
A Prover-Anonymous and Terrorist-Fraud Resistant
Distance-Bounding Protocol∗

Xavier Bultel
University Clermont Auvergne

xavier.bultel@udamail.fr

Sébastien Gambs
UQAM, Montréal

gambs.sebastien@uqam.ca

David Gérault
University Clermont Auvergne

david.gerault@udamail.fr

Pascal Lafourcade
University Clermont Auvergne

pascal.lafourcade@udamail.fr

Cristina Onete
INSA/IRISA Rennes

cristina.onete@gmail.com

Jean-Marc Robert
ÉTS, Montréal

jean-marc.robert@etsmtl.ca

ABSTRACT
Contactless communications have become omnipresent in
our daily lives, from simple access cards to electronic pass-
ports. Such systems are particularly vulnerable to relay
attacks, in which an adversary relays the messages from a
prover to a verifier. Distance-bounding protocols were intro-
duced to counter such attacks. Lately, there has been a very
active research trend on improving the security of these pro-
tocols, but also on ensuring strong privacy properties with
respect to active adversaries and malicious verifiers.

In particular, a difficult threat to address is the terrorist
fraud, in which a far-away prover cooperates with a nearby
accomplice to fool a verifier. The usual defence against this
attack is to make it impossible for the accomplice to succeed
unless the prover provides him with enough information to
recover his secret key and impersonate him later on. How-
ever, the mere existence of a long-term secret key is prob-
lematic with respect to privacy.

In this paper, we propose a novel approach in which the
prover does not leak his secret key but a reusable session key
along with a group signature on it. This allows the adversary
to impersonate him even without knowing his signature key.
Based on this approach, we give the first distance-bounding
protocol, called SPADE, integrating anonymity, revocability
and provable resistance to standard threat models.

1. INTRODUCTION
With the accelerating convergence of our digital identities

on our ubiquitous smartphones, developing secure authenti-
cation protocols is more important than ever. As an exam-
ple, a virtual wallet including various personal credentials
can be used for everyday life applications such as public

∗This work was partially supported by the “Digital trust”
Chair from the University of Auvergne Foundation, by
NSERC Discovery and Accelerator Supplement grants, and
by the European Union through the European Regional De-
velopment Fund.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec’16, July 18–20, 2016, Darmstadt, Germany.
c© 2016 ACM. ISBN 978-1-4503-4270-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2939918.2939919

transport, logistics and contactless-payment systems. An-
other crucial notion is to protect the privacy of the users
against external eavesdroppers and legitimate entities. The
canonical application for this concept is the contactless pass
used for accessing public transport systems. In this context,
privacy is a fundamental property in order for users to trust
the system deployed.

Authentication protocols are among the most fundamen-
tal cryptographic primitives of the digital world. They en-
able an entity, called a verifier, to check the legitimacy of
users (called provers) before giving access to a resource. The
provers are assumed to possess cryptographic devices stor-
ing their secret credentials. To be secure, an authentication
protocol must guarantee that a legitimate prover is always
authenticated, while all illegitimate ones should be rejected
by the verifier. Authentication protocols are often prone to
relay attacks [6], in which an adversary relays to the verifier
the responses of a legitimate prover. This attack bypasses
standard countermeasures such as encryption or digital sig-
natures.

Distance bounding (DB) was introduced by Brands and
Chaum [8] to thwart relay attacks by allowing the verifier
to estimate an upper bound on the distance between him
and the prover using several time-critical challenge-response
rounds. Assuming that trust requires physical proximity, if
a prover is outside the close vicinity of the verifier, he should
be rejected. Thus, in DB protocols, verifiers are equipped
with a clock, and they measure the time between sending
a challenge and receiving the corresponding response from
the prover. Once the different Round Trip Times (RTTs)
for all challenge-response rounds are measured, the verifier
compares these values to a pre-existing bound tmax and ac-
cepts the prover if and only if: (a) the responses are correct
and (b) all RTT values are below the threshold tmax.

To be secure, a DB protocol must resist at least to: (1)
Mafia fraud (MF), (2) Distance fraud (DF) and (3) Imper-
sonation fraud (IF). MF resistance requires that no illegiti-
mate Man-in-the-Middle (MiM) adversary can authenticate
to the verifier, even in the presence of a legitimate prover
with whom he can interact. DF resistance demands that no
legitimate but malicious prover, located outside the verifier’s
trusted vicinity, should be able to authenticate. A variant of
this attack, in which a distant malicious prover uses an hon-
est prover located in the verifier’s vicinity to authenticate,
is called Distance Hijacking (DH) [11]. Finally, the IF resis-
tance adresses the simple situation in which the malicious
adversary tries to fool the verifier without any help.

Another important threat against DB protocols is the Ter-
rorist Fraud (TF), in which a malicious yet legitimate prover
helps a cooperative MiM accomplice to authenticate. How-
ever, one of the assumptions is that the prover wants to
retain control of his secret credentials. Thus, he is willing to
help his accomplice, but without giving him a better chance
to authenticate in latter attempts. Since this attack assumes
that the prover knows his credentials, it could be prevented
straightforwardly if a tamper-proof component is used to
prevent the prover from learning this information. Unfor-
tunately, relying only on tamperproofness is generally not
sufficient [21]. In most payment systems relying on secure
smartcards, back-end fraud detection mechanisms have been
deployed to prevent any massive frauds. Thus, it is prefer-
able to consider the most pessimistic scenario in which the
adversaries are assumed to be given a white-box access to
the secret keys. In this context, the usual countermeasure
against TF is to force the prover to leak parts of his long-
term key if he wants to give his accomplice a fair chance to
succeed.

Since DB protocols were defined for RFID tags and read-
ers, they use shared symmetric keys between provers and
the verifier. However, the seminal DB protocol of Brands
and Chaum [8] was based on public-key cryptography. Im-
provements in RFID architectures as well as the emergence
of NFC smartphones have motivated recent research in DB
to consider public-key cryptography [14,17,25].

A recent concern in DB protocols is privacy. One of the
first schemes to address this concept is the Swiss-Knife pro-
tocol [18]. However, its guarantee holds only if secret keys
can never be leaked, and only with respect to an external
eavesdropper but not against a legitimate verifier. However,
no precise definition of this property is given and no formal-
ized proof exists in the literature.

Introducing privacy with respect to the verifier raises the
question of the revocability of a prover by the registration
authority. Hence, before the authentication succeeds, the
verifier should check whether this prover has been revoked.
Indeed, if this property is not taken into account, the cor-
ruption of a prover makes the whole system vulnerable, as
there is no way to distinguish whether a prover uses stolen
credentials or legitimate ones. In this paper, corrupting a
user simply means that the adversary is able to obtain his
secret keys. Building an anonymous protocol without any
revocation mechanism is trivial: the same secret key is given
to all provers who become indistinguishable. However in
this case, one corruption forces the update of the keys of all
users, which makes this solution impractical. Our aim is to
fill this gap by proposing a provably TF-resistant, prover-
anonymous, secure and revocable DB protocol.

A typical scenario for our secure and anonymous DB pro-
tocol can be described as follows. In a public transport sys-
tem, users relying on their NFC-enabled phones may have
access to buses or subway stations if they can properly au-
thenticate. However, users must protect their identity with
respect to legitimate verifiers trying to profile them. In such
a context, a TF attack is simply a user ready to lend ille-
gally his monthly pass to someone for a single trip while he
is not using it. However, this user would not accept that his
accomplice can impersonate him later at will to avoid being
caught (if the same nonce Np is used successfully numerous
times). Thus, the presence of a backdoor in the verifiers can
play in important role to deter such frauds. In an in-depth

security approach, tamper-proof protection is not sufficient
in this case. Indeed, it may protect the long term private
key, but it would be useless to protect the two strings used
in the time-critical phase implemented directly in the net-
work access card for efficiency. The prover should answer the
challenges as fast as possible, or otherwise the verifier can
estimate that the prover is further than he really is. These
strings are critical for the TF attacks and can therefore be
easily obtained.

Contributions. We propose SPADE (for Secure Prover
Anonymous Distance-bounding Exchange), the first protocol
to achieve prover-anonymity with respect to the strongest
possible adversaries, provable TF resistance, and revocabil-
ity of corrupted provers.

For ensuring anonymity, our construction relies on the
concept of group signatures [5], which enables a member
of a group to sign anonymously on behalf of the group. New
members can dynamically join the group or be revoked. This
is managed by a central registration authority, which has to
be involved in any signature verification. In case of dispute,
a trusted authority can retrieve the identity of a signer.

In addition to privacy, our main contribution is to ensure
TF resistance. Most TF-resistant DB protocols achieve this
property by binding the responses of the time-critical phases
to a long-term secret key. This forces the provers to reveal
to their MiM accomplices some bits of their secret key to
authenticate, thus allowing their accomplice to impersonate
a prover in latter runs of the protocol. Our approach rep-
resents a radical change in the sense that it is based on a
session key, chosen by a legitimate prover and signed with
his group signature key, before being encrypted. To prevent
replay attacks, the responses to the time-critical phases de-
pend on a verifier-specific nonce. However, given a value
that is reasonably close to the prover’s session key, the ad-
versary can replay the prover’s signature to be authenticated
on his behalf. The presence of a backdoor, which can be used
to retrieve the information needed to impersonate a prover,
should deter any prover to help potential accomplices. This
was originally suggested by Fischlin and Onete [13].

Related Work. In a recent survey, Brelurut, Gérault and
Lafourcade reviewed 42 DB protocols (ranging from 1993 up
to 2015) [9]. Only nine of them are not broken yet, and none
of them achieves at the same time provable TF resistance,
prover anonymity and revocability. Lately, Gambs, Onete
and Robert [14] introduced the concept of privacy against
honest-but-curious and malicious verifiers that aim at profil-
ing legitimate provers. They proposed a construction relying
on the protocol proposed in [17], but in which the provers
are managed as a group. Although they addressed MF, DF
and IF, they did not tackle TF resistance, which is not easily
compatible with privacy.

Recently, Vaudenay [26] introduced a generic construc-
tion to transform a DB protocol based on a symmetric-
key scheme into one based on a public-key cryptography.
His construction yields provable MF, DF and DH resistance
against the strongest possible adversaries, but not TF resis-
tance. Moreover, privacy is only limited to a MiM adversary.

Ahmadi and Safavi-Naini [1] proposed a privacy-preserving
DB protocol that is claimed to be TF-resistant. Their proto-
col fixes the vulnerabilities [3] of the DBPK-log protocol [10],
and provides prover anonymity. A new prover joining the
system picks a secret key and obtains its blind signature

from the registration authority. This signature is then used
as a membership certificate. During a session of the DB pro-
tocol, the prover never reveals his secret key nor his certifi-
cate. Instead, he uses a zero-knowledge proof of knowledge
to prove that he knows a valid certificate, and that its value
was used to generate his responses during the protocol exe-
cution. Unfortunately, the security proofs are not yet avail-
able. Moreover, the mechanism used to ensure anonymity
does not allow user revocation, which is a major limitation.

Three frameworks for analyzing the security of DB pro-
tocols have been published: Avoine, Ali Bingöl, Kardaş,
Lauradoux, and Martin [2], Dürholz, Fischlin, Kasper and
Onete [12], and Boureanu, Mitrokotsa and Vaudenay [7]. In
our analysis, the DFKO framework [12] and the compati-
ble game-based TF resistance [13] are used. Though this
framework is for a single prover and a single verifier, it can
be extended to multiple provers and to capture DH attacks.
Finally, the prover anonymity notion defined in [14] is used,
which is compatible with the DFKO framework.

2. PRELIMINARIES
In this section, we review the security models for DB pro-

tocols before describing the tools used in SPADE.

2.1 Distance-Bounding Models
DB protocols involve two parties: a prover P and a veri-

fier V . In the public-key setting, let {skP , pkP } denote the
private and public keys of P and let {skV , pkV } represent
the ones of V . All public keys are known by all parties.
During the DB protocol, P and V interact with each other,
yielding the bit OutV = 0 for reject or 1 for accept at the
end of the verifier algorithm.

Adversary Model. In the DFKO model [12], an adversary
A interacts with a prover and the verifier in three types of
sessions: (1) prover-verifier sessions, in which A eavesdrops
on an honest execution between a prover and a verifier, (2)
prover-adversary sessions, in which A impersonates a ver-
ifier interacting with the prover, and (3) adversary-verifier
sessions in which A impersonates a prover interacting with
the verifier. Protocols are sequences of exchanges between a
prover and the verifier. A message from the verifier to the
prover and the subsequent response back is called a round.
Successive rounds may be combined in phases. If the clock
is used to measure the time elapsed from the beginning of
the phase to its end, this phase is called time-critical while
otherwise it is called lazy. Finally, sessions run by honest
parties are associated with identifiers sid.

Adversaries are quantified in terms of their computational
resources, the number of prover-verifier sessions qobs eaves-
dropped, the number qv of verifier-adversary and the number
qp of prover-adversary sessions initiated, as well as the ad-
versary’s winning advantage. In this paper, we consider the
strongest possible adversaries against privacy, which are as-
sumed to know the final result of an authentication session
(i.e., accept or reject), and to be able to corrupt provers (i.e.,
get their keys) without any restriction. Such adversaries are
called wide-strong in the literature [27].

Oracles. Adversaries are also classified depending on the
oracles they may use. These oracles perform functionalities
without giving any further details on their internal informa-
tion unknown to their users.

Prover Anonymity. The PA concept [14] extends existing
privacy models used in DB protocols [16, 17]. An adversary
against the prover anonymity can be either a MiM adver-
sary, an honest-but-curious or even malicious verifier. His
objective is to link sessions involving a given prover.

The PA game is defined by an adversary A interacting
with the provers through an oracle, which blinds their iden-
tity. The adversary A wins the game if he can identify with
a non-negligible advantage which prover was selected by a
challenger and hidden by the oracle. The adversary’s ad-
vantage is simply given by the difference between his prob-
ability of guessing the identity of the selected prover among
the set of potential provers and the trivial guessing proba-
bility of one over the cardinality of that set. A protocol is
PA-resistant if there is no such a winning adversary.

Mafia-Fraud Resistance. MF attacks are defined with
respect to an active MiM adversary A, which can interact
with a prover and the verifier in several sessions. His goal is
to authenticate to the verifier, but without relaying informa-
tion directly from the prover (since the verifier should detect
relays). The DFKO framework rules out pure relaying at-
tacks, which consist in an adversary forwarding the messages
between two legitimate parties. A prover-adversary session
sid′ used concurrently with an adversary-verifier session sid
to perform pure relays is called a tainted session.

An adversary A wins the MF game if there is at least
one adversary-verifier session that is untainted by any other
prover-adversary session, and in which the verifier accepts
with a non-negligible probability the adversary as legitimate.
A protocol is MF-resistant if there is no such adversary.

Terrorist-Fraud Resistance. In their extension of the
DFKO framework, Fischlin and Onete [13] consider many
variations of TF attacks. We use their game-based TF-
resistance notion GameTF. Intuitively, the goal of the MiM
adversary A colluding with a malicious prover is to be au-
thenticated by the verifier. However, the prover also wants
to control his accomplice’s access in future sessions, in par-
ticular, by keeping his secret key as confidential as possible.
This property is formalized as a two-phase game. First, the
TF adversary A attempts to authenticate to the verifier with
non-negligible probability. In the second one, an adversary
B takes as input the A’s complete view and runs a MF at-
tack. If B authenticates with higher probability than in a
regular MF attack, A is said to be helpful to B.

An adversaryA wins the TF game if he authenticates with
a non-negligible probability, but is not helpful to anyone. A
protocol is TF-resistant if there is no such adversary.

Intuitively, a protocol is TF-resistant if a malicious prover
cannot help his accomplice authenticate with a non-negli-
gible probability without losing control on his credentials.
Thus, a rational prover will avoid to perform such an attack.

Impersonation-Fraud Resistance. IF resistance mainly
concerns the lazy phases of the protocol. Here, the objec-
tive of the adversary A is to make the verifier accept his
authentication in a session in which he does not relay the
lazy phases from a honest session. A wins the IF game if
there is at least one adversary-verifier session in which the
verifier accepts with a non-negligible probability the adver-
sary as legitimate, and such that no prover-verifier session
shares the same lazy transcript. A protocol is IF-resistant
if there is no such adversary.

Distance-Fraud Resistance. In the case of DF attacks,
the adversary A is a malicious prover outside the proximity
of the verifier. Since this adversary is not be able to beat
the verifier’s clock, an adversary-verifier session is defined as
tainted if for any time-critical phase the adversary is unable
to commit to that round’s response before receiving the ver-
ifier’s message for that phase. In this attack, the adversary
usually sends the response before receiving the challenge.

An adversary A wins the DF game if there is at least
one adversary-verifier session that is untainted by any other
prover-adversary session, and in which the verifier accepts
with a non-negligible probability the adversary as legitimate.
A protocol is DF-resistant if there is no such adversary.

2.2 Cryptographic Primitives
Definition 1 (Public Key Encryption). A public

key encryption scheme PKE is defined by:

E.gen(1λ) returns a public and private key pair (pk, sk).
E.encpk(m) returns the ciphertext c.
E.decsk(c) returns m such that E.decsk(E.encpk(m)) = m.

The related security game is defined as follows. An ad-
versary receives a public key pk from the key pair (pk, sk)
and has access to a decryption oracle. He sends two mes-
sages (m0,m1) to a challenger that computes the ciphertext
c = E.encpk(mb) for a random bit b. The adversary wins if
he correctly guesses b. A PKE is IND−CCA2 secure [22], if
there is no polynomial-time winning adversary.

Group Signature. In a group signature scheme [5,23], each
member of the group has a personal signing key that he uses
to sign a message on behalf of the group. An entity, called
a group manager, adds new members to the group while an-
other entity called the opening authority can open a signa-
ture to reveal the identity of the signer. Some schemes allow
also dynamic group structures with revocation capabilities
by the group managers.

Definition 2 (Revocable Group Signature). A re-
vocable group signature scheme G−SIG is defined by:

G.gen(1λ) returns a group/master key pair (gpk,msk) and
sets the user list UL and the revoked user list RL.

G.joinmsk(i, gpk,UL) is a protocol between a user Ui (using
gpk) and a group manager GM (using gpk and msk).
Ui interacts with GM to get his signing key sski, while
GM outputs a value regi and adds Ui to UL.

G.revmsk(i,RL,UL, gpk) computes revocation logs revi for user
Ui, using regi, gpk and msk and moves Ui to RL.

G.sigsski
(m) returns a group signature σ.

G.vergpk(σ,m,RL) outputs 1 if and only if σ is valid for the
message m and the key sski of a non-revoked user.

G.opemsk(σ,m,UL, gpk) outputs a user identity Ui.

The essential security property required for a group signa-
ture is unlinkability. It captures the idea that no polynomial-
time adversary should be able to distinguish with a non-
negligible probability whether two signatures have been is-
sued by the same signer or not. The adversary is assumed
to have access to oracles that add new users (honest or cor-
rupted), corrupt or revoke a user, sign with an user’s signing
key, and open a signature using the opening authority key
(the oracle trivially rejects the challenge signature).

The second security property is traceability. It ensures
that no polynomial-time adversary should be able to pro-
duce a valid signature for a revoked user or a honest user

with non-negligible probability (using the same oracles as
for the unlinkability experiment). An adversary breaks the
traceability of a signature scheme if he is able to forge a valid
signature on a message of his choice. For digital signature
schemes, this property is known as EUF−CMA secure [15].

The last security requirement is non-frameability, which
guarantees that no adversary is able to sign on behalf of
a honest user even if he knows the key of the group man-
ager. This property is rather strong since it protects the user
against a corrupted group manager or opening authority.

Pseudorandom Function. A set PRF is a collection of
polynomial-time pseudo-random functions {PRFk}k∈K de-
fined on a key set K, which is such that, for any polynomial-
time adversary, the probability of distinguishing between
outputs of PRFk for a random key k and outputs of a truly
random function is negligible.

In the random oracle model, defining PRF k(x) = H(k, x)
is a simple way to construct PRF using a given crypto-
graphic hash function H.

3. SPADE
We first describe the functionalities provided by an anony-

mous distance-bounding protocol, before detailing our propo-
sition SPADE for such a protocol.

Definition 3 (Anonymous DB). An anonymous
distance-bounding protocol DB is defined by:

DB.gen(λ) sets a master key MK and a verification key VK,
and sets the user list UL and the revoked-user list RL.

DB.joinMK(i,UL) returns a prover secret key pski for Pi. This
algorithm also outputs a value regi and adds Pi to UL.

DB.auth(pski,VK,RL) is an interactive authentication pro-
tocol between Pi (using pski)and V (using VK and RL).
V returns 1 in case of success and 0 otherwise. This
algorithm also outputs a transcript trans.

DB.revokeMK(i,RL,UL) computes the revocation logs revi for
Pi, using regi and MK, and moves Pi from UL to RL.

DB.openMK(trans) outputs the identity of prover Pi.

Consider the scenario in which we have a group man-
ager GM , a verifier V and a group of provers Pi, which
can authenticate to V . During the initialization, GM uses
DB.gen(λ) to produce a master key MK and a verifier key
VK for V . Calling DB.joinMK(i,UL), M also generates a se-
cret key pski for each prover Pi. Using these keys, Pi runs
DB.auth(pski,VK,RL) to authenticate himself to V . After-
wards, GM can add new provers using DB.join and revoke a
prover using DB.revoke. Finally, GM can lift the anonymity
of a user by running the algorithm DB.openMK(trans)”

The main idea behind SPADE is that the prover is authen-
ticated anonymously as a member of an authorized group,
ensuring anonymity due to the group signature scheme.

Definition 4 (SPADE). Let E = (E.gen,E.enc,E.dec)
be a PKE scheme, G = (G.gen,G.sig,G.ver,G.join,G.rev,G.ope)
be a G−SIG scheme and PRF be a pseudorandom-function
set. The DB protocol (E,G,PRF)−SPADE is defined by:

DB.gen(λ) sets the verifier keys (pkV , skV) = E.gen(λ) and
the signature key pair (gpk,msk) = G.gen(λ). It also
returns the master key MK = (msk, gpk, pkV , skV) and
a verification key VK = (skV , gpk), and sets the user
list UL and the revoked-user list RL.

Prover P Verifier V
pkV , sskP skV , gpk

Initialisation

NP
$← {0, 1}n, σ = G.sigsskP

(NP) NV
$← {0, 1}n,m $← {0, 1}n

e = E.encpkV (NP , σ)
e−−−−−−−−−−−−−−−−→ (NP , σ) = E.decskV (e)

a = PRFNP (NV)
m,NV←−−−−−−−−−−−−−−−− if G.vergpk(σ,NP ,RL) = 0 then abort

Distance Bounding
for i = 1 to n

ci
$← {0, 1}

ri =

{
ai if ci = 0

ai ⊕NP i ⊕mi if ci = 1

ci←−−−−−−−−−−−−−−−− Start clock
ri−−−−−−−−−−−−−−−−→ Stop clock

Check timers ∆ti
Verification

C = c1|| . . . ||cn and R = r1|| . . . ||rn C = c1|| . . . ||cn and R = r1|| . . . ||rn
T = PRFNP (NV ,m,C,R)

T−−−−−−−−−−−−−−−−→ Check that T ?
= PRFNP (NV ,m,C,R)

If #{i : ri and ∆ti correct} = n
OutV←−−−−−−−−−−−−−−−− then OutV = 1 else OutV = 0

Figure 1: Anonymous TF resistant protocol from a public key encryption E , a pseudo-random-function set
PRF and a group signature G, where a||b is the concatenation of a and b, and x⊕ y denotes the exclusive-or.

DB.joinMK(i,UL) runs the algorithm G.joinmsk(i, gpk,UL) to
get sski and then constructs pski = (pkV , sski) for the
prover i. This algorithm also returns a value regi and
adds Pi to UL.

DB.auth(pski,VK,RL) is described in Figure 1. The security
parameter n, defining the number of rounds, is func-
tion of the security parameter λ.

DB.revokeMK(i,RL,UL) runs G.revmsk(i,RL,UL, gpk).
DB.openMK(trans) computes (NP , σ) = E.decskV (e), in which

e is the first message of the transcript. Afterwards, it
outputs the prover Pi = G.opemsk(σ,NP ,UL, gpk).

We now detail our protocol presented in Figure 1.

Initialization Phase. First, P generates a random n-
bit string NP and signs it σ = G.sigsskP

(NP). Then, he
encrypts both values e = E.encpkV (NP , σ), with the pub-
lic key of V and sends the result to V . The verifier re-
trieves (NP , σ) = E.decskV (e) and checks the signature with
G.vergpk(σ,NP ,RL). If it is invalid, he aborts the protocol.
Otherwise, V returns two new random n-bit strings m and
NV to P . Finally, both P and V compute a = PRFNP (NV).

Distance-bounding Phase. P and V perform n challenge-
response rounds during a time-critical phase. This is the
heart of the protocol as it is used to determine if the prover
is in the verifier’s vicinity. At round i, V sends a bit ci and P
answers with ai⊕((NP i⊕mi)∧ci). The string m prevents a
malicious prover from picking NP = 0n, which would allow
him to respond with ai even before receiving the challenges.
At the end of each round, V stores the RTT denoted by ∆ti.

Verification Phase. P concatenates all the challenges C
and the responses R, computes τ = PRFNP (NV ,m,C,R)

and sends it to V . V checks τ
?
= PRFNP (NV ,m,C,R)

and verifies that the ∆ti are coherent with respect to the
proximity threshold to ensure that P is within an authorized

distance. If all these checks succeed and all the responses are
correct, V returns OutV = 1 for acceptance, while otherwise
he returns OutV = 0.

Novel Approach. In contrast to most protocols in the liter-
ature, our DB protocol does not rely on a long-term shared
secret between a prover and the verifier, but on a session key
NP exchanged anonymously. Long-term shared secrets con-
stitute a serious burden to overcome to provide anonymity
for the prover as these secrets can be easily used to link dif-
ferent sessions of a user. The radical shift that we propose
can be seen as the main contribution of this paper.

SPADE is built in such a way that an adversary can replay
a session key if he gets access to it (e.g., during a TF). To
ensure that provers protect their session keys, we introduce
a stateless backdoor in the verifier, allowing an adversary
to recover the complete session key NP provided that he
knows enough bits about it. This sets a trade-off between
the malicious prover and any potential accomplice. Indeed,
providing too much information to an accomplice, he may
eventually impersonate the prover, which is not desirable.
At the other end of the spectrum, by not giving him enough
information, he may not be helpful to the prover.

The backdoor is presented in Figure 2 and its analysis is
given in Section 6. If V receives the bit b = 1, he gets after-
wards e and N ′P . Then, he extracts (NP , σ) = E.decskV (e)
and uses G.vergpk(σ,NP ,RL) to verify the signature. If σ is
valid, he returns NP provided that the Hamming distance
dH(NP , N

′
P) is smaller than a threshold t. Otherwise, he

returns 0. On the one hand, since a regular MiM adversary
learns nothing about NP , his probability to recover it using
the backdoor is negligible. On the other hand, the accom-
plice authenticating with the help of the prover should learn
enough bits of NP to use the backdoor. This new approach
for proving the TF resistance makes SPADE the first secure
provable revocable and anonymous DB protocol.

Prover P Verifier V
pkv, sskp skv, gpk

Initial message
b−−−−−−−−−−−−−−−−→

if b = 0, run the protocol normally
else
e,N′

P−−−−−−−−−−−−−−−−→ (NP , σ) = E.decskv (e)

if G.vergpk(σ,NP ,RL) = 1 and dH(NP , N
′
P) ≤ t

ret←−−−−−−−−−−−−−−−− then ret = NP else ret = 0

Figure 2: The backdoor mechanism. If the initial message is b = 0, the protocol is run normally. Otherwise,
the verifier simply waits to receive a value e that he parses as (NP , σ) and a string N ′P . If NP and N ′P are close
enough, he returns NP .

4. SECURITY DEFINITIONS
In this section, we define the security properties of anony-

mous DB protocols as games between powerful adversaries
and benign challengers. For more details,refer to [12,14].

Initialization. The challenger uses DB.gen(n) to build the
simulation environment (MK,VK,UL,RL) and sets four lists:
two transcript lists TLv for the verifier, TLp for the prover
P , a corrupted users list CU and a list HL representing the
random oracle calls.

Oracles. The challenger can simulate these oracles:

• DB.Joinh(i) adds Pi by using DB.joinMK(i,UL).
• DB.Joinc(i) adds a corrupted Pi using DB.joinMK(i,UL).

It also returns the secret key pski, and adds Pi to CU.
• DB.Revoke(i) runs DB.revokeMK(i,RL,UL) on Pi.
• DB.Corrupt(i) simulates the corruption of Pi by return-

ing his secret key pski and adding Pi to CU.
• DB.Prover(i) simulates a session by the honest prover
Pi and adds the generated transcript to TLp.
• DB.Verifier(d) simulates a session by a honest verifier V

at a distance d by delaying messages appropriately. It
then appends tainted = 0 at the end of the transcript
and adds it to the list TLv.
• DB.Session(i) simulates a session between a honest ver-

ifier V and a nearby honest Pi.
• DB.Taint(.) simulates an altered DB.Verifier(d) in which

the time delay checks are bypassed. Then, it appends
tainted = 1 to the transcript before adding it to TLv.
• H(·) is a random oracle using a list HL. When receiving

an input i such that i /∈ HL, it draws a binary string
r uniformly at random, adds an entry (i, r) in HL and
returns r. If i ∈ HL, it returns the corresponding r.

4.1 Prover Anonymity
Let the anonymity experiment ExpPA

A,DB(λ) for an adver-
sary A on a protocol DB be defined as follows.

Definition 5 (Prover Anonymity Security). A has
access to the following DB-oracles Joinh(i), Joinc(i), Revoke(i),
Corrupt(i), Prover(i), Verifier(d), H(·) and Session(i). First,
A outputs (i0, i1). If i0 or i1 ∈ CU, the challenger aborts

the experiment. Otherwise, he picks b
$← {0, 1}. Then, A

loses access to Corrupt(i) and Revoke(i) on identities i0 and
i1 (the oracles return false if A tries). Finally, A has access
to the DB-oracle Proverb(·), which runs the DB protocol as
the prover ib using key pskib interacting with A.

A wins if and only if adv outputs b.
We define A’s advantage on this experiment as AdvPA

A,DB(λ) =

|Pr[ExpPA
A,DB(λ) = 1] − 1

2
| and the advantage on the PA ex-

periment as AdvPA
DB(λ) = maxA∈Poly(λ){AdvPA

A,DB(λ)}. DB is

PA-resistant if AdvPA
DB(λ) is negligible1.

In this game, the adversary has access to all the verifier-
accessible information and he may interact with one of two
provers chosen adversarially (the choice depends on a secret
bit b). The adversary wins if he can identify the secret bit,
which implies that he can distinguish transcripts produced
by a given prover, thus linking the sessions of this prover.

4.2 Mafia Fraud
Let the mafia fraud experiment ExpMF

A,DB(λ) for an adver-
sary A on a protocol DB be defined as follows.

Definition 6 (mafia fraud security). A has access
to the DB-oracles Joinh(i), Joinc(i), Revoke(i), Corrupt(i),
Prover(i), Verifier(d), Session(i), H(·) and Taint(.).
A wins if and only if ∃ trans ∈ TLv such that trans is the

concatenation of all the messages exchanged during a DB
session and the following conditions are satisfied:
• OutV = 1, tainted = 0 is at the end of trans, and
• DB.openMK(trans) 6∈ CU.

We define A’s advantage on this experiment as AdvMF
A,DB(λ) =

Pr[ExpMF
A,DB(λ) = 1] and the advantage on the MF experi-

ment as AdvMF
DB(λ) = maxA∈Poly(λ){AdvMF

A,DB(λ)}. DB is MF-

resistant if AdvMF
DB(λ) is negligible.

In this game, the adversary is able to interact with provers
and the verifier and wins if he authenticates to the verifier
(in the presence of a prover) if, and only if, the attacker has
not purely relayed information between the two legitimate
parties.

4.3 Terrorist Fraud
A TF involves a legitimate but malicious prover and his

accomplice interacting with the verifier.
First, we recall the definition of terrorist-fraud resistance

given by Fischlin and Onete [13]. It is based on GameTF
in which the accomplice (qobs, qv)-adversary A can eaves-
drop qobs honest prover-verifier sessions. He can also initiate

1Poly(λ) is the set of algorithms running polynomially in λ.

qv adversary-verifier sessions (and the matching adversary-
prover sessions), in which he acts as a MiM adversary, for-
warding information in the lazy phases. Then, A may act as
the prover P in the time-critical phase. In all these sessions,
the cautious P and V should select new values NP and NV
for each session. Naturally, qobs and qv depend on the se-
curity parameter n. During these sessions, A can interact
with P and V as specified in the MF game. In GameTF, the
notion of a tainted session is defined as:

Definition 7 (Tainted session - TF). A TF adver-
sary A taints an adversary-verifier session sid if there is a
prover-adversary session sid’ such that the following events
occur: (i) A receives a message c from the verifier in sid.
(ii) A sends a message c′ in session sid’ to the prover such
that c′ > c2, and gets a response r from the prover such that
r > c′. (iii) A forwards a message r′ in sid such that r′ > r.

Thus, relaying scheduling messages is ruled out, even if they
are different. This is stronger than the pure relaying defini-
tion, which requires than the same messages are forwarded.

Let viewA be the internal state of A colluding with P .

Definition 8 (Helpful adversary). A terrorist fraud
adversary A against a DB protocol DB is said to be helpful
to an adversary B in the game Π if, given viewA, B wins the
game Π with a probability greater than AdvΠ

DB(λ), his original
advantage without the help of his accomplice A.

In the SPADE context, B may either want to play a MF
attack or an IF attack. In both cases, a non-negligible help
can be amplify to win these two games with probability one.

The GameTF definition works as follows.

Definition 9 (GameTF-security). A DB protocol DB
is pA−GameTF-secure if for any (qobs, qV) adversary A win-
ning with probability pA, at least one of the two following
conditions holds:
• pA is negligible with respect to n,
• there exists a MF adversary B running O(qobs) prover-

verifier sessions and O(qV) adversary-verifier sessions
to which A is helpful.

4.4 Impersonation Fraud
Let the IF experiment ExpIF

A,DB(λ) for an adversary A on
a protocol DB be defined as follows.

Definition 10 (Impersonation Fraud Security).
A has access to the DB-oracles Joinh(i), Joinc(i), Revoke(i),
Corrupt(i), Prover(i), Verifier(d), Session(i), H(·) and Taint(.).
A wins if and only if ∃ trans ∈ TLv such that trans is the
concatenation of all the messages exchanged during a DB
session, and the following conditions are satisfied:
• OutV = 1,
• @t ∈ TLp such that the lazy phases of t and trans are

equal,
• and DB.openMK(trans) /∈ CU.

Define AdvIF
DB(λ) as in Definition 6. DB is IF-resistant if

AdvIF
DB(λ) is negligible.

4.5 Distance Fraud
Let the DF experiment ExpDF

A,DB(λ) for a distant adversary
A on a protocol DB be defined as follows.

2i.e., c′ can be sent only after c has been received.

Definition 11 (Distance fraud security). A has
access to the DB-oracles Joinc(i) and Verifier(d).
A wins if and only if ∃ trans ∈ TLv such that trans is the

concatenation of all the messages exchanged during a DB
session, and the following conditions are satisfied:
• OutV = 1 and d > dmax (maximum distance allowed).

Define AdvDF
DB(λ) as in Definition 6. DB is DF-resistant if

AdvDF
DB(λ) is negligible.

In this game, the adversary is a malicious prover, who can
interact with the verifier in an arbitrary manner. He wins
this game if and only if he is able to send all time-critical
responses before receiving the respective challenges, for each
time-critical round.

5. SECURITY RESULTS
Now that the models have been presented, we are ready

to prove the main results of our paper.
In some of the theorems, the backdoor can be used to

realize the attacks (e.g., a MF or an IF attack). In this case,
let pback(n, t) denote the probability that a n-bit secret can
be recovered through a polynomial number of queries to the
backdoor with a threshold t. Theorem 6.1 gives the value of
pback(n, t), for t = αn, for some constant α > 0.

5.1 Prover Anonymity
We first recall the security game for the anonymity of

a revocable group signature. This game generalizes the
anonymity game described by Gambs, Onete and Robert [14].

Let the anonymity experiment ExpAnon
A,G−SIG(λ) for A on a

revocable group signature G−SIG be defined as follows.

Definition 12. First phase: The challenger creates
(UL,RL,msk, gpk) using G.gen(1λ), gives gpk to A, and sets
the lists CU and Σ. During this phase A has access to G-
oracles:

G.Joinh(i) creates Pi using G.joinmsk(i, gpk,UL).
G.Joinc(i) creates Pi using G.joinmsk(i, gpk,UL) with A and

adds him to CU.
G.Revoke(i) revokes Pi using G.revmsk(i,RL,UL, gpk).
G.Corrupt(i) returns the secret key of Pi. If Pi ∈ UL, it

sends sski to A and adds Pi to CU.
G.Sign(i,m) returns a signature σ on behalf of Pi, using

G.sigsski
(m) and adds the pair (m,σ) to Σ.

G.Open(σ,m) opens a signature σ on m and returns Pi to
A, using G.opemsk(σ,m,UL, gpk).

Challenge: A selects (i0, i1). If i0 and i1 ∈ CU, the chal-

lenger stops. Otherwise, he picks b
$← {0, 1}.

Second phase: A cannot use G.Corrupt(i) and G.Revoke(i)
on i0 or i1. Moreover, A has access to the G-oracle:
G.Signb(ib,m) simply returns G.sigsskib

(m).

Afterwards, G.Open(σ,m) rejects all signatures produced by
G.Signb(ib,m).
Guessing phase: A outputs b′ and the challenger returns
the Boolean value (b = b′).
Define AdvAnon

G−SIG(λ) as in Definition 5. A group signature

G−SIG is anonymous if AdvAnon
G−SIG(λ) is negligible.

Theorem 5.1. Let G−SIG be a group signature scheme
such that AdvAnon

G−SIG(λ) is negligible. Thus, SPADE is prover-

anonymous and AdvPA
SPADE(λ) ≤ AdvAnon

G−SIG(λ).

Proof. Assume that there is a polynomial-time adver-
sary A having a non-negligible advantage AdvPAA,SPADE(λ)

on a challenger in ExpPAA,SPADE(λ). A can be used by an

adversary B, which is challenged in ExpAnon
B,G−SIG(λ). Thus,

AdvAnon
B,G−SIG(λ) ≥ AdvPAA,SPADE(λ), contradicting the assump-

tion on G−SIG.
Initially, the challenger in ExpAnon

B,G−SIG(λ) sends the key gpk
and the revoked list RL to B, which relays it to A, as well as
a function PRF and a PKE scheme E. Thus, A can initialize
his own experiment ExpPAA,SPADE(λ) and return the public
key pkV to B. Then, B creates the empty list CU. Having
access to G−SIG-oracles from his challenger, B can simulate
the DB-oracles for A as follows:

DB.Joinh(i): A creates Pi. B relays it to G.Joinh(i) and adds
Pi to UL.

DB.Joinc(i): A creates Pi. B relays it to G.Joinc(i), obtains
the signing key sski,and adds Pi to UL and CU. A gets
sski.

DB.Revoke(i): A revokes Pi. B relays it to G.Revoke(i),
which updates RL and sends it to B. He relays it to A.

DB.Corrupt(i): A corrupts Pi. B relays it to G.Corrupt(i)
and gets sski. B adds Pi to CU and returns sski to A.

DB.Prover(i): B simulates Pi for A as follows:

Initialization phase: B picks NP
$← {0, 1}n, sends (i,NP)

to G.Sign(i,NP) and gets back σ from A. B then computes
e = E.encpkV (NP , σ) and sends e to A and receives (m,NV).
Afterwards, he computes a = PRFNP (NV).

Distance-bounding phase: B uses a, NP and m to cor-
rectly answer to the challenges ci sent by A.

Verification phase: B builds (C,R) from the challenges
and responses and sends to A the value PRFNP (C,R).

Then, A picks two identities i0 and i1 and sends them to B.
If i0, i1 6∈ CU, B sends (i0, i1) to the challenger. In this phase,
B simulates DB.Proverb(·) as follows. During the initializa-

tion phase, B picks NP
$← {0, 1}n sends it to G.Signb(ib,m)

and receives σ. He then computes e = E.encpkV (NP , σ) and
sends (0, e) to A. The objective of this prover simulation
is the same as DB.Prover(i). Finally, during the guessing
phase, A returns b′ and B outputs the same b′.

The experiment is perfectly simulated for A, and conse-
quently, B wins his experiment with the same probability
that A wins his and AdvAnon

B,G−SIG(λ) = AdvPAA,SPADE(λ), con-
tradicting the assumption on G−SIG.

5.2 Mafia Fraud

Theorem 5.2. Let PKE be a IND−CCA2 secure encryp-
tion scheme such that AdvIND−CCA2

PKE (λ) is negligible and
G−SIG a traceable signature scheme such that AdvtraceG−SIG(λ) is
also negligible. Let qp be the number of calls to the prover or-
acle, qv the number of calls to the verifier oracle and pback(n, t)
the probability to recover NP through the backdoor. Thus,
SPADE is MF-resistant in the random oracle model if the
challenges are drawn uniformly at random by the verifier
and

AdvMF
SPADE(λ) ≤ pback(n, t) +

q2
p + q2

v + 1

2n
+

AdvtraceG−SIG(λ) + qp · AdvIND−CCA2
PKE (λ) .

The proof of this result is given in Appendix A.

5.3 Terrorist Fraud

Theorem 5.3. Let pback(n, t) be the probability to recover
NP through the backdoor and r be the number of bits of NP
unknown to any potential accomplice. Thus, SPADE is
max

(
pback(n, t),

(
3
4

)r)
-GameTF-resistant.

Remark, if there is an adversary A that knows all the
bits of NP , then there exists an adversary B to which A
is helpful, and who wins with probability 1 (i.e., in this
case, SPADE is 1-GameTF-resistant). Similarly, SPADE is
trivially 1−GameTF-resistant using insecure schemes. If an
adversary can break the encryption scheme, he can find NP
encrypted in e and he can use it to authenticate himself. In
addition, if an adversary can forge a signature, he can choose
the nonce NP himself, sign it and use it to authenticate.
Thus, a malicious prover cannot perform any efficient TF
attacks while preserving his secret key.

Proof. Let us assume there is a polynomial-time (qobs, qv)-
adversary A that can win the TF game with a non-negligible
probability with the help of his malicious prover. Then, we
can construct an adversary B that can always win later on
MF or IF games using A’s view, contradicting Thms 5.2
and 5.4. A fortiori, A can also do so.

To fool the verifier in a TF attack, A must get from P
prior to the time-critical phase one of these two:
• Two n-bit strings c0 and c1 representing respectively

the responses to the 0-challenges and the 1-challenges.
• An algorithm A to generate these strings.

If A is stateless (i.e., the response to a challenge does not
depend on the previous ones), these two are equivalent. For
simplicity, the former case is used. Hence, A receives the
strings (c0, c1), representing his internal viewA(sid). They
are defined as:

Case 1 : c0
i = ai and c1

i = ai ⊕ (NPi ⊕mi)
Case 2 : c0

i = ai and c1
i = ⊥ or

c0
i = ⊥ and c1

i = ai ⊕ (NPi ⊕mi)
Case 3 : c0

i = ⊥ and c1
i = ⊥

Under the assumptions that (1) the same values ofNP or NV
are never chosen twice by a cautious prover and an honest
verifier, and that (2) the function PRF is pseudorandom,
the values ai can be seen as random values. Thus Case 2
cannot leak any information on NP .

Fact 5.1. For any round, the probability that A responds
correctly to the challenge (let pi denote such an event) is 1
in the first case, 3

4
in the second one, and 1

2
in the last one.

If the objective of P and A is to fool the verifier, Case 2
should be preferred to Case 3, even though some bits of NP
may leak in the process. In fact, if Case 2 is chosen for r
bits, half of them would leak during the time-critical phase
for a winning session. These bits are the missing bits that
had to be guessed successfully.

Lemma 5.1. Assume that a malicious prover P provides
to his accomplice A two strings (c0, c1) such that only one
answer is known for r rounds (Case 2). Thus, A can fool
a verifier in the time-critical phase of SPADE only with
probability

Pr(P0 ∧ · · · ∧ Pn|r) = 1n−r ·
(

3

4

)r
.

This requires that the challenges are independent and iden-
tically distributed and thatNP has been randomly selected.

Other strategies can be used by P and A but they would
leak more bits in the process.

First, remark that the trivial case in which A sends a
successful query to the backdoor of V is discarded. This
happens only with probability pback(n, t). Let suppose now
that A has won the TF game with a non-negligible3 prob-
ability pA. Consider the adversary-verifier session sid∗ for
which A has fooled V . This has happened with probability
at least pA

qv
. In such a case, A has successfully guessed the

missing answers, which have been requested (i.e., on aver-
age r

2
such queries). Since this happened, (3

4
)r should be

greater than the non-negligible pA
qv

. Hence,

∃c,∀nc,∃n > nc,

[(
3

4

)r
>
n−c

qv
> n−c

′
]
.

since qv ∈ nO(1). Thus, r should be in O(logn).
If an adversary B gets the internal viewA(sid∗) and has

eavesdropped to all the communications involving P , A, and
V , he would get e andN ′P such that dH(NP , N

′
P) ∈ O(logn).

Thus, B (as well as A himself) would be able to retrieve NP
directly through the backdoor of V and eventually be able
to do a MF or an IF on behalf of P with probability one.

5.4 Impersonation Fraud

Theorem 5.4. Let PKE be a IND−CCA2 secure encryp-
tion scheme such that AdvIND−CCA2

PKE (λ) is negligible and
G−SIG a traceable signature scheme such that AdvtraceG−SIG(λ)
is negligible. Let qp be the number of calls to the prover ora-
cle, qv be the number of calls to the verifier oracle, q be the
number of (different) digests generated by H and pback(n, t)
the probability to recover NP through the backdoor. SPADE
is IF-resistant in the random oracle model and

AdvIF
SPADE(λ) ≤ pback(n, t) +

q2
p + q2

v + q2 + 1

2n
+

AdvtraceG−SIGn(λ) + qp · AdvIND−CCA2
PKE (λ) .

The proof is very similar to the one given in Appendix A.

5.5 Distance Fraud

Theorem 5.5. If m is drawn from a uniform distribution
by the verifier, then SPADE is DF-resistant, and

AdvDF
SPADE(λ) ≤

(
3

4

)n
.

Proof. To defeat the time-bound for each round i, the
far-away prover must send ri before receiving ci. Since ci
is unpredictable, the prover cannot determine in advance
whether he must respond ai or ai⊕NP i⊕mi. Hence, if these
two possible responses are different, he must guess ci. If the
two possible responses are equal, he succeeeds in passing the
round with probability 1. Due to the uniform distribution
of m, and the fact it is picked by V after the prover has
committed to NP with e, Pr[ai ⊕ NP i ⊕ mi = ai] = 1

2
.

From this, we deduce an upper bound on the probability of
success for a given round: 1

2
· 1 + 1

2
· 1

2
= 3

4
. Since they are

n independent rounds, the result follows.

3Formally, pA is such that ∃c,∀nc, ∃n > nc, pA > n−c.

5.6 Impersonation and Multiple Verifiers
Traditionally, security models for DB protocols assume

that there is only one verifier. To extend these models to
support numerous verifiers, we have mainly two options,
which are to consider that verifiers are honest-but-curious
or malicious. Unfortunately, in the latter case, SPADE as
presented does not prevent the impersonation of a prover by
a malicious verifier. Indeed, knowing NP and its anonymous
signature by P , the malicious verifier can simply reuse this
information to another verifier. However, a simple modi-
fication can ensure that SPADE is secure in this broader
context. Let assume that the verifier Vi has a public cer-
tificate with an identifier idVi and a public key skVi . Thus,
each nonce NP can be associated to the appropriate identi-
fier idVi . In fact, P would sign and encrypt NP ||idVi .

If the malicious verifier ends up with the ciphertext e for
another verifier, he cannot to retrieve NP or its signature
due to security of the encryption scheme. Furthermore,
even if he is able to obtain a from P simply by sending
only 0-challenges, the one-way property of the functions in
PRF would prevent the verifier to retrieve NP from NV and
a. Thus, the malicious verifier is limited to a classical MF
against P and the legitimate verifier. The formal security
model of this generalization is an important problem and
will be addressed in future work.

6. THE PRESENCE OF THE BACKDOOR
The objective of the backdoor in the verifier is mainly

to deter any prover to help potential accomplices. Remark
that this mechanism is stateless for the verifier, as he simply
has to decrypt the initial message of the protocol to retrieve
the information needed to impersonate a prover. We further
analyze the impact of the backdoor in this section.

The probabilities to detect MF or TF attacks depend on
the proximity threshold t. There is clearly a trade-off be-
tween these two probabilities, as one increases and the other
one decreases in function of t. Unfortunately, there is no op-
timal value for t, rather it depends of the security require-
ments – and the underlying threat models. At the end of
this section, we review the main scenarios that we envision.

6.1 Querying the Backdoor
Let us assume that a verifier Vs, having a n-bit secret s,

can be queried with strings x ∈ {0, 1}n. If a query is close
to s (i.e., if dH(s, x) ≤ t, for some t < n

2
), the verifier simply

returns his secret. Otherwise, he simply outputs 0.
Since the number of potential queries is 2n and the number

of strings at Hamming distance at most t of s is simply∑t
k=0

(
n
k

)
,

Lemma 6.1. The probability that the ith random query
is successful (let Qi denote such an event) is

p = Pr[Qi|n, t] = 2−n ×
t∑

k=0

(
n

k

)
.

6.2 Best Strategy to Retrieve the String s

As described in Section 5.3, the accomplice receives from
a malicious prover two strings (c0, c1) to help him to fool the
verifier in a TF attack. These strings would clearly allow the
accomplice to know the values of n and r = αn. However,
he can easily estimate the proximity threshold t by sending
queries with increasing Hamming weight.

Let assume that dH(c0 ⊕ c1, s) = r such that t < r < n
2

.
It can be shown that the best strategy for an adversary
is to flip the minimal number of bits to transform c0 ⊕ c1

into s. Thus, assume that the adversary selects r − t bits,
complements them and submits the result to Vs.

Lemma 6.2. Given n, t and r, the probability that the ith

random query to retrieve s by flipping exactly r− t bits of a
given chain c0 ⊕ c1 such tjat dH(s, c0 ⊕ c1) = t is given by

Pr[Qi|c0 ⊕ c1, n, t, r] =

(
r
r−t

)(
n
r−t

) , or by symmetry

(
n−r+t

t

)(
n
n−r

) .

6.3 Simple Case in which t = αn and r = (α+ ε)n

Consider that the backdoor provided by the verifier is such
that t = αn, for some α > 0. The probability of obtaining s
with a query (Lemma 6.1) can be bounded by

Pr[Qi|n, t] ≈
O(1)

2n(1−H(α)) ·
√
n
,

in which H(α) = α log 1
α

+ (1− α) log 1
(1−α)

(see [20], Prob.

9.42). This probability increases as α increases in [0 · · · 1
2
).

Theorem 6.1. An adversary can achieve a MF or an IF
with the involuntary assistance of the verifier Vs through
nO(1) queries to Vs with probability

Pr[∪iQi|n, t] ≤
∑
i

O(1)

2n(1−H(α)) ·
√
n

=
nO(1)

2n(1−H(α))
.

This follows from the union bound and the independence of
queries.

An adversary can also get enough information to achieve
a MF or an IF attack from the accomplice. Consider the
situation in whcich the adversary has retrieved a string at
Hamming distance r = (α + ε)n of s, for some 0 < α <
(α + ε) ≤ 1

2
. Thus, the equation of Lemma 6.2 can be

rewritten as

Pr[Qi|c0 ⊕ c1, n, αn, (α+ ε)n] =

(
αn+εn
αn

)(
εn+(1−ε)n

εn

)
≈
√

(α+ ε)(1− ε)
α

[
(α+ ε)α+ε(1− ε)1−ε

αα

]n
=

O(1)

2ν(α,ε)n
,

in which ν(α, ε) = (α+ ε) log 1
α+ε

+ (1− ε) log 1
1−ε −α log 1

α

(see [19], Section 1.2.6).

Theorem 6.2. An adversary can achieve a MF or IF at-
tack with the help of an accomplice of a TF attack through
nO(1) queries to Vs with probability

Pr[∪iQi|c0 ⊕ c1, n, αn, (α+ ε)n] ≤
∑
i

O(1)

2ν(α,ε)n
=

nO(1)

2ν(α,ε)n
.

6.4 Different Threat Models
In the following scenarii, the backdoor threshold t is set

to αn (for some constant 0 < α < 0.5). An honest prover
would like to have the lowest backdoor threshold as possible
(α→ 0) since it would ensure the protection of his secret and
minimize the probability that an adversary retrieves some
useful information directly from the verifier (as in Theo-
rem 6.1). However, a malicious prover would take profit of
such a small value. A relatively small value of r = (α+ ε)n

would protect his secret while minimizing the probability of
Lemma 5.1 (i.e., the probability that the verifier detects the
accomplice during a TF attack). Depending on the threats,
the parameters (α, ε) are defined differently.

Honest prover. This prover will not attempt any TF attack
and thus third parties represent the only adversaries. Hence,
t can be set by the verifier to a small value such as t = 0.01·n,

giving a probability in O
(
nO(1)

20.92n

)
of extracting the secret

and having a successful MF or IF attack (as in Theorem 6.1).

Malicious and suspicious prover. This prover may at-
tempt to do a TF attack while doing his best to protect
his secret. His accomplice should not obtain any advantage
over the backdoor, more precisely Thms 6.1 and 6.2 proba-
bilities should be equal (ε must be chosen accordingly). In
Figure 3 (in Appendix), the intersection of the exponent
α + ε (terrorist fraud detection probability) and the expo-
nent 1−H(α) (secret extraction probability) gives the equi-
librium. At this point, both probabilities are equal and in

O
(
nO(1)

20.3715

)
, for t = 0.273 · n (chosen by V) and ε = 0.0985

(chosen by P). Notice that these intersection points have
been obtained through numerical approximation.

Malicious prover having some trust in his accomplice.
This prover may attempt to perform a TF. However, he ac-
cepts that his accomplice is able to impersonate him with
a better probability than any other party. The prover may
chose ε ten times smaller than expected in the previous sce-
nario. This would increase the success probability of his TF
attack. Hence, the verifier would have the responsibility to
increase α, increasing implicitly all the success probabilities
of the attacks. By plotting these curves in Figure 3, we

obtain O
(
nO(1)

20.3028

)
, for t = 0.2945 · n (chosen by V).

7. CONCLUSION
Considering the widespread development of contactless

technologies, we believe that it is crucial to develop provably
secure DB protocols, which address privacy issues to limit
the ability of tracking users. In this paper, we have proposed
SPADE, a provably TF-resistant prover-anonymous DB pro-
tocol, which uses group signatures to hide the prover’s iden-
tity, even against a potentially malicious verifier. While
our construction is provably resistant to all known attacks
against DB protocols, the backdoor introduced to obtain the
TF-resistance lowers the resistance of the protocol to other
threats. This is a frequent problem when designing provably
TF-resistant protocols.

In addition to building the first protocol ensuring these
properties, we have introduced a promising new approach
to ensure TF resistance. In essence, the information leaked
to an accomplice during a TF is no longer a long-term secret
key but rather a temporary session key. Such a session key
can then be used by the accomplice to authenticate. This
novel approach opens the door for further research on ter-
rorist fraud resistance.

Acknowledgments
We would like to thank the anonymous reviewers and our
sheperd, Bart Preneel, who by their comments helped us to
improve the quality of the paper and propose a deployment
scenario for our DB protocol.

8. REFERENCES
[1] A. Ahmadi and R. Safavi-Naini. Privacy-preserving

distance-bounding proof-of-knowledge. In ICICS 2014,
LNCS 8958, pages 74–88. Springer, 2015.

[2] G. Avoine, M. Ali Bingöl, S. Kardaş, C. Lauradoux,
and B. Martin. A formal framework for analyzing
RFID distance bounding protocols. Journal of
Computer Security - Special Issue on RFID System
Security, 19(2):289–317, 2010.

[3] A. Bay, Boureanu I, A. Mitrokotsa, I. Spulber, and
S. Vaudenay. The Bussard-Bagga and other
distance-bounding protocols under attacks. In Inscrypt
2012, LNCS 7763, pages 371–391. Springer, 2012.

[4] M. Bellare, A. Boldyreva, and S. Micali. Public-key
encryption in a multi-user setting: Security proofs and
improvements. In EUROCRYPT 2000, LNCS 1807,
pages 259–274, 2000.

[5] M. Bellare, D. Micciancio, and B. Warinschi.
Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on
general assumptions. In EUROCRYPT 2003, LNCS
2656, pages 614–629. Springer, 2003.

[6] S. Bengio, G. Brassard, Y. G. Desmedt, C. Goutier,
and J.-J. Quisquater. Secure implementation of
identification systems. Journal of Cryptology,
4(3):175–183, 1991.

[7] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Secure
and lightweight distance-bounding. In LightSec 2013,
LNCS 8162, pages 97–113. Springer, 2013.

[8] S. Brands and D. Chaum. Distance-bounding
protocols. In EUROCRYPT ’93, LNCS 765, pages
344–359. Springer, 1993.

[9] A. Brelurut, D. Gérault, and P. Lafourcade. Survey of
distance bounding protocols and threats. In FPS 2015,
LNCS 9482, pages 29–49. Springer, 2015.

[10] L. Bussard and W. Bagga. Distance-bounding proof of
knowledge to avoid real-time attacks. In Security and
Privacy in the Age of Ubiquitous Computing, IFIP,
pages 222–238. Springer, 2005.

[11] C. Cremers, K. Rasmussen, B. Schmidt, and
S. Čapkun. Distance hijacking attacks on distance
bounding protocols. In Symp. on Security and
Privacy, pages 113–127. IEEE, 2012.

[12] U. Dürholz, M. Fischlin, M. Kasper, and C. Onete. A
formal approach to distance-bounding RFID
protocols. In Information Security, volume 7001 of
LNCS, pages 47–62. Springer, 2011.

[13] M. Fischlin and C. Onete. Terrorism in distance
bounding: Modeling terrorist fraud resistance. In
ACNS 2013, LNCS, pages 414–431. Springer, 2013.

[14] S. Gambs, C. Onete, and J.-M. Robert. Prover anony-
mous and deniable distance-bounding authentication.
In AsiaCCS’14, pages 501–506. ACM Press, 2014.

[15] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive chosen mes-
sage attacks. SIAM J. Comput., 17(2):281–308, 1988.

[16] J. Hermans, A. Pashalidis, F. Vercauteren, and
B. Preneel. A new RFID privacy model. In ESORICS
2011, LNCS 6879, pages 568–587. Springer, 2011.

[17] J. Hermans, Peeters R, and C. Onete. Efficient, secure,
private distance bounding without key updates. In
WiSec 2013, pages 207–218. ACM Press, 2013.

[18] C. H. Kim, G. Avoine, F. Koeune, F.-X. Standaert,
and O. Pereira. The Swiss-Knife RFID distance
bounding protocol. In ICISC 2008, LNCS 5461, pages
98–115. Springer, 2008.

[19] D. E. Knuth. The Art of Computer Programming:
Fundamental Algorithms, 3rded. Addison Wesley, 1997.

[20] D. E. Knuth, R. L. Graham, and O. Patashnik.
Concrete mathematics, 2nd ed. Adison Wesley, 1994.

[21] S. Mangard, E. Oswald, and T. Popp. Power analysis
attacks: Revealing the secrets of smart cards. Springer
Science & Business Media, 2008.

[22] S. Micali, C. Rackoff, and B. Sloan. The notion of
security for probabilistic cryptosystems. SIAM J.
Comput., 17(2):412–426, 1988.

[23] T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki.
Revocable group signature schemes with constant
costs for signing and verifying. In PKC 2009, LNCS
5443, pages 463–480. 2009.

[24] V. Shoup. Sequences of games: a tool for taming
complexity in security proofs. Cryptology ePrint
2004/332, 2004.

[25] S. Vaudenay. Proof of proximity of knowledge.
Cryptology ePrint 2014/695, 2014.

[26] S. Vaudenay. Private and secure public-key distance
bounding; application to NFC payment. In Financial
Cryptography, LNCS, pages 207–216. Springer, 2015.

[27] Serge Vaudenay. On privacy models for RFID. In
Proc. of Advances in Cryptology – Asiacrypt’07, LNCS
4883, pages 68–87. Springer, 2007.

Appendix

Figure 3: Plotting with respect to α the exponents of
the probability in Lemma 5.1 (α+ε) and Theorem 6.1
(1−H(α)), and the value of ε making 1−H(α) = ν(α, ε).

A. Mafia-Fraud Resistance Proof
Let the traceability experiment Exptrace

A,G−SIG(λ) for A on a
revocable group signature scheme G−SIG be defined as:

Definition 13. The initialization is described in Def. 12.
Guessing phase: A outputs a message m∗ and a signature
σ∗. Then, the challenger outputs 1 if and only if:
• (m∗, σ∗) 6∈ Σ and G.vergpk(σ

∗,m∗,RL) = 1,
• G.opemsk(σ

∗,m∗,UL, gpk) 6∈ CU \ RL.

Define Advtrace
G−SIG(λ) as in Def. 6. A group signature G−SIG

is traceable if Advtrace
G−SIG(λ) is negligible.

Proof. of Thm 5.2 This proof is built as a series of
games [24]. The idea is to go from the initial security game
G0 to a final game for which no successful polynomial-time
adversary can exist. Each game Gi is associated with the
probability Pr[Gi] that an adversary wins the game. The
proof makes small steps from one game to the next one,
such that |Pr[Gi]− Pr[G(i+ 1)]| is negligible. Proving the
difference property for each step, and the fact that the win-
ning probability for the last game is negligible prove that no
adversary can win G0 with a non-negligible probability.

Proof strategy. We first rule out the use of the backdoor
returning the provers’ secret keys. Then, we force the ver-
ifier and the provers to never reuse their respective values
NV and NP twice, and rule out a group signature forgery by
the adversary. The last transition consists in replacing the
initial message e by the encryption of a random message,
completely independent from the actual value NP used in
the protocol. This game can be seen as the classical shared-
secret DB protocol. The secret NP is shared offline between
the prover and the verifier, and the adversary A does not
have any more access to a ciphertext containing this secret.
This game A cannot be won with a non-negligible probabil-
ity by any adversary.

In the following, WL denotes a list in which each Prover(i)
stores every generated tuple (e,NP , σ). It allows the provers
and the verifier oracles to exchange their shared secrets.

Game G1. The backdoor is deactivated. A loses a (neg-
ligible) probability (Theorem 6.1) of recovering NP from
the backdoor. From the difference lemma [24], |Pr[G1] −
Pr[G0]| ≤ pback(n, t).

Game G2. The oracle Prover(i) uses different NP values for
each of the qp calls. A loses an advantage of at most q2

p/2
n.

This follows from the binomial expansion of the probability
that a given value has been selected zero or once and the
union bound. Thus, |Pr[G2]− Pr[G1]| ≤ q2

p/2
n.

Game G3.The oracle Verifier uses different NV values for
each of the qv calls. Thus, |Pr[G3]− Pr[G2]| ≤ q2

v /2
n.

Game G4. The oracle Verifier aborts if G.vergpk(σ,NP ,RL) =
1, no tuple of WL contains σ and G.opemsk(σ,NP ,UL, gpk) 6∈
CU. This happens if A produces a fresh signature σon a
value NP without using the key of a corrupted user. Since
G−SIG is a traceable group signature scheme, |Pr[G4] −
Pr[G3]| ≤ AdvtraceG−SIG(λ).

Game G5. The oracle Prover(i) sends an encrypted value
NP 0 unrelated to the actual value NP 1 used in the protocol
by both parties. The oracles are modified as follows:

• Prover(i) sets NP 0, NP 1
$← {0, 1}n, σ0 = G.sigpsk(NP 0),

σ1 = G.sigpsk(NP 1), and e = E.encpkv (NP 0, σ0). It adds
(e,NP 1, σ1) to a list WL. It then sends e, but uses NP 1.
• Verifier acts as in G4, except for the NP computation:

– If (e,NP 1, ·) ∈ WL, it uses NP 1. This is the main
case, which corresponds to non-corrupted provers.

– If (e, ·, ·) 6∈WL, it computes (N∗P , σ
∗) = E.decskv (e)

and uses N∗P .
Thus, A loses the possibility of recovering the value of NP

from the ciphertext e. However, this advantage is negligible
since the PKE encryption scheme is IND−CCA2 secure.

Consider the extension of the IND−CCA2 security con-
cept allowing a polynomially-bounded number qp of chal-
lenges [4], with a single public/private key pair. During this
experiment, the challenger picks a bit b and gives an ora-

cle LREnc
pkv
b (m0,m1), which returns the encryption of mb.

This oracle can be queried at most qp times. The challenger
also provides a decryption oracle that deciphers any cipher-

text, except if it was generated by LREnc
pkv
b (·, ·). The dis-

tinguisher wins if he properly guesses b using the oracles.
Let us assume that there exists an efficient adversary A

for the game G5. Thus, an efficient distinguisher B can be
defined for the IND−CCA2 experiment using A.
Initialization B sets up the environment (except the PKE

setting). He creates two user lists UL and RL, and a
group signature scheme setup with G.gen(1λ), obtain-
ing a couple (gpk,msk). He adds to UL np provers using
DB.joinmsk(i,UL).

Simulation B simulates a SPADE environment forA with
the DB-oracles of G4, with the following modifications
to the prover and verifier oracles. When the oracle

Prover() is called, it sets e = LREnc
pkv
b (NP0||σ0,NP1||σ1),

adds (e,NP 1, σ1) to WL and uses NP 1 internally. The
oracle Verifier acts as in G4 if it receives e such that
(e,NP 1, σ1) ∈ WL. Otherwise, it decrypts e with the
provided decryption oracle. Finally, B returns the re-
sult of the authenticationOutV to the challenger, which
is 1 if the verifier accepts, and 0 otherwise.

If b = 1, e = E.encpkv (NP 1, σ1), (e,NP 1, σ1) ∈ WL and
both parties use NP 1 internally. This games corresponds
exactly to the game G4. Otherwise, e = E.encpkv (NP 0, σ0)
while the NP 1 is used. This simulates the game G5.

Let B0 denote the event that the distinguisher outputs 0,
and B1 the event that it outputs 1. Thus, Pr[B1|b = 1] =
Pr[G4] and Pr[B0|b = 0] = 1 − Pr[G5], since B returns
the result of the authentication to the distinguisher. The
winning probability of B is then Pr[B1 ∧ b = 1] + Pr[B0 ∧
b = 0], which is equal to Pr[G4] · 1

2
+ (1 − Pr[G5]) · 1

2
=

1
2

+ Pr[G4]−Pr[G5]
2

. Now assume that Pr[G4] − Pr[G5] is
non negligible. Then B has a non-negligible advantage on
the extended IND−CCA2 game. However, the advantage of
B cannot be more than qp times the advantage on the orig-
inal IND−CCA2 experiment. Thus, |Pr[G5] − Pr[G4]| ≤
qp · AdvIND−CCA2

PKE (λ), which is negligible by hypothesis.

The final game. The final step is to prove that the prob-
ability to win G5 is negligible. Since A cannot purely relay
messages without using DB.Taint(.) and invalidating the ses-
sion, for each round j,
• IfA sends c′j to Prover(i) before receiving cj from Verifier,

he would be wrong with probability 1
2
.

• IfA sends c′j to Prover(i) after receiving cj from Verifier,
he must send r′j before receiving rj since pure relay is
not allowed. He would be wrong with probability 1

2
.

In the first case, a wrongly guess challenge invalidates the
final message τ . Hence, A must recompute this message
to succeed. He cannot do so without guessing NP , and his
success probability is no more than

(
1
2

)n
. In the second case,

the authentication fails if A sends a single wrong response.
Thus, his success probability is again no more than

(
1
2

)n
.

From the sequence of games, let AMF = 1 denote the
event that A wins the MF experiment, Pr[AMF = 1] ≤
pback(n, t)+

q2p +q2v +1

2n +AdvtraceG−SIGn(λ)+qp·AdvIND−CCA2
PKE (λ).

