned blockchain platforms.

One of the limitations in Idemix and its extension is the lack of privacy or
anonymity for endorsing peers. A potential solution to this was proposed in [17],
where the endorsement policy is based on a ring signature scheme such that the
endorsement set itself is not revealed, but only that sufficiently many endorse-
ment signatures were obtained. Another approach to obtain privacy-preserving
endorsements was described in [3], leveraging Idemix credentials to gain endorser-
privacy, and as such, inherits the limitations (notably leaking the endorser’s
organization) that come with Idemix.

Attribute-based credentials. Early anonymous credential schemes were built from
blind signatures, whereby a user obtained a blind signature from an issuer on
the user’s commitment to its attributes. When the user later authenticates, they
provide the signature, the shown attributes, and a proof of knowledge of all
unshown attributes. These schemes are limited as they can only be shown once.
Subsequent work like the one underlying Idemix [10] allowed for an arbitrary
number of unlinkable showings. A user obtains a signature on a commitment
on attributes, randomizes the signature, and proves in zero-knowledge that the
randomized signature corresponds to the shown and unshown attributes.

Recent work from [15] circumvented inefficiencies in the above ideas by coin-
ing two new primitives: set-commitment schemes, and SPS-EQ. As a result,

4

authors obtained a scheme allowing to randomize both the signature and the
commitment on a set of attributes. Furthermore, a subset-opening of the set-
commitment yielded constant-size selective showing of attributes.

New work from [12] extended [15], improving the expressivity, efficiency
trade-offs and introducing the notion of signer-hiding (also known as issuer-
hiding [6]) to allow users to easily randomize the public key used to generate
a signature to hide the identity of credential issuers. Authors achieve the pre-
vious points using a Set-Commitment scheme supporting Disjoint Sets (SCDS)
and mercurial signatures [13]. The latter primitive extends SPS-EQ to consider
equivalence classes not only on the message space but also on the key space.

We build on top of the above-mentioned works but unlike [12], we work with
the generic group model [20] as our main motivation is the proposal of efficient
alternatives. For this reason, we use the mercurial signature scheme from [13].

2 Cryptographic Background

Below, we walk through the different building blocks mentioning how and why
these components yield greater functionality and efficiency for a credential sys-
tem in the permissioned blockchain setting like Fabric. Subsequently, we intro-
duce the necessary notation and syntax for the following sections.

SCDS. Using commitment schemes that allow to commit to sets of attributes
enables constant-size openings of subsets (selective disclosure) of the committed
sets. These schemes support commitment randomization without the need to rely
on zero-knowledge proofs of correct randomization, as the corresponding witness
for openings can be adapted accordingly with respect to the randomization of
the committed set. The set-commitment scheme presented in [12] extends [15]
to support openings of attribute sets disjoint from the committed set. This is
particularly useful in the permissioned blockchain setting, e.g., to model access
control policies. Furthermore, the scheme from [12] also supports the use of proof
of exponentiations to outsource some of the computational cost from the verifier
to the prover. In the case of Fabric, this is a particularly interesting feature to
make the endorser’s verification faster when validating a transaction proposal.

Mercurial Signatures. The introduction of SPS-EQ in [15] allowed to adapt a
signature on a representative message to a signature on a different representative
(in a given equivalence class) without knowledge of the secret key. If the adapted
signature is indistinguishable from a fresh signature on a random message, the
scheme satisfies the notion of perfect adaption. This, together with the random-
izability of the set-commitment scheme, allows to consistently and efficiently
update the signature of a credential, bypassing the need to generate and keep
account of pseudonyms and NIZK proofs that are required in all previous works
based on Idemix. Using mercurial signatures as in [12] allows to easily randomize
the corresponding public keys while consistently adapting the signatures.

5

Issuer-hiding In [12], since users can consistently randomize the signature on
their credential and the issuer’s public key (as previously mentioned), a fully
adaptive NIZK argument is used to prove that a randomized issuer key belongs
to the equivalence class of one of the keys contained in a list of issuers keys. This
way, the randomized issuer key can be used to verify the credential while hiding
the issuer’s identity (like in a ring signature). In permissioned blockchains where
there are multiple organizations that issue credentials, such a NIZK allows users
holding valid signatures to pick any subset of issuer’s public keys to generate a
proof. Another approach following the work from [6] (briefly discussed in [12]) is
to consider issuer-policies. An issuer-policy is a set {(σi, opki)i∈[n]} of signatures
on issuer’s public keys generated by some verification secret key vsk. To hide the
identity of an issuer j, a user consistently randomizes the pair (σj , opkj) to obtain
a randomized public key opk′j . It then adapts the signature σ on its credential the
same way, and presents opk′j to the verifier. If the verifier accepts the signature
σj on opk′j (using vpk), it proceeds to verify σ using opk′j . Issuer-policies can be
specified by the entity that created the smart contract and defined within using
the entity’s verification key pair. Unlike the first approach where users choose
the issuer’s anonymity set, here it is determined by the policy maker.

2.1 Notation

Let BGGen be a p.p.t algorithm that on input 1λ with λ the security parame-
ter, returns a description BG=(p,G1,G2,GT ,P1,P2,e) of an asymmetric (Type-3)
bilinear group where G1,G2,GT are cyclic groups of prime order p with ⌈log2
p⌉ = λ, P1 and P2 are generators of G1 and G2, and e : G1 × G2 → GT

is an efficiently computable (non-degenerate) bilinear map. For all a ∈ Zp,
[a]s = aPs ∈ Gs denotes the implicit representation of a in Gs for s ∈ {1, 2}.
For vectors a,b we extend the pairing notation to e([a]1, [b]2) := [ab]T ∈ GT .
r

$← S denotes sampling r from set S uniformly at random. A(x; y) indicates
that y is passed directly to A on input x. Hash functions are denoted by H.

2.2 Set-Commitment scheme supporting Disjoint Sets [12]

Syntax. Setup(1λ, 1q) takes as input a security parameter λ and an upper bound
q for the cardinality of committed sets. It outputs public parameters pp, discard-
ing the trapdoor key s. TSetup(1λ, 1q) is like Setup but returns the trapdoor key.
Commit(pp,X) takes as input pp and a set X with 1 ≤ |X | ≤ q. It outputs a
commitment C on X and opening information O. Open(pp, C,X , O) takes as
input pp, a commitment C, a set X , and opening information O. It outputs 1
if and only if O is a valid opening of C on X . OpenSS(pp, C,X , O,S) takes as
input pp, a commitment C, a set X , opening information O, and a non-empty
set S. If S is a subset of X committed to in C, it outputs a witness wss that
attests to it. Otherwise, outputs ⊥. OpenDS(pp, C,X , O,D) takes as input pp, a
commitment C, a set X , opening information O, and a non-empty set D. If D is
disjoint from X committed to in C, it outputs a witness wds that attests to it.
Otherwise, outputs ⊥. VerifySS(pp, C,S,wss) takes as input pp, a commitment

6

C, a non-empty set S, and a witness wss. If wss is a valid witness for S a subset of
the set committed to in C, it outputs 1 and otherwise ⊥. VerifyDS(pp, C,D,wds)
takes as input pp, a commitment C, a non-empty set D, and a witness wss. If
wds is a valid witness for D being disjoint from the set committed to in C, it
outputs 1 and otherwise ⊥. PoE(pp,X , α) takes as input pp, a non-empty set
X , and a randomly-chosen value α. It computes a proof of exponentiation with
respect to X and outputs a proof πQ and a witness Q.

Security Properties. Correctness requires that (1) for a set X , Open(Commit
(pp,X),X) = 1, (2) for S a subset of X , VerifySS(S, OpenSS(Commit(pp, X))) = 1,
and (3) for all possible sets D disjoint from X , VerifyDS(D,OpenDS(Commit(pp,
X)))=1. The scheme should also be (1) binding whereby each commitment over-
whelmingly pertains to one particular set of attributes, (2) hiding whereby an
adversary, given access to opening oracles, should not be able to distinguish
which of two sets a commitment was generated on, and (3) sound in that sets
which are not subsets of the committed set do not verify under VerifySS, and
sets that are not disjoint from the committed set do not verify under VerifyDS.

2.3 Structure-Preserving Signatures on Equivalence Classes [12]

Syntax. ParGen(1λ) takes as input a security parameter λ and returns public
parameters pp with an asymmetric bilinear group BG. KGen(pp, ℓ) takes as input
pp, a message-length ℓ, and outputs a key pair (sk, pk). Sign(sk,m) takes as
input sk and message m. It outputs a signature σ on m where m ∈ (G∗

i)
ℓ is a

representative for a class [m]R. ChgRep(m,σ, µ, pk) takes as input m, σ, µ, pk. It
computes an updated signature σ′ on new representative m∗ = µm and returns
(m∗, σ′). Verify(m,σ, pk) takes m, σ and pk, and outputs 1 iff σ is valid for m.
For mercurial signatures, the algorithms ConvertPK(pk, ρ) and ConvertSK(sk, ρ)
are included to compute new representatives for public and secret keys, while
ChgRep is extended to adapt signatures with respect to new key representatives.

Security Properties. SPS-EQ should be correct, existentially unforgeable
against chosen-message attacks and have perfect adaption (in the vein of [12]).

3 Our ABC Model

We can rely on the random oracle model and apply the Fiat-Shamir transform
to the ABC scheme from [12] (the showing protocol is a three move public coin
one). However, in the previous ABC interaction is required in the showing proto-
col to provide freshness (i.e., to avoid replay attacks). To overcome this issue, we
require the user to send the transaction proposal during the first move. Thus, ap-
plying the Fiat-Shamir transform to the first move bounds the credential showing
to that particular transaction so that it cannot be replayed. Security is defined
following the usual properties from [15, 12, 14]. In addition, we also consider the
issuer-hiding notion from [12] and introduce a new one for auditability. However,
we do not consider replay-attacks as in the previous models since they can be
trivially detected for the same transaction.

7

ABC Syntax. An ABC consists of the following p.p.t algorithms:
Setup(1λ, aux) takes a security parameter λ and some optional auxiliary informa-

tion aux (which may fix an universe of attributes, attribute values and other
parameters) and outputs public parameters pp discarding any trapdoor.

TSetup(1λ, aux) like Setup but returns a trapdoor.
OKGen(pp) takes pp and outputs an organization key pair (osk, opk).
UKGen(pp) takes pp and outputs a user key pair (usk, upk).
AAKGen(pp) takes pp and outputs an auditor key pair (ask, apk).
RAKGen(pp) takes pp and outputs a revocation key pair (rsk, rpk).
Obtain(pp, usk, opk, apk,X , nym) and Issue(pp,upk,osk,apk, X ,nym) are run by a

user and the organization respectively, who interact during execution. Obtain
takes pp, the user’s secret key usk, an organization’s public key opk, an
auditor’s public key apk, an attribute set X of size |X | < t, and a pseudonym
nym used for revocation. Issue takes pp, a public key upk, a secret key osk, an
auditor’s public key apk, an attribute set X of size |X | < t, and a pseudonym
nym. At the end of this protocol, Obtain outputs a credential cred on X for
the user or ⊥ if the execution failed.

Show(pp, opk, upk, usk, cred,X ,S,D, aux) takes pp, a public key opk, a key pair
(usk, upk), a credential cred for the attribute set X , potentially non-empty
sets S ⊆ X , D ̸⊆ X representing attributes sets being a subset (S) or dis-
joint (D) to the attribute set (X) committed in the credential, and auxiliary
information aux. It outputs a proof π.

Verify(pp, opk,X ,S,D, π, aux) takes pp, the (potentially empty) sets S and D, a
proof π and auxiliary information aux. It outputs 1 or 0 indicating whether
the credential showing proof π was accepted or not.

RSetup(pp, (rsk, rpk),NYM,RNYM) takes pp, a revocation key pair (rsk, rpk) and
two disjoint lists NYM and RNYM (holding valid and revoked pseudonyms).
It outputs auxiliary information auxrev for the revocation authority and revo-
cation information R = (RV ,RS). RV is needed for verifying the revocation
status and RS is a list holding the revocation information per nym.

Revoke(pp, (rsk, rpk), auxrev,R, b) takes pp, (rsk, rpk), auxrev, R and a bit b indi-
cating revocation/unrevocation. It outputs information R′ and aux′rev.

AuditEnc(upk, apk) takes upk and apk. It outputs an encryption enc of upk under
apk and auxiliary information α.

AuditDec(enc, ask) takes enc and ask. It outputs a decryption of enc using ask.
AuditPrv(enc, α, usk, apk) takes enc, α, usk, and apk. It generates a proof for enc

being the encryption of upk under apk and outputs a proof π.
AuditVerify(apk, π) takes apk and a proof π for the correct encryption of a user’s

public key under apk and outputs 1 if and only if the proof verifies.

To introduce the formal security model, we consider a single revocation, issu-
ing and auditability authority. Extension to the multi-issuing and multi-auditing
setting is straightforward as each key can be generated independently. For mul-
tiple revocation authorities, one needs to consider multiple revocation accumu-
lators and thus adapt the scheme accordingly. Issuer-hiding and auditability
properties are considered independently as extensions. Let us denote by Tx the

8

universe of transactions tx represented as bitstrings. We also use the following
auxiliary lists, sets and global variables in oracles and formal definitions. N rep-
resents the set of all pseudonyms nym while the sets NYM and RNYM represent
the subsets of unrevoked and revoked pseudonyms respectively. Therefore, we
have that NYM ∩ RNYM = ∅ ∧ NYM ∪ RNYM = N. NYM, HU and CU are lists
that keep track of which nym is assigned to which user, honest users and cor-
rupt users, respectively. The global variables RI and NYMLoR (initially set to ⊥)
store the revocation information (RS ,RV) and the pseudonyms used in OLoR

respectively. The oracles are defined as follows:
OHU(i) takes as input a user identity i. If i ∈ HU ∪ CU, it returns ⊥. Otherwise,

it creates a new honest user i by running (USK[i], UPK[i]) $← UKGen(opk),
adding i to the honest user list HU and returning UPK[i].

OCU(i, upk) takes as input a user identity i and (optionally) upk; if user i does
not exist, a new corrupt user with public key upk is registered, while if i is
honest, its secret key and all credentials are leaked. If i ∈ CU, i ∈ ILoR (that
is, i is a challenge user in the anonymity game) or if NYMLoR ∩N[i] ̸= ∅ then
the oracle returns ⊥. If i ∈ HU then the oracle removes i from HU and adds
it to CU; it returns USK[i] and CRED[j] for all j with OWNR[j] = i. Otherwise
(i.e., i /∈ HU ∪ CU), it adds i to CU and sets UPK[i]← upk.

ORN(rsk, rpk,REV) takes as input the revocation secret key rsk, the revocation
public key rpk and a list REV of pseudonyms to be revoked. If REV∩RNYM ̸=
∅ or REV ̸⊆ N return ⊥. Otherwise, set RNYM ← RNYM ∪ REV and RI ←
Revoke(pp, (rsk, rpk),RNYM,RI, 1).

OObtIss(i,X) takes as input a user identity i, a pseudonym nym and a set of
attributes X . If i /∈ HU or ∃ j : NYM[j] = nym, it returns ⊥. Otherwise, it issues
a credential to i by running (cred,⊤) $← Obtain(pp, USK[i], opk, apk,X , nym),
Issue(pp, UPK[i], osk, apk,X , nym). If cred = ⊥, it returns ⊥. Else, it appends
(i, cred,X , nym) to (OWNR, CRED, ATTR, NYM) and returns ⊤.

OObtain(i,X) lets the adversary A, who impersonates a malicious organization,
issue a credential to an honest user. It takes as input a user identity i, a
pseudonym nym and a set of attributes X . If i /∈ HU, it returns ⊥. Otherwise,
it runs (cred, ·) $← Obtain(pp, USK[i], opk, apk,X , nym), ·), where the Issue part
is executed by A. If cred = ⊥, it returns ⊥. Else, it appends (i, cred,X , nym)
to (OWNR, CRED, ATTR, NYM) and returns ⊤.

OIssue(i,X) lets the adversary A, who impersonates a malicious user, obtain a
credential from an honest organization. It takes as input a user identity i, a
pseudonym nym and a set of attributes X . If i /∈ CU, it returns ⊥. Otherwise,
it runs (·, I) $← (·, Issue(pp, UPK[i], osk, apk,X , nym)), where the Obtain part
is executed by A. If I = ⊥, it returns ⊥. Else, it appends (i,⊥,X , nym) to
(OWNR, CRED, ATTR, NYM) and returns ⊤.

OShow(j,S,D) lets the adversary A play a dishonest verifier during a showing
by an honest user. It takes as input an index of an issuance j and attributes
sets S and D. Let i

$← OWNR[j]. If i /∈ HU, it returns ⊥. Otherwise, it runs
(S, ·) $← Show(pp, USK[i], UPK[i], opk, ATTR[j], S,D, CRED[j],RI, apk, tx), ·)

9

OLoR(j0, j1,S,D) is the challenge oracle in the anonymity game where A runs
Verify and must distinguish (multiple) showings of two credentials CRED[j0]
and CRED[j1]. The oracle takes two issuance indices j0 and j1 and attribute
sets S and D. If JLoR ̸= ∅ and JLoR ̸= {j0, j1}, it returns ⊥. Let i0

$← OWNR[j0]
and i1

$← OWNR[j1]. If JLoR ̸= ∅ then it sets JLoR
$← {j0, j1} and ILoR

$←
{i0, i1}. If i0, i1 ̸= HU ∨ N[i0] = ⊥ ∨ N[i1] = ⊥ ∨ N[i0] ∈ RNYM ∨ N[i1] ∈
RNYM ∨ S ̸⊆ ATTR[j0]∩ATTR[j1] ∨ D∩{ATTR[j0]∪ATTR[j1]} ≠ ∅, it returns ⊥.
Else, it adds N[ib] to NYMLoR and runs (S, ·) $← (Show(pp, USK[jb], UPK[jb], opk,
ATTR[jb], S,D, CRED[jb],RI, apk, tx), ·) (with b set by the experiment)

Intuitively, correctness requires that a credential showing with respect to a
non-empty sets S and D of attributes always verifies if it was issued honestly on
some attribute set X with S ⊂ X and D ̸⊆ X .

Correctness. An ABC system is correct if ∀ λ > 0, ∀ q, q′ > 0, ∀ X : 0 < |X | ≤
q, ∀ ∅ ̸= S ⊂ X , ∀ ∅ ̸= D ̸⊆ X : 0 < |D| ≤ q, ∀ NYM,RNYM ⊆ N : 0 < |N| ≤
q′ ∧ NYM ∩ RNYM = ∅, ∀ nym ∈ NYM, ∀ nym′ ∈ RNYM it holds that:

pp
$← Setup(1λ, (1q, 1q

′
)); (rsk, rpk) $← RAKGen(pp); (ask, apk)

$← AAKGen(pp);
(R, auxrev) ← RSetup(pp, rpk, NYM,RNYM); (osk, opk)

$← OKGen(pp); (usk, upk)
$← UKGen(pp); (cred,⊤) $← (Obtain(pp, usk, opk, apk,X , nym), Issue(pp, upk, osk,
apk, X , nym)); (RS ,RV)← Revoke(pp,R, auxrev, nym′, 1);Ω ← Show(pp, usk, upk,
opk, cred,S,D,R, apk, tx); 1← Verify(pp,S,D, opk,RV , rpk, apk, tx, Ω)

We now provide a formal definition for unforgeablility. Given at least one
non-empty set S ⊂ X or D ̸⊆ X , a user in possession of a credential for the
attribute set X cannot perform a valid showing for D ⊂ X nor for S ̸⊆ X .
Moreover, revocated users cannot perform valid showings and no coalition of
malicious users can combine their credentials and prove possession of a set of
attributes which no single member has. This holds even after seeing showings of
arbitrary credentials by honest users.

Unforgeability. An ABC system is unforgeable, if ∀ λ, q, q′ > 0 and p.p.t
adversaries A having oracle access to O := {OHU, OCU, ORN, OObtIss, OIssue, OShow}
the following probability is negligible.

Pr

pp

$← Setup(1λ, (1q, 1q
′
)); (rsk, rpk)

$← RAKGen(pp); (ask, apk)
$← AAKGen(pp);

(osk, opk)
$← OKGen(pp); (S,D, st) $← AO(pp, opk, rpk, apk);

(·, b∗) $← (A(st),Verify(pp,S,D, opk, rpk, apk,RI, tx, Ω)) :
b∗ = 1 ∧ ∀ j : OWNR[j] ∈ CU =⇒ (N[j] = ⊥ ∨ (N[j] ̸= ⊥ ∧ (S ̸⊆ ATTR[j] ∨
D ⊆ ATTR[j] ∨ N[j] ∈ RNYM))

For anonymity, during a showing, no verifier and no (malicious) organiza-

tion (even if they collude) should be able to identify the user or learn anything
about the user, except that she owns a valid credential for the shown attributes.
Furthermore, different showings of the same credential are unlinkable.

10

Anonymity. An ABC system is anonymous, if ∀ λ, q, q′ > 0 and all p.p.t
adversaries A having oracle access to O := {OHU, OCU, ORN, OObtain, OShow, OLoR}
the following probability is negligible.

Pr

[
pp

$← Setup(1λ, (1q, 1q
′
)); (ask, apk)

$← AAKGen(pp);

b
$← {0, 1}; (opk, rpk, st) $← A(pp); b∗ $← AO(st)

: b∗ = b

]
− 1

2

Issuer-hiding states that no adversary (i.e., a malicious verifier) cannot tell
with high probability who is the issuer of a credential issued to an honest user.

Issuer-hiding. An ABC system supports issuer-hiding if for all λ > 0, all q > 0,
all n > 0, all t > 0, all X with 0 < |X | ≤ t, all ∅ ̸= S ⊂ X and ∅ ̸= D ̸⊆ X with
0 < |D| ≤ t, and p.p.t adversaries A, the following holds.

Pr

pp

$← Setup(1λ, 1q);∀ i ∈ [n] : (oski, opki)
$← OKGen(pp);

(usk, upk)
$← UKGen(pp); j

$← [n];

(cred,⊤) $← (Obtain(usk, opkj ,X), Issue(upk, oskj ,X));
j∗

$← AOShow(pp,S,D, (opki)i∈[n])

: j∗ = j

 ≤ 1

n

Finally, auditability requires that showings correctly encrypt users’ keys.

Auditability. An ABC system is auditable if ∀ λ > 0, ∀ q, q′ > 0, ∀ X : 0 <
|X | ≤ q, ∀ ∅ ̸= S ⊂ X , ∀ ∅ ≠ D ̸⊆ X : 0 < |D| ≤ q, ∀ NYM,RNYM ⊆ N : 0 <
|N| ≤ q′ ∧ NYM ∩ RNYM = ∅, ∀ nym ∈ NYM, ∀ nym′ ∈ RNYM it holds that:

pp
$← Setup(1λ, (1q, 1q

′
)); (rsk, rpk) $← RAKGen(pp); (ask, apk)

$← AAKGen(pp);
(R, auxrev) ← RSetup(pp, rpk, NYM,RNYM); (osk, opk)

$← OKGen(pp); (usk, upk)
$← UKGen(pp); (cred,⊤) $← (Obtain(pp, usk, opk, apk,X , nym), Issue(pp, upk, osk,
apk, X , nym)); (RS ,RV)← Revoke(pp,R, auxrev, nym′, 1); (enc, Ω)← Show(pp, usk,
upk, opk, cred,S,D,R, apk, tx); 1 ← Verify(pp,S,D, opk,RV , rpk, apk, tx, enc, Ω);
upk← AuditDec(enc, ask)

4 Protego

We elaborate on the decisions that led to the design of our ABC scheme Protego.
Subsequently, we discuss our construction and the integration with Fabric.

Revocation. We opt to integrate the work from [14] as pointed out in [12]. The
revocation system from [14] defines a revocation authority responsible for man-
aging a white and a blacklist of revocation handlers. The authority publishes
an accumulator RevAcc representing the blacklist, and maintains a public list
of non-membership witnesses for unrevoked users. During the issuing protocol,
users are given a revocation handler that is encoded in the credential. To prove
that they are not revoked during a showing, the user consistently randomizes its
credential with the accumulator and the corresponding non-membership witness.
Then the verifier checks that the (randomized) witness is valid for the revoca-
tion handler (encoded in the user credential), and with respect to the (random-
ized) accumulator. To work, the user must compute a Zero-Knowledge Proof of

11

Knowledge (ZKPoK) on the correct randomization of the non-membership wit-
ness and the accumulator. As explained in [14], the revocation handler encoded
in the user’s credential is of the form usk2(b + nym)P1, where usk2 is an addi-
tional user secret key required for anonymity and nym is the pseudonym used for
revocation. For this reason, users are required to manage augmented keys of the
form upk = (upk1, upk2), usk = (usk1, usk2). Furthermore, for technical reasons,
another component usk2Q, where Q is a random element in G1 with unknown
discrete logarithm, must be included in the credential.

Auditability. A credential in [15, 12] and [14] contains a tuple (C, rC, P1) where
C is the set commitment on the user attributes, r is a random value used for
technical purposes and P1 is used to compute a ZKPoK of the randomizer µ in
(µC, µrC, µP1) during a showing. We borrow the idea of using a verifiable vari-
ant of ElGamal from [7] to prove the well-formedness of a ciphertext (encrypting
the user’s public key) with respect to the auditor’s key. Therefore, we add the
user’s public key upk1 and the auditor’s public key apk as the sixth and seventh
components to the credential. Thus, we now have revocable credentials of the
form (C, rC, P1, usk2(b + nym)P1, usk2Q, upk1, apk), which can be randomized
to obtain a tuple (µC, µrC, µP1, µusk2(b + nym)P1, µusk2Q, µusk1P1, µapk).
We exploit this fact to allow the user to generate an audit proof that can be
publicly verified without leaking information about the user’s public key. This
way, verifiers can check a proof using the sixth and seventh component in the
credential to be sure that (1) the user encrypted a public key for which it has the
corresponding secret key, and (2) using the correct one. Since the issuing author-
ity signs the credential, the randomization needs to be consistent. Modifications
required to implement our auditability approach are as follows:
1. The user randomizes its credential as usual to obtain a new one of the form

(C ′
1, C ′

2, C ′
3, C ′

4, C ′
5, C ′

6, C ′
7)=(µC1, µC2, µP1, µC4, µC5, µupk1, µapk).

Since only the user knows the randomizer µ, its public key remains hidden.
2. The user picks α ∈ Zp and encrypts its own public key using ElGamal

encryption with auditor’s public key apk and randomness α to obtain a
ciphertext enc = (enc1, enc2) = (upk1 + αapk, αP1).

3. The user runs the algorithm AuditPrv (Figure 1) with input (enc, α, usk1, apk)
to obtain c, z1 and z2.

4. Then, the user picks β ← Zp, computes t1 = βP2, t2 = βµP2, t3 = αβP2

and sends (enc, c, z1, z2, t1, t2, t3) to the verifier alongside the randomized
credential from step 1.

5. The verifier checks the well-formedness of the ElGamal encryption pair run-
ning the algorithm AuditVerify (Figure 1) with input (c, enc, z1, z2). If the
check succeeds, it checks the following pairing equations to verify that the
encrypted public key is the one in the credential:
e(enc2, t2)=e(C ′

3, t3) ∧ e(enc2, t1)=e(P1, t3) ∧ e(enc1, t2)=e(C ′
6, t1)+e(C ′

7, t3)
Observe that the verifier knows µP1 = C ′

3, µusk1P1 = C ′
6, µaskP1 = C ′

7, (usk1 +
αask)P1 = enc1, αP1 = enc2, βP2 = t1, βµP2 = t2 and αβP2 = t3. With
β the user is able to randomize the other values so that the pairing equation
can be checked to verify the relation between the ElGamal ciphertext and the

12

randomized public key in C ′
6, without leaking information about the user’s public

key. Furthermore, the first two pairing equations verify the well-formedness of
t1, t2 and t3 with respect to the user’s credential and the ciphertext. Hence, the
verifier will not be able to recover the user’s public key nor the user cheat.

The proposed solution only adds two elements to the credential, while re-
quiring the user to send two more elements in G1, three in Zp and three in G2,
for a total of eight. Computational cost remains low as it just involves the com-
putation of seven pairings, the ElGamal encryption and two Schnorr proofs [19].

Issuer-hiding. We incorporate the issuer-hiding approaches discussed in Sec-
tion 2. The work from [12] relies on a NIZK argument to prove that a randomized
public key belongs to the equivalence class of one of the public keys contained in
a list of issuer keys. We adapt the proof system to the signature used in this work,
and extend it to make it malleable (see Appendix A) so that users can compute
the proof once and then adapt it during showings with little computational cost
(instead of having to compute it from scratch). This efficiency improvement is
very useful in permissioned blockchains as the set of authorities tends to stay the
same over time. For both approaches we observe that the mercurial signature
used in this work only provides a weak form of issuer-hiding. Given a signa-
ture that has been adapted to verify under a randomized public key pk′ in the
equivalence class of pk, the owner of pk can recognize it. Thus, issuers can know
which transactions belong to users from their organizations (but not to which
particular user) and which ones don’t by reading the non-interactive showing
proof (it contains the issuer’s randomized public key). However, we argue that
in the permissioned blockchain setting this provides a fair trade-off as a minimum
traceability level is important for compliance and auditability purposes.

Our construction. Compared to [12], we make use of a hash function to ap-
ply the (strong) Fiat-Shamir transform while adding the previously discussed
auditability and revocation features. Therefore we implement the ZKPoK’s as
Schnorr proofs (unlike [12] which followed Remark 1 from [15]).

In Figure 1 we present the setup, key generation, revocation and auditing
algorithms. The setup algorithm also takes a bound q′ on the maximun number of
revocated pseudonyms for the revocation accumulator. The revocation authority
is responsible for running the Revoke algorithm and updating the accumulator.

Obtain and Issue have constant-size communication and are given in Figure 2.
For Show and Verify we present Protego and Protego Duo, depending on the
issuer-hiding approach. Protego is given in Figure 3 and produces a variable-
length proof as it relies on the (mallable) NIZK proof. Protego Duo produces a
constant-size proof and is depicted in Figure 4. The differences are highlighted
with grey. For both, after the credential is updated, the user randomizes the
revocation accumulator, witnesses, and generates the Schnorr proofs. Following
the auditing proof, the Fiat-Shamir transform is applied, the ZKPoK’s and PoE’s
are computed, returning the showing proof. Verify takes a proof (depending on
the case), computes the challenge and verifies each of the statements.

13

Setup(1λ, aux):
(q, q′)← aux; pick H : {0, 1}∗ → Z∗

p; Q
$← G1; (revpp, revtd)

$← RevAcc.Setup(1λ, q′)

(BG, scdspp, scdstd)
$← SCDS.Setup(1λ, q); (spspp, spstd)

$← SPS-EQ.ParGen(1λ;BG)
return (H,BG, revpp, Q, scdspp, spspp)
TSetup(1λ, aux):
(q, q′)← aux; pick H : {0, 1}∗ → Z∗

p; Q
$← G1; (revpp, revtd)

$← RevAcc.Setup(1λ, q′)

(BG, scdspp, scdstd)
$← SCDS.Setup(1λ, q); (spspp, spstd)

$← SPS-EQ.ParGen(1λ;BG)
td = (revtd, scdstd, spstd); return (H,BG, revpp, Q, scdspp, spspp, td)

RevAcc.Setup(1λ, 1q): BG $← BGGen(1λ); b $← Z∗
p; return (BG, (biP1, b

iP2)i∈[q])

AAKGen(pp): ask $← Z∗
p ; apk← askP1; return (ask, apk)

RAKGen(pp): rsk $← Z∗
p ; rpk← rskP2; return (rpk, rsk)

OKGen(pp): return SPS-EQ.KGen(BG, spspp, 3)

UKGen(pp): usk1, usk2 $← Z∗
p ; (upk1, upk2)← (usk1P1, usk2P1)

return ((usk1, usk2), (upk1, upk2))
RSetup(pp, (rsk, rpk),NYM,RNYM):
(Πrev, auxrev)← RevAcc.Commit(revpp,RNYM)
foreach nym ∈ NYM do WIT[nym]← RevAcc.NonMemWit(pp, Πrev, auxrev, nym)
return ((Πrev,WIT), auxrev)
RevAcc.Commit(pp,X ; rsk):
check |X | ≤ q ∧ ̸ ∃ b′ ∈ X : b′P1 = bP1; Πrev ← rsk−1 · ChX (s)P1; auxrev ← X
return (Πrev, auxrev)
Revoke(pp,R, auxrev, nym, b):
parse R = (Πrev,WIT); parse auxrev = RNYM
if b = 1

NYM← NYM \ {nym}; RNYM← RNYM ∪ {nym}
(Π ′

rev, aux
′
rev)← RevAcc.Add(pp, Πrev,RNYM, nym)

else
NYM← NYM ∪ {nym};RNYM← RNYM \ {nym}
(Π ′

rev, aux
′
rev)← RevAcc.Del(pp, Πrev,RNYM, nym)

foreach nym′ ∈ NYM do WIT[nym′]← RevAcc.NonMemWit(pp, Π ′
rev, aux

′
rev, nym

′)
return ((Π ′

rev,WIT), aux′rev)
RevAcc.Add(pp, rsk, Πrev, auxrev, nym):
parse auxrev = X ; X ← X ∪ {nym}; return RevAcc.Commit(pp,X ; rsk)
RevAcc.Del(pp, rsk, Πrevauxrev, nym):
parse auxrev = X ; X ← X \ {nym}; return RevAcc.Commit(pp,X ; rsk)
RevAcc.NonMemWit(pp, Πrev, auxrev, nym):
X ← auxrev; check nym /∈ X ; Let q(X) and d ∈ Z∗

p s.t. ChX (X) = q(X)(X + nym) + d
return (q(b)P2, d)
RevAcc.VerifyWit(pp, Πrev, nym,wssrev):
(wss1rev,wss

2
rev)← wssrev; return e(Πrev, rpk) = e((b+ nym)P1,wss

1
rev)e(wss

2
revP1, P2)

AuditEnc(upk, apk): α← Zp; enc← (upk+ αapk, αP1); return (enc, α)
AuditDec(enc, ask): (enc1, enc2)← enc; return (enc1 − ask · enc2)
AuditPrv(enc, α, usk, apk):
r1, r2 ← Zp; com1 ← r1P1 + r2apk; com2 ← r2P1; c← H(com1, com2, enc)
z1 ← r1 + c · usk; z2 ← r2 + c · α; return (c, z1, z2)
AuditVerify(apk, c, enc, z1, z2):
com1 ← z1P1 + z2apk− cenc1; com2 ← z2P1 − cenc2; c′ ← H(com1, com2, enc)
return c′ = c

Fig. 1: Protego: setup, key generation, revocation and auditing algorithms.
14

Obtain(pp, usk, opk, apk,X , nym) Issue(pp, upk, osk, apk,X , nym)

r1, r2, r3
$← Z∗

p; a1 ← r1P1; a2 ← r2P1

a3 ← r3Q; C4 ← usk2(b+ nym)P1

C5 ← usk2Q; e← H(upk1, upk2, C5, a1, a2, a3)
z1 ← r1 + e · usk1
z2 ← r2 + e · usk2; z3 ← r3 + e · usk2
(C1, O)← SCDS.Commit(scdspp,X ; usk1)
r4

$← Z∗
p; C2 ← r4 · C1

Σ ← (C1, C2, C4, C5, (ai, zi)i∈[3])
Σ−−−−→ e← H(upk1, upk2, C5, a1, a2, a3)

check
z1P1 = a1 + e · upk1
z2P1 = a2 + e · upk2; z3Q = a3 + e · C5

e(C1, P2) ̸= e(upk1,ChX (s)P2)
∀ x ∈ X : xP1 ̸= ek01

check e(C4, P2) = e(upk2, (b+ nym)P2)

SPS-EQ.Verify(spspp,
σ←−−−− σ ← SPS-EQ.Sign(spspp,

(C1, C2, P1, C4, C5, upk1, apk), σ, opk) (C1, C2, P1, C4, C5, upk1, apk), osk)
return cred← (C1, C4, C5, σ, r4, nym, O)

Fig. 2: Protego: obtain and issue algorithms.

Integration with Fabric. A multi-party computation ceremony can be run
for the CRS generation of the Setup algorithm to ensure that no organization
knows the trapdoors of the different components. As we are in the permissioned
setting it is plausible to assume that at least one of the organizations is honest.
By allowing users and endorsers to obtain credentials, both can produce showing
proofs. Users can generate showing proofs to prove that they satisfy the access
policy for the execution of a particular transaction proposal. Furthermore, by
computing the PoE’s, the verification time for endorsers improves substantially.
Similarly, endorsers can prove that they satisfy a given endorsement policy at-
taching a showing proof to their endorements. Even if the endorsement policies
are defined in a privacy-preserving way as suggested in [3], endorsers can still
compute selective AND and NAND clauses for the respective pseudonyms de-
fined by the policy using their credentials. Endorsers should also use the read
and write sets to from the transaction proposals to generate showing proofs.

Security Proofs. We present the main theorems and proofs for Protego (which
are analogous for Protego Duo). Correctness and issuer-hiding follow from [12] .

Theorem 1. If the q-co-DL assumption holds, the ZKPoK’s have perfect ZK,
SCDS is sound, SPS-EQ is EUF-CMA secure, and RevAcc is collision-free then
Protego is unforgeable.

Proof Sketch. The proof follows from [12] (Th. 6) and [14] (Th. 3) whereby we
assume there is an efficient adversary A winning the unforgeability game with
non-negligible probability. We use A considering the following types of attacks:
Type 1. Adversary A conducts a valid showing so that nym∗ =⊥. Then we

construct an adversary B that uses A to break the EUF-CMA security.

15

Show(pp, usk, upk, opkj , cred,S,D,(opki)i∈[n], (opk
i
j , w

i
j)i∈[2], Ω ,R, apk, tx)

(C1, C4, C5, σ, r, nym, O)← cred; (Πrev,WIT)← R;β, µ, ρ, γ, τ, (ri)i∈[5]
$← Z∗

p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2)) else O′ = µ ·O
opk′j ← ConvertPK(opkj , ρw

1
j + γw2

j);Ω
′ ← SH.ZKEval(opk1j , opk

2
j , Ω; ρ, γ)

σ′ $← SPS-EQ.ChgRep(spspp, (C1, rC1, P1, C4, C5, upk1, apk), σ, µ, ρw
1
j + γw2

j , opkj)

cred′ ← ((Ci)i∈[7] = µ · (C1, rC1, P1, C4, C5, upk1, apk), σ
′)

wss← SCDS.OpenSS(scdspp, C1,S, O′);wds← SCDS.OpenDS(scdspp, C1,D, O′)
wssrev ←WIT[nym];wss′rev ← (τwss1rev, usk2µτwss

2
revP1)

a1 ← r1C1; a2 ← r2P1; a3 ← r3Πrev; a4 ← r4Q; a5 ← r5P1;Π
′
rev ← (usk2µτ)Πrev

(enc, α)← AuditEnc(apk, upk1); t1 = βP2; t2 = βµP2; t3 = αβP2

Π ← AuditPrv(enc, α, usk, apk)

e← H(S,D, apk, tx, enc, Π, opk′j ,(opki)i∈[n], Ω
′ ,(ai)i∈[5], (ti)i∈[3], cred

′,wss,wds, tx,
C2, C3, Π

′
rev, C5,wss

′
rev)

z1 ← r1 + e · r; z2 ← r2 + e · µ; z3 ← r3 + e · (usk2µτ); z4 ← r4 + e · (usk2µ)
z5 ← r5 + e · (usk2µτwss2rev)
π1 ← SCDS.PoE(scdspp,S, e);π2 ← SCDS.PoE(scdspp,D, e)
return (enc, (ti)i∈[3], opk

′,(opki)i∈[n], Ω
′ ,cred′,wss,wds,wss′rev, Π ′

rev, Π, π1, π2, (ai, zi)i∈[5])

Verify(pp,S,D, Πrev, rpk, apk,tx, Ω)

(enc, (ti)i∈[3], opk
′,(opki)i∈[n], Ω

′ ,cred′,wss,wds,wss′rev, Π ′
rev, Π, π1, π2, (ai, zi)i∈[5])← Ω

(C1, C2, C3, C4, C5, C6, C7, σ)← cred′

e← H(S,D, apk, tx, enc, Π, opk′,(opki)i∈[n], Ω
′ ,(ai)i∈[5], (ti)i∈[3], cred

′,wss,wds, tx,
C2, C3, Π

′
rev, C5,wss

′
rev)

check
z1C1 = a1 + eC2; z2P1 = a2 + eC3; z3Πrev = a3 + eΠ ′

rev; z4Q = a4 + eC5

z5P1 = a5 + ewss′rev; RevAcc.VerifyWit(Π ′
rev, C4,wss

′
rev); AuditVerify(enc, Π2)

e(enc1, t2) = e(C6, t1) + e(C7, t3); e(enc2, t2) = e(C3, t3); e(enc2, t1) = e(P1, t3)
SCDS.VerifySS(C1,S,wss;π1, e); SCDS.VerifyDS(C1,D,wds;π2, e)

SH.Verify((opki)i∈[n], opk
′, Ω′) ; SPS-EQ.Verify(cred′, opk′)

Fig. 3: Protego: show and verify algorithms.

Type 2. Adversary A manages to conduct a showing accepted by the verifier
using the credential of user i∗ under nym∗ with respect to S∗ such that
S∗ ̸⊆ ATTR[nym] or with respect to D∗ such that D∗ ⊆ ATTR[nym] holds.
Then we construct an adversary B that uses A to break the soundness of
the set-commitment scheme SCDS.

Type 3. Adversary A manages to conduct a showing accepted by the verifier
reusing a showing based on the credential of a user i∗ under nym∗ with
i∗ ∈ HU, whose secret uski∗ and credentials it does not know.

Type 4. Adversary A manages to conduct a showing accepted by the verifier
using some credential corresponding to a revoked pseudonym nym∗ ∈ RNYM.
Then, we construct an adversary B that uses A to break the binding property
of the revocation accumulator RevAcc.

Types 1 and 2 follow the proofs of [12] (Th. 6) as the underlying primitives
remain unchanged. For Type 3, we leverage the fact that reusing a showing
would only allow the adversary to generate a valid showing for the same original
transaction tx (that is timestamped), and hence, we do not consider it as an
attack. Observe that any modification done to the original tx will lead to a

16

Show(pp, usk, upk, opkj , cred,S,D,opkj , σj ,R, apk, tx)

(C1, C4, C5, σ, r, nym, O)← cred; (Πrev,WIT)← R;β, µ, ρ, γ, τ, (ri)i∈[5]
$← Z∗

p

if O = (1, (o1, o2)) then O′ = (1, (µ · o1, o2)) else O′ = µ ·O
opk′j ← ConvertPK(opkj , ρ);σ

′
j

$← SPS-EQ.ChgRep(spspp, opkj , σj , ρ)

σ′ $← SPS-EQ.ChgRep(spspp, (C1, rC1, P1, C4, C5, upk1, apk), σ, µ, ρ, opkj)

cred′ ← ((Ci)i∈[7] = µ · (C1, rC1, P1, C4, C5, upk1, apk), σ
′)

wss← SCDS.OpenSS(scdspp, C1,S, O′);wds← SCDS.OpenDS(scdspp, C1,D, O′)
wssrev ←WIT[nym];wss′rev ← (τwss1rev, usk2µτwss

2
revP1)

a1 ← r1C1; a2 ← r2P1; a3 ← r3Πrev; a4 ← r4Q; a5 ← r5P1;Π
′
rev ← (usk2µτ)Πrev

(enc, α)← AuditEnc(apk, upk1); t1 = βP2; t2 = βµP2; t3 = αβP2

Π ← AuditPrv(enc, α, usk, apk)

e← H(S,D, apk, tx, enc, Π, opk′j ,σ
′
j ,(ai)i∈[5], (ti)i∈[3], cred

′,wss,wds, tx,
C2, C3, Π

′
rev, C5,wss

′
rev)

z1 ← r1 + e · r; z2 ← r2 + e · µ; z3 ← r3 + e · (usk2µτ); z4 ← r4 + e · (usk2µ)
z5 ← r5 + e · (usk2µτwss2rev)
π1 ← SCDS.PoE(scdspp,S, e);π2 ← SCDS.PoE(scdspp,D, e)
return (enc, (ti)i∈[3], opk

′
j ,σ

′
j ,cred′,wss,wds,wss′rev, Π ′

rev, Π, π1, π2, (ai, zi)i∈[5])

Verify(pp,S,D, Πrev, rpk, apk,vpk ,tx, Ω)

(enc, (ti)i∈[3], opk
′,σ′ ,cred′,wss,wds,wss′rev, Π ′

rev, Π, π1, π2, (ai, zi)i∈[5])← Ω
(C1, C2, C3, C4, C5, C6, C7, σ)← cred′

e← H(S,D, apk, tx, enc, Π, opk′,σ′ ,(ai)i∈[5], (ti)i∈[3], cred
′,wss,wds, tx,

C2, C3, Π
′
rev, C5,wss

′
rev)

check
z1C1 = a1 + eC2; z2P1 = a2 + eC3; z3Πrev = a3 + eΠ ′

rev; z4Q = a4 + eC5

z5P1 = a5 + ewss′rev; RevAcc.VerifyWit(Π ′
rev, C4,wss

′
rev); AuditVerify(enc, Π2)

e(enc1, t2) = e(C6, t1) + e(C7, t3); e(enc2, t2) = e(C3, t3); e(enc2, t1) = e(P1, t3)
SCDS.VerifySS(C1,S,wss;π1, e); SCDS.VerifyDS(C1,D,wds;π2, e)

SPS-EQ.Verify(opk′, vpk) ; SPS-EQ.Verify(cred′, opk′)

Fig. 4: Protego Duo: show and verify algorithms.

different challenge and thus the rest of the proofs (showing, revocation and
auditing) will not pass. Finally, Type 4 follows from [14] (Th. 3). □

Theorem 2. If the DDH assumption holds, the SPS-EQ perfectly adapts signa-
tures, and H is assumed to be a random oracle, then Protego is anonymous.

Proof Sketch. The proof follows from [12] (Th. 7) and [14] (Th. 4). However, we
must also to take into account the RO model and the addition of the auditing fea-
tures. The extra credential components for the auditing are randomized during
every credential showing like the rest of the components. Similarly, the user gen-
erates a new encryption of the auditor’s public key with a fresh α, while a fresh β
is used to randomize the values ti. Since ElGamal encryption is IND-CPA secure
and key-private [5], the ciphertexts produced by the user are indistinguishable
and do not leak information about the user’s public key nor the auditor’s. □

Theorem 3. If the algorithms AuditPrv and AuditVerify are a NIZK proof sys-
tem and the SPS-EQ is EUF-CMA secure then Protego is auditable.

17

Proof. If the verification returns true, we have that ∃ (enc∗1, enc
∗
2) = ((δ∗ +

α∗ask)P1, α
∗P1) for some δ∗ and α∗ chosen by the adversary. Moreover, because

of the unforgeability of the signature scheme, the verification implies that C3 =
µ∗P1, C6 = µ∗usk1P1 and C7 = µ∗askP1 for some µ∗ chosen by the adversary.
As a result, we can re-write the pairing equations for the audit proof as:

e(α∗P1, t
∗
2) = e(µ∗P1, t

∗
3)

e(α∗P1, t
∗
1) = e(P1, t

∗
3)

e((δ∗ + α∗ask)P1, t
∗
2) = e(µ∗usk1P1, t

∗
1) + e(µ∗askP1, t

∗
3)

where t∗1, t∗2 and t∗3 are also chosen by the adversary. We show that δ∗ = usk1,
which implies that upk1 = AuditDec(enc, ask). Looking at the first two equations
in the target group, we have that α∗t∗2 = µ∗t∗3 and α∗t∗1 = t∗3, concluding that
t∗2 = µ∗t∗1. Replacing t∗2 and t∗3 in third one and simplyfing we obtain (δ∗ +
α∗ask)µ∗t∗1 = µ∗usk1t

∗
1 + µaskα∗t∗1. Therefore, we have µ∗δ∗t∗1 + µ∗α∗askt∗1 =

µ∗usk1t
∗
1 + µ∗α∗askt∗1, deducing that δ∗ = usk1. □

5 Evaluation

We implemented a prototype of Protego and Protego Duo (available in [1]), using
Rust with the bls12-381 curve and the BLAKE3 hash function. Our signature
implementation is based on the one from [8] but using the bls12-381 curve instead
of BN curves [4]. As a result, we obtain times up to 67% faster when compared to
[8]. To run the benchmarks a regular laptop (i7-1165G7 CPU & 16GB RAM) was
used with no extra optimizations, using the nightly compiler, and the Criterion
library. For all values, the standard deviation was at most three milliseconds.

Issue and Obtain take roughly 32 and 28 ms when issuing a credential for
10 attributes, respectively. Both scale linearly on the number of attributes. To
evaluate showing and verification, we considered the PoE in the showing proto-
col. Therefore, verification running time remains (almost) constant1 regardless
the number of shown attributes, credential size, and issuer-hiding approach. If
the PoE is disabled, showing running time would be smaller while verification
would increase linearly with the number of shown attributes. An auditing proof
in Protego takes roughly 1.3 and 2.1 ms for proof generation and verification,
surpassing the values from [7]. In Table 1 we report the revocation and sign-
ing algorithms, including our issuer-hiding NIZK with n = 5. For Protego, we
consider a signature for vectors of length seven (the size of a credential). In our
case, the revocation witnesses are computed by the authority (in linear time) and
then randomized by the users (in constant time). For this reason we consider the
generation of a single witness for a revocation lists of 10 and a hundred elements
(although in practice one would expect it to be closer to 10). For [7], we consider
the total time to generate and verify a signature in a user level L = 2 (involving
two delegations), with revocation times in G2.
1 Asymptotic complexity is O(1) (considering exponentiations and pairings) but some

multiplications depending on the shown attributes are required, hence the difference.

18

Revocation Signature Issuer-hiding NIZK
n = 10 n = 100 ℓ = 7 (for Protego) n = 5

Scheme Prove Verify Prove Verify Sign Verify ChgRep Prove Verify ZKEval
[7] 88 149 88 149 57 115 N/A N/A N/A N/A
Protego 14 6 140 6 5 16 15 187 179 107

Table 1: Running time for the different algorithms in milliseconds.

2 4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6 Idemix

Protego
Protego Duo

2 4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6 Idemix

Protego
Protego Duo

Fig. 5: From left to right, showing and verification times (in seconds) for the
different schemes considering credential showings for 2, 4, 6 and 8 attributes.

Comparison with the Idemix extension from [7]. The computational cost
for the prover and verifier grows linearly with the number of attributes in the
credential and delegation levels for [7]. In Protego Duo, the prover computational
cost is O(n − k) for showings involving k-attributes out of n, which in practice
is much better. Verification cost in Protego and Protego Duo is almost constant
(or O(k) if the PoE is disabled). The two works are compared in Figure 5 using
the same hardware (exact times are also given in Table 2). For [7], we consider
a delegation level L = 2 , which corresponds to a user level given that the root
authority is at L = 0 and organizations start at L = 1. Regarding the attributes,
[7] we could only retrieve information considering proofs for credential possesion
below ten attributes (assuming a minimal overhead when all attributes are shown
as authors suggest). Therefore, we report credential possesions for [7] considering
up to 8 attributes, and selective disclosures of k-out-of-10 attributes in ours. For
Protego, we consider five authorities for the NIZK proof, which would suffice for
practical scenarios like a consortium of pharmaceuticals.

6 Conclusions & Future Work

We presented here the first SPS-EQ credential scheme modified to work with per-
missioned blockchains. The versatility of Protego alongside the efficiency gains
(at least twice as fast as the most recent Idemix extension), enables a broader
scope of applications in such a setting. Depending on the context, the PoE’s can

k = 2 k = 4 k = 6 k = 8 k = 10
Scheme Show Verify Show Verify Show Verify Show Verify Show Verify

[7] 173 135 285 258 430 401 599 611 - -
Protego 148 232 152 233 157 234 163 234 167 237
Protego Duo 50 65 55 66 60 67 65 68 70 68

Table 2: Protocols’ comparison showing the running times in milliseconds.

19

be computed or not, the credential issuer can be hidden or not, and one can
select only subsets or disjoint sets to generate the proofs. Similarly, auditability
and revocation features can be considered as optional, showing its flexibility.

As future directions to explore, we consider the following points: (1) adding
confidentiality of transactions to a Protego-like credential scheme, (2) adding
more power to the users (i.e., how to define precise notions of user-invoked
regulatory measures), and (3) extend our results to the multi-authority setting,
where users can get attributes from multiple authorities instead of a single one.

A Our NIZK Argument for Issuer-hiding

We refer the reader to [12] (Section 3.1) for the basic syntax and security prop-
erties of malleable NIZK proof systems. In Figure 6 we build a fully adaptive
malleable NIZK argument following the construction from [12]. The main idea
is that given two proofs π1 and π2 for statements x1 = w1vi and x2 = w2vi, one
can compute a valid proof π for the statement x = (αw1 + βw2)vi with fresh α
and β. The derivation privacy property of the proof system ensures that π looks
like a freshly computed proof. Security follows from theorems 2 and 8 from [12].

SH.PGen(1λ):

BG
$← BGGen(1λ); z $← Zp

return (BG, [z]1)

SH.PSim(crs, td, (vi)i∈[n], [x1]2, [x2]2):

δ, z1, ..., zn−1
$← Z∗

p

zn ← δtd−
∑i=n−1

i=1 zj
for all i ∈ [n] do

di
$← Zp; [ai]2 ← di · vi − zi · x

return (([an]2, [dn]1, [zn]1)n∈[n], δP2)

SH.ZKEval(crs, [x1]2, [x2]2, π;α, β):
// [x′]2 = (αw1 + βw2)[vi]2

(([aj
n]2, [d

j
n]1, [zn]1)

j∈[2]

n∈[n], Z2)← π

δ
$← Z∗

p; Z′
2 ← δZ2

for all i ∈ [n] do
[z′i]1 ← δ[zi]1;
[d′i]2 ← δα[d1i]2 + δβ[d2i]2;
[a′

i]2 ← δα[a1
i]2 + δβ[a2

i]2;
return (([a′

n]2, [d
′
n]1, [z

′
n]1)n∈[n], Z

′
2)

SH.TPGen(1λ):

BG
$← BGGen(1λ); z $← Zp; td← z

return (BG, [z]1, td)

SH.Prove(crs, ([vi]2)i∈[n], ([xj]2, wj)j∈[2]):
// [x1]2 = w1[vi]2, [x2]2 = w2[vi]2

δ, r1, r2, z1, ..., zn−1
$← Z∗

p

[zn]1 ← δ[z]1 −
∑i=n−1

i=1 [zi]1
([aj

i]2, [d
j
i]1)← (rj [vi]2, wj [zi]1+[rj]1)

for all k ̸= i ∈ [n], j ∈ [2] do
djk

$← Zp; [aj
k]2 ← djk[vk]2 − zk[xj]2

return (([aj
n]2, [d

j
n]1, [zn]1)

j∈[2]

n∈[n], δP2)

SH.Verify(crs, ([vi]2)i∈[n], [x]2, π):
(([an]2, [dn]1, [zn]1)n∈[n], Z2)← π

check e([z]1, Z2) = e(
∑i=n

i=1 [zi]1, [1]2)
for all i ∈ [n] do
check e([di]1, [vi]2)=e([zi]1, [x]2)+ e([1]1, [ai]2)

Fig. 6: Our fully adaptive malleable NIZK argument

20

References

1. Protego. https://anonymous.4open.science/r/protego-55D6INDOCRYPT.
2. Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar

Elkhiyaoui, and Björn Tackmann. Privacy-preserving auditable token payments
in a permissioned blockchain system. In Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, AFT ’20, page 255–267, New York, NY,
USA, 2020. Association for Computing Machinery.

3. Elli Androulaki, Angelo De Caro, Matthias Neugschwandtner, and Alessandro
Sorniotti. Endorsement in hyperledger fabric. In 2019 IEEE International Con-
ference on Blockchain (Blockchain), pages 510–519, 2019.

4. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume
3897 of LNCS, pages 319–331. Springer, Heidelberg, August 2006.

5. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume
2248 of LNCS, pages 566–582. Springer, Heidelberg, December 2001.

6. Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin.
Issuer-Hiding Attribute-Based Credentials. In Mauro Conti, Marc Stevens, and
Stephan Krenn, editors, Cryptology and Network Security, pages 158–178, Cham,
2021. Springer International Publishing.

7. Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann.
Anonymous transactions with revocation and auditing in hyperledger fabric. In
Mauro Conti, Marc Stevens, and Stephan Krenn, editors, Cryptology and Network
Security, pages 435–459, Cham, 2021. Springer International Publishing.

8. Michael Burkhart. Mercurial signatures implementation. Github, 2020. https:
//github.com/burkh4rt/Mercurial-Signatures.

9. Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-secure
delegatable credentials with attributes and their application to blockchain. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 683–699. ACM Press, October / November 2017.

10. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004.

11. Jan Camenisch, Sebastian Mödersheim, and Dieter Sommer. A formal model of
identity mixer. In Proceedings of the 15th International Conference on Formal
Methods for Industrial Critical Systems, FMICS’10, page 198–214, Berlin, Heidel-
berg, 2010. Springer-Verlag.

12. Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. Improved
Constructions of Anonymous Credentials from Structure-Preserving Signatures on
Equivalence Classes. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, ed-
itors, Public-Key Cryptography – PKC 2022, pages 409–438, Cham, 2022. Springer
International Publishing.

13. Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous credentials
from mercurial signatures. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405
of LNCS, pages 535–555. Springer, Heidelberg, March 2019.

14. David Derler, Christian Hanser, and Daniel Slamanig. A new approach to effi-
cient revocable attribute-based anonymous credentials. In Jens Groth, editor, 15th
IMA International Conference on Cryptography and Coding, volume 9496 of LNCS,
pages 57–74. Springer, Heidelberg, December 2015.

21

https://anonymous.4open.science/r/protego-55D6INDOCRYPT
https://github.com/burkh4rt/Mercurial-Signatures
https://github.com/burkh4rt/Mercurial-Signatures

15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving
signatures on equivalence classes and constant-size anonymous credentials. Journal
of Cryptology, 32(2):498–546, April 2019.

16. Hui Kang, Ting Dai, Nerla Jean-Louis, Shu Tao, and Xiaohui Gu. Fabzk: Sup-
porting privacy-preserving, auditable smart contracts in hyperledger fabric. In
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 543–555, 2019.

17. Subhra Mazumdar and Sushmita Ruj. Design of anonymous endorsement system
in hyperledger fabric. IEEE Transactions on Emerging Topics in Computing, pages
1–1, 2019.

18. Neha Narula, Willy Vasquez, and Madars Virza. Zkledger: Privacy-preserving
auditing for distributed ledgers. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation, NSDI’18, page 65–80, USA,
2018. USENIX Association.

19. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, Heidelberg, August 1990.

20. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

21. IBM Research Zurich. Specification of the identity mixer cryptographic library
v2.3.0., 2013.

22

	Protego: Efficient, Revocable and Auditable Anonymous Credentials with Applications to Hyperledger Fabric

