
Wireless Networks manuscript No.
(will be inserted by the editor)

SR3: Secure Resilient Reputation-based Routing

Karine Altisen · Stéphane Devismes ·
Raphaël Jamet · Pascal Lafourcade

Received: date / Accepted: date

Abstract In this paper, we propose SR3 (which means Secure Resilient Reputation-
based Routing), a secure and resilient algorithm for convergecast routing in WSNs
(Wireless Sensor Networks). SR3 uses lightweight cryptographic primitives to
achieve data confidentiality and unforgeability. Security of SR3 has been proven
formally using two verification tools: CryptoVerif and Scyther. We made simu-
lations to show the resiliency of SR3 against various scenarios, where we mixed
selective forwarding, blackhole, wormhole, and Sybil attacks. We compared our
solution to several routing algorithms of the literature. Our results show that the
resiliency accomplished by SR3 is drastically better than the one achieved by those
protocols, especially when the network is sparse. Moreover, unlike previous solu-
tions, SR3 self-adapts after compromised nodes suddenly change their behavior.

Keywords Wireless sensor networks · Routing · Security · Resiliency

1 Introduction

Nowadays, there is a growing interest in WSNs. WSNs are multi-hop mesh net-
works made of numerous small battery-powered sensors that generate data about
the environment (e.g., temperature) and use them for specific services (e.g., emit
an alarm when the surrounding temperature is too high). Moreover, they embed
wireless communication capabilities allowing them to exchange data. The low ca-
pabilities of the sensors, their wireless communications, and the fact that they are
deployed in open areas make them prone to attacks.

Routing is a crucial issue in WSNs. Here, we consider a routing scheme called
convergecast routing. In this problem, a node is distinguished as the sink and all

A preliminary version of this paper appeared in [3].

K. Altisen, S. Devismes and R. Jamet
VERIMAG, Université de Grenoble
E-mail: Firstname.Lastname@imag.fr

P. Lafourcade
LIMOS, Clermont Université
E-mail: Firstname.Lastname@imag.fr

2 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

non-sink nodes, called here source nodes, must be able to transmit data to the
sink on request or according to an a priori unknown schedule. The sink can be
arbitrarily far (in terms of hops) from other nodes. Typically, in WSNs, source
nodes are sensors and the sink is a base station that is linked to another network,
like a gateway.

A routing protocol in a WSN may have to face many kinds of attacks. Here, we
consider the critical scenario, where some sensors are compromised and controlled
by an attacker. In particular, such an internal attacker has access to all secret and
received information of the compromised nodes.

The attacker can impact the routing protocol at two main levels:

Message Level: First, he can attack the data message to learn secret information,
i.e., violate the data confidentiality, as this property consists in guaranteeing
that data remain secret between the source and destination.
He can also make the sink deliver incorrect information, i.e., violate the integrity

of data messages. Integrity guarantees that the destination is able to detect
whether the data inside a message have been modified.
Moreover, the attacker can act against the authentication of the nodes. Au-
thenticity guarantees that the destination is able to detect whether the alleged
source in a message is the true one.

Routing Level: Secondly, the attacker can affect the routing scheme itself, e.g.,
he may prevent data from being delivered by the sink (leading to degrade
the quality of service, essentially the delivery rate), or create congestion by
increasing the load in all or part of the network (leading to reduce the lifetime
of the network). Such an attack can also evolve over time, e.g., the attacker
can attract traffic to a given intruder node using various means. Thanks to
that, the intruder node (called a sinkhole) will have more impact for further
malicious actions.

Related Work. Numerous solutions have been introduced to cope with attacks on
data. The confidentiality, authenticity, and integrity properties are mainly guar-
anteed using cryptographic mechanisms. However, the choice of the cryptographic
primitives should be led by the inherent constraint of WSNs. WSNs being lim-
ited in terms of resource and power, lightweight cryptographic mechanisms [18] are
mandatory. An example of such a mechanism is elliptic curve cryptography [26,29].
In contrast, classical asymmetric cryptography, e.g., RSA, should be excluded due
to its computational cost.

Using such lightweight cryptographic primitives, routing protocols implement-
ing some security properties have been proposed, e.g., µ-Tesla [31,27] is a broadcast
authentication protocol that enables receivers of the broadcast data to verify that
these data really originate from the alleged sources. µ-Tesla has a low communica-
tion and computation overhead, scales to a large number of receivers, and tolerates
message loss.

Although it is not strictly a routing protocol, SPINS [31] is a set of tools for
routing, which provides security guarantees without using any costly operations:
µ-Tesla is one part of SPINS; the other part is SNEP, a message format that
guarantees various security properties, like authenticity and confidentiality, using
few additional bits per message.

Some other protocols, called secure route discovery protocols, have been intro-
duced [30,24] to help securing routing. Actually, they compute a valid route (i.e.,

SR3: Secure Resilient Reputation-based Routing 3

the computed path exists in the network) between the source and destination,
and for some of them (e.g., [30]), they guarantee that nodes in the chosen route
achieved a certain security level, e.g., the integrity of the discovered route, which
means that the computed route has been effectively traversed during the discovery
process.

However, all aforementioned solutions do not use specific strategies to combat
attacks at the routing level, e.g., selected forwarding, blackhole, etc. Specific ap-
proaches have been proposed to maintain a good quality of service in presence of
insiders, that drop all or part of messages. For example, the notion of resiliency

has been introduced in [21,22] as the ability of a network to “continue operating”
in presence of compromised nodes, i.e., the capacity of a network to endure and
overcome internal attacks. For example, a resilient routing protocol should achieve
a “graceful degradation” in the delivery rate with increasing the number of com-
promised nodes. In [19,22], authors experimentally analyze the resiliency of several
classical routing techniques, e.g., random walk [2], gradient-based routing [33], ge-
ographic routing [14]. The experimental results show that these solutions are weak
in terms of resiliency. Then, they propose several resilient variants of the gradient-
based routing; this latter routes messages following a Destination Oriented Directed

Acyclic Graph (DODAG). Mainly, they introduce randomization and duplication
in that protocol. As a result, the proposed patches drastically increase the deliv-
ery rate when the network is subject to selective forwarding or blackhole attacks.
However, in their simulations, they always assume that the DODAG is available
and not attacked by insiders. Moreover, they mainly consider dense networks in
their simulations, e.g., networks with average degree around 30.

Contribution. This paper deals with convergecast routing in WSNs, where all
source nodes have several messages to route. We propose a Secure, Resilient, and
Reputation-based Routing algorithm, called SR3. This protocol is a reinforced
random walk that is partially determinized using a reputation mechanism.

SR3 uses lightweight cryptographic primitives: symmetric cryptography (pre-
cisely, authenticated encryption [9]), nonces, and hash functions. Thanks to these
primitives, it achieves interesting security properties, including data confidential-
ity and unforgeability, this latter property implies integrity and authenticity of the
data. We prove the desirable security properties achieved by SR3 in the computa-
tional model using the formal tool CryptoVerif [12]. We also prove in the symbolic
model the secrecy of data and authentication of nodes using the tool Scyther [15].

Then, we show the resiliency of SR3 against various scenarios, where we mixed
selective forwarding, blackhole, wormhole, and Sybil attacks. The resiliency of our
algorithm is mainly captured using the delivery rate and some fairness measure.
Our simulation results show in particular that unlike previous solutions, SR3 self-
adapts when compromised nodes change their behavior (e.g, an interesting case is
when a compromised node behaves well to attract the traffic and then suddenly
decide to drop all received messages). We compare our solution to several routing
algorithms of the literature, including resilient ones. Our simulations show that
the resiliency accomplished by SR3 is drastically better than the one achieved by
those protocols, especially when the network is sparse.

A shortcoming of our solution is the number of hops to reach the destination,
as it is usually greater than other solutions of the literature. However, in our

4 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

experiments, we observed that this complexity remains sublinear in the number of
nodes.

Note also that our solution is reactive (i.e., in absence of data to route the
protocol eventually stops.), has a low overhead in terms of communications, and
does not use any underlying infrastructure, such as spanning tree or DODAG.
Hence, SR3 is well-suited for WSNs.

Roadmap. The remainder of the paper is organized as follows. In the next section,
we present our routing algorithm, SR3. Section 3 deals with the automatic proof
of the security properties of SR3 using CryptoVerif [12] and Scyther [15]. In Sec-
tion 4, we present experimental results that show the resiliency of SR3. Section 5
is dedicated to concluding remarks.

2 SR3

The formal code of our routing protocol, SR3, is given in Algorithms 1 and 2.
Below, we identify the assumptions we made about networks. Then, we informally
explain the behavior of SR3.

2.1 Assumptions

We consider arbitrary connected networks with bidirectional links, although we
will focus on Unit Disk Graphs (UDG) in simulations. Each node p has a unique
ID (to simplify, we shall identify any node with its identifier, whenever convenient)
and knows the set of its neighbors, Neigp — this latter assumption will be relaxed,
when considering Sybil attacks.

Networks are made of one sink, which is the data collector, and numerous
source nodes. The source nodes are sensors, and consequently are limited in terms
of memory, computational power, and battery. Sensors are non-trustworthy since
they are vulnerable to physical attacks and an adversary can compromise them.
In contrast, the sink is assumed to be robust and powerful in terms of memory,
computation, and energy. So, we assume that it cannot be compromised.

All nodes have access to a lightweight cryptography library (hash function,
symmetric encryption, and random number generation). Each source node shares
a symmetric key with the sink. Moreover, we assume that all source nodes have
several data to route; however, the scheduling of the data generation is a priori

unknown. Finally, there is no time synchronization between nodes.

2.2 Overview

Randomization is interesting to obtain resilient solutions because it generates be-
haviors unpredictable by an attacker. However, note that the “classical” uniform

random walk, where a node chooses the next hop uniformly at random among its
neighbors, is known to be inefficient even against a small number of compromised
nodes [21]. So, we designed SR3 rather as a reinforced random walk, based on a
reputation mechanism. The idea is to locally increase the probability of a neighbor

SR3: Secure Resilient Reputation-based Routing 5

to be chosen at the next hop, if it behaves well. Such a reputation mechanism is
based on acknowledgments. We propose a scheme in which if a process receives
a valid acknowledgment, it has the guarantee that the sink actually delivered the
corresponding data message. Hence, upon receiving such an acknowledgment, a
process can legitimately increase its confidence on the neighbor to which it previ-
ously sent the corresponding data message. Therefore, eventually all honest nodes
preferably choose their highly-reputed neighbors, and so the data messages tend
to follow paths that successfully route data to the sink.

2.3 Reputation Mechanism

To implement our reputation mechanism, we identify each data message (tagged
MSG in the algorithm) with a nonce, i.e., an unpredictable random number that
should remain secret between the source and sink until the delivery of the data
message.

Assume that node v initiates the routing of some value Data. It first gen-
erates a nonce Nv (New Nonce(), Line 1). Then, it encrypts in a ciphertext C
the concatenation of Data and Nv using the key kvs it shares with the sink only
(Ekvs

(〈Data,Nv〉), Line 3). Then, both C and the identifier of v (in plaintext) are
routed to the sink, and only the sink is able to decrypt C. So, upon receiving the
data message, the sink decrypts C using kvs, delivers Data, and sends back to
v an acknowledgment ACK containing Nv (Lines 36-39). Finally, if v receives this
acknowledgment, it has the guarantee that Data has been delivered, thanks to Nv.

Now, during the routing, a compromised relay node can blindly modify the
encrypted part of the message. To prevent the sink from delivering erroneous
data, we assume a (symmetric) authenticated encryption scheme [9], which guaran-
tees confidentiality, authenticity, and integrity of encrypted information. This way,
when receiving a message, the sink checks the validity of the message by decrypt-
ing the ciphertext using the key keys[o] of the alleged source o of the message
(E−1
keys[o](C), Line 36). If the ciphertext has been modified, then E−1

keys[o](C) =⊥
(with overwhelming probability) and the message is simply discarded. Similarly,
if a compromised node has modified the plaintext identifier in the message, then
either keys[o] is undefined, or the sink decrypts the ciphertext with a wrong key
(in this latter case again, E−1

keys[o](C) =⊥). So, in both cases the message is also

discarded.
Upon receiving an acknowledgment, if the receiving node v is the initiator of

the corresponding data message m, v can conclude that m has been delivered. In
that case, v should reinforce the probability associated to the neighbor to which
it previously sent m. To achieve that, we proceed as follows: when v initiates the
routing of m, v saves in the list LSent the nonce stored in m, together with the
identifier of the neighbor to which v sends m (LSent is appended in Line 5 using �,
this latter operator is defined below). Hence, on reception of an acknowledgment,
v checks (in Line 20) if it is the destination of the acknowledgment and if the nonce
No attached to that acknowledgment appears in LSent (see the test 〈No, 〉 ∈ LSent
in Line 20).1 In that case, v gets back the corresponding neighbor from the list
(Get(LSent, No), Line 21), increases its confidence on that neighbor (Line 22,

1 “ ” means “any value”. So, 〈No, 〉 is any record whose left value is No.

6 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

Algorithm 1 SR3 for any source node v
Input: kvs: the key of node v, shared with the sink s

Variables:
LSent: List of at most sS pairs, initially empty
LAckRouting : List of at most sA pairs, initially empty
LReputation: List of at most sR elements, initially empty

On generation of Data

1: Nv ← New Nonce()
2: h← H(Nv)
3: C ← Ekvs (〈Data,Nv〉)
4: next← Rand(Neigv ,LvSR3(LReputation))
5: LSent ← LSent � 〈Nv , next〉
6: Send 〈MSG, C, h, v〉 to next

On reception of 〈MSG, C, h, o〉 from f

7: next← Rand(Neigv ,LvSR3(LReputation))
8: if v = o then
9: if E−1

kvs
(C) 6=⊥ then

10: 〈Data,No〉 ← E−1
kvs

(C)

11: LSent ← LSent � 〈No, next〉
12: Send 〈MSG, C, h, o〉 to next
13: end if
14: else
15: if 〈h, 〉 /∈ LAckRouting then
16: LAckRouting ← LAckRouting • 〈h, f〉
17: end if
18: Send 〈MSG, C, h, o〉 to next
19: end if

On reception of 〈ACK, No, o〉 from f

20: if v = o ∧ 〈No, 〉 ∈ LSent then
21: first hop← Get(LSent, No)
22: LReputation ← LReputation • first hop
23: LSent ← LSent \ 〈No, 〉
24: else
25: if v 6= o then
26: h← H(No)
27: if 〈h, 〉 ∈ LAckRouting then
28: next← Get(LAckRouting , h)
29: LAckRouting ← LAckRouting \ 〈h, 〉
30: else
31: next← Rand(Neigv ,LvRW)
32: end if
33: Send 〈ACK, No, o〉 to next with probability N−1

N
34: end if
35: end if

further details about increasing the confidence are given in Subsection 2.4), and
removes the record from LSent (LSent \ 〈No, 〉, Line 23). (If v is the destination
of the acknowledgment, but No does not appear in LSent, the acknowledgment is
simply discarded.)

Due to the memory limitations, LSent must have a maximum size,2 sQ. If
a node v has some new data to route and LSent is full (that is, it contains sQ
elements), then the oldest element is removed from the list to make room for the

2 All lists used in SR3 are of bounded size. We made several experiments to choose the
appropriate bounds, see Subsection 4.2.

SR3: Secure Resilient Reputation-based Routing 7

Algorithm 2 SR3 for the sink s

Input: keys[]: array of shared keys, indexed on node identifiers

On reception of 〈MSG, C, h, o〉 from f

36: if E−1
keys[o]

(C) 6=⊥ then

37: 〈Data,No〉 ← E−1
keys[o]

(C)

38: Deliver Data to the application
39: Send 〈ACK, No, o〉 to f
40: end if

On reception of 〈ACK, No, o〉 from f

41: next← Rand(Neigs,LsRW)

42: Send 〈ACK, No, o〉 to next with probability N−1
N

new one. A side effect is that records about lost messages or of messages whose
acknowledgment has been lost are eventually removed from LSent.

Note that it may happen that some data message m comes back to the node
v from which it originates because m followed a cycle in the network. In this case
(Lines 8-13), the validity of m is checked, and if so, the routing process of m is
restarted. Since the old entry in LSent is not relevant anymore, it is simply replaced
by the new one.

Consequently, the concatenation of 〈x, y〉 to the list L using � works as follows:
first, if L contains any pair with a left member equal to x, that pair is removed
from L; then, if L is (still) full, the rightmost pair is removed; finally, 〈x, y〉 is
inserted on the left side of the list. Note that, using �, any left member of a pair
in the list is unique.

2.4 Compute the Reputation

To choose the next hop of some data message, a node performs a random choice
among its neighbors, weighted according to their reputation (see Lines 4 and 7).

The reputation of a neighbor actually corresponds to the number of occurrences
of its identifier in the list LReputation: each time a node v wants to reinforce the
reputation of some neighbor u, it simply adds an occurrence of u into its list
(Line 22).

Our reputation mechanism is implemented using the probability law denoted
by LvSR3(LReputation): Let X be a random variable taking value in Neigv; the law
LvSR3(LReputation) is defined, ∀x ∈ Neigv, by:

Pr(X = x) =
|LReputation|x + δ−1

v

|LReputation|+ 1

Where δv is the degree of v, |LReputation| is the number of elements in LReputation,
and |LReputation|x is the number of occurrences of x in LReputation. Hence, when
v wants to route a data message, it chooses its next destination according to
LvSR3(LReputation) (see Rand(Neigv,LvSR3(LReputation)) in Lines 4 and 7).

Informally, when a node needs to route a message, it draws at random a value
from LReputation plus a blank element. If the blank element is drawn, it selects a
neighbor uniformly at random, and sends the message to that neighbor. Otherwise,

8 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

LReputation = [w, z, z] , sR = 3 for node v

Next hop probabilities for v:

P (X = w) =
1 + 1/3

4
=

4

12
≈ 33.33%

P (X = z) =
2 + 1/3

4
=

7

12
≈ 58.33%

P (X = y) =
0 + 1/3

4
=

1

12
≈ 8.33%

v

w

x

y

z

Sink

Fig. 1 An example of how the reputation affects the routing process

the message is sent to the neighbor whose identifier has been drawn. This way,
the more a neighbor is trusted, the more it will be selected. However, because of
the blank element, there is always a positive probability of selecting a neighbor
without taking trust into account. Note that, initially LReputation is empty, and
consequently the first selections are made uniformly at random.

To ensure a better resiliency against attackers that change their behavior over
time, and to reduce memory consumption, LReputation is defined as a FIFO list of
maximum size, sR. The insertions in LReputation use the operator • that satisfies
the following condition: when the list is full, the next insertion is preceded by the
removing of the oldest (and consequently, less relevant) element.

An example illustrating the probability law is provided in Figure 1. In this
example, we focus on the node v and assume a LReputation of at most 3 elements.
From the given configuration, v will route most messages through z, because it has
the greatest number of occurrences in the list LReputation of v. The high reputation
of z may come from the fact that at some point the paths from x to the sink through
z were faster and more reliable: this is a side effect of our protocol. Such fast and
reliable paths indirectly help increasing the reputation of z, since in this case x

receives valid acknowledgments from z more frequently than from other neighbors.

Using such a FIFO finite list, a node only stores the freshest information.
Interestingly, if a compromised node first behaves well, its reputation increases,
resulting in attracting the traffic. Then, it may change its behavior to become a
blackhole (a node dropping all messages it receives). Now, thanks to our mech-
anism, regularly some messages will be routed via other nodes and consequently
the reputation of the compromised node will gradually decrease, inducting then a
severe reduction of the traffic going through that node.

Consider again Figure 1. If z turns out to be compromised and starts dropping
all messages, then all messages going through z and w will either get lost or loop
back to v. However, there is still a positive probability that v routes messages
through y, which will retransmit them. Some of these messages will be delivered
and consequently acknowledged. So, the identifiers currently stored in LReputation
will be progressively replaced by occurrences of y, increasing its probability (resp.
decreasing the probability of w and z) of being chosen.

SR3: Secure Resilient Reputation-based Routing 9

2.5 Acknowledgment Routing

An acknowledgment message ack is emitted because the corresponding data mes-
sage m has been successfully delivered by the sink. So, we can suppose that the
path followed by m was safe. Thus, we can use the bidirectionality of the links to
route ack (as much as possible) through the reverse path followed by m.

This reverse routing is accomplished by letting a trail along the path followed
by m. This trail is actually made using hash H(Nv) of the nonce Nv identifying
the message (see Line 2), this hash being stored in plaintext in the data message
(see Line 6). The trail is then is stored thanks to the list LAckRouting maintained
at each node: after the reception of each data message, the relaying nodes store
the hash of the nonce available in the message, together with the identifier of the
neighbor from which they received the message (Lines 14-17). This information
will be then used during the return trip of the acknowledgment: when a node v
receives an acknowledgment containing the nonce Nx, it checks whether it is the
final destination of that acknowledgment (Lines 20 and 25). If this is not the case,
v checks if an entry containing H(Nx) exists in LAckRouting (Lines 26-30). If v
finds such an entry, it sends the acknowledgment to the corresponding neighbor
and removes the entry from LAckRouting (Line 29). Otherwise, the next hop of the
acknowledgment is chosen uniformly at random, in a best-effort mindset (LvRW
denotes the probability law of the uniform random walk, see Line 31).

If a data message loops back to a node it already visited, the most relevant
information regarding acknowledgments for this node is the oldest one. Therefore,
before inserting a new trail, the node checks if LAckRouting already contains a trail
for that message. If a related entry exists, we do not update LAckRouting (Lines
14-17).

Acknowledgments can be still dropped by compromised nodes. The trail for
such lost acknowledgments would unnecessarily clutter the memory of nodes. To
avoid this, we manage LAckRouting similarly to LReputation, i.e., LAckRouting is a
list of bounded size sA, appended using operator •.

Finally, an intruder may build acknowledgments with false nonces. These fake
acknowledgments will increase the load of the network, and impact the energy
consumption. Now, some nodes being compromised, a safe node cannot trust in-
formation coming from its neighbors to decide whether it should forward or drop
an acknowledgment. To circumvent that problem, a relay node decides to drop a
received acknowledgment with probability 1

N , where N is an upper bound on the
number of nodes (Lines 33 and 42). So, on the average, an acknowledgment makes
N hops in the network before being dropped. An interesting side effect of this
method is the following: in a safe network (i.e., a network without attackers), the
acknowledgments that follow long routes are often dropped before reaching their
final destination. Since the length of the routes followed by the acknowledgments
are directly related to the length of the route taken by the corresponding mes-
sages, the reputation mechanism ends up favoring shorter routes, thus improving
the overall hops complexity.

The overall behavior of SR3 is summarized in Figure 2.

10 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

v Sink

• Check validity

• Deliver Data

• Build ACK

Network

〈MSG,Ekvs
(〈Data,Nv〉),H(Nv), v〉 〈MSG,Ekvs

(〈Data,Nv〉),H(Nv), v〉

〈ACK, Nv, v〉 〈ACK, Nv, v〉

Fig. 2 A message and its acknowledgment.

3 Security Analysis

We evaluate the security of SR3 in two phases. The first phase focuses on the
message format, for which we prove the following three properties: unforgeability,
confidentiality of the data, and confidentiality of the nonce before message delivery.
This analysis uses the tool CryptoVerif [12]. We first detail the modeling of SR3 and
our intruder model. Then, we model the different security properties we considered.
CryptoVerif automatically finds bounds on the security of these properties. We
refined these bounds to allow the user to determine the desired trade-off between
message sizes and the expected security level. We illustrate our results with an
example based on the classical data link protocol S-MAC [35]3 which is dedicated
to WSNs and allows to transmit up to 250 bytes of data in a message.

The second phase is a symbolic analysis of the protocol, in order to prove its
security when running several sessions. This analysis supposes that the crypto-
graphic primitives are perfect. For this, we use the tool Scyther [15].

We first describe how we model SR3 and the attacker for these two analyses.

3.1 Modeling of SR3

SR3, as described in the previous section, routes messages through several nodes.
There are three distinct roles in this process: the source (whose identifier is denoted
by src) of the considered data message, the relays, and the sink.

The data message is initially created by the source, which then forwards it
either to a relay or the sink. Initially, a data message consists of a ciphertext
C = Eksrc(〈Data,N〉) containing the (symmetric) authenticated encryption of
some data Data and a nonce N , and a plaintext part made of the hash of the
nonce N and the identifier src. Notice that the symmetric key ksrc is chosen uni-
formly at random in K, the space of all the possible symmetric keys, before the
WSN is deployed. We suppose ksrc is known only by the source src and the sink.

Relays forward the data message without changing it. When a data message
reaches the sink, this latter first checks whether the message respects the for-
mat 〈MSG, C, h, s〉. If so, C is decrypted with the key of the node identified by s

(E−1
keys[s](C)): if this operation succeeds, then a valid data is extracted and deliv-

ered, moreover an acknowledgment 〈ACK, N, src〉, is generated and routed through
relays until reaching the source.

3 S-MAC stands for Sensor Medium Access Control.

SR3: Secure Resilient Reputation-based Routing 11

Source R1 ... Rn Sink

1

2 〈MSG,Eksrc (〈Data,N〉),H(N), src〉
〈MSG,Eksrc (〈Data,N〉),H(N), src〉

3

4〈ACK, N, src〉
〈ACK, N, src〉

1. Generate Data, 2. Draw a nonce N ,

3. Check validity, 4. Deliver Data

Fig. 3 One session of the SR3 protocol

Source
Hostile network

Sink

1

2 〈Eksrc (〈Data,N〉),H(N), src〉
〈Eksrc (〈Data,N〉),H(N), src〉

3

4〈N, src〉
〈N, src〉

1. Generate Data, 2. Draw a nonce N ,

3. Check validity, 4. Deliver Data

Fig. 4 Modeling of one session of SR3

A data message can loop back to its source, and an acknowledgment can loop
back to the sink: they act as relays in these cases.

Figure 3 illustrates that view of the protocol. The honest relays do not alter
the messages in any way (however, remind that honest nodes may sometimes drop
ACK messages), and the protocol works with any number of them, or none at all.
Also, our intruder model specifies that any node can be compromised, except the
sink. Therefore, all relays Ri are suspicious, and we lump them, whether honest or
compromised, together in one single entity, called the hostile network. All commu-
nications between the source and the sink happen through the hostile network, as
depicted in Figure 4. The hostile network can modify or drop messages, and can
also create messages using informations deduced from previous communications.
(As the types MSG and ACK can be deduced from the message format, we omit them
in the modeling.)

12 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

3.2 Game-Based Proof of the Security Properties in the Computational Model

We now consider the message format.

3.2.1 Background

We model the ability of our protocol to meet a given security property using games.
A game is a probabilistic algorithm where an adversary, given as a probabilistic
polynomial-time Turing machine, faces a challenge, which consists in breaking a
specific property modeled by the game. The goal is then to compute the ability of
the adversary to win the challenge. This is called the advantage of the adversary.

When describing a game, we write a
$←− X to denote that a is a random value

obtained according the distribution represented by X. If X is a set, a is drawn
uniformly at random on X. Similarly, if X is a probabilistic algorithm, a is drawn
randomly using the algorithm.

Our analysis uses a common cryptography model, called the random oracle

model [10], where hash functions are modeled by random oracles. A random oracle

is a theoretical black box O which satisfies the following property: for every input i,
the first time O is queried with i, O returns a value v, picked uniformly at random
from its output domain; then, each time O is queried again with i, O returns
the same value v. Moreover, encryptions are modeled using encryption oracles. An
encryption oracle is a theoretical black box which retains the secret encryption key
and encrypts arbitrary data at the adversary’s request.

3.2.2 Modeling SR3’s Primitives

Hash function. Our algorithm uses a hash function of input size ηn and of output
size ηh. We model it as a random oracle, and we refer to this modeling using
H : {0, 1}ηn → {0, 1}ηh .

Nonces. Nonces are modeled as truly random numbers of size ηn.

Encryption scheme. We assume the authenticated encryption is both IND-CCA2

(INDistinguishability against adaptive Chosen-Ciphertext Attack) [32] and INT-PTXT

[11,25] (INTegrity of the PlainTeXTs).

Intuitively, an encryption primitive is IND-CCA2, if it is computationally diffi-
cult for an adversary to win a challenge that consists in guessing which of two data
is encrypted into a given ciphertext despite it has access to a decryption and an
encryption oracle before and after the reception of the challenge. More formally,

SR3: Secure Resilient Reputation-based Routing 13

we recall below the IND-CCA2 game introduced in [9].

Experiment ExptIND−CCA2(A) :

K
$←− K

(D0, D1, state)
$←− AE(K,·),E

−1(K,·)
1 ()

b
$←− {0, 1}

C
$←− E(K,Db)

Return b = AE(K,·),E
−1(K,·)

2 (D0, D1, C, state)

First, a key K is generated uniformly at random from K, the set of possible (sym-
metric) keys, of size ηk. Then, the adversary A runs in two phases: A1 and A2.
In each of them, the encryption and decryption oracles, respectively denoted by
E(K, ·) and E−1(K, ·), can be called a polynomial number of times. A1 outputs
two distinct data D0 and D1 of identical size and some information state used to
link the two attacker phases together. Then, one of the data D0 and D1 is selected
uniformly at random and encrypted in the ciphertext C. Finally, A2 receives the
challenge (i.e., the two data D0, D1, as well as the ciphertext C) and state. The
adversary A2 is allowed to call E−1(K, ·) with any ciphertext, except the challenge
ciphertext C. The game returns 1 if and only if the adversary correctly guesses
the value of the challenge bit b, the index of the data encrypted into C. For any
adversary A, the IND-CCA2 advantage in this game, noted AdvIND−CCA2(A), is
defined as:

AdvIND−CCA2(A) = 2× Pr[ExptIND−CCA2(A) = 1]− 1

where Pr[ExptIND−CCA2(A) = 1] is the probability that A wins the IND-CCA2

game.

Intuitively, an encryption primitive E is INT-PTXT, if it is computationally
difficult for an adversary to produce a valid ciphertext decrypting to a data which
had never been encrypted using E. Below, we recall the game used in [9] to define
this notion for a symmetric encryption scheme (K, E,D), where K, E, and D are
respectively a set of keys (of size ηk), and encryption and decryption primitives.

Experiment ExptINT−PTXT (A) :

K
$←− K

S ← ∅;

C
$←− AES(K,·),E−1(K,·)()

d← D(K,C)

Return d 6= ⊥ and d 6∈ S

Each call to the encryption oracle ES(K, d) consists of storing the data d into S,
and then returning E(K, d), the encryption of d using key K. The adversary also
has access to the decryption oracle E−1(K, ·). The adversary A wins the INT-

PTXT game if and only if it can forge a valid ciphertext C whose corresponding

14 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

decryption has never been queried to the encryption oracle. For any adversary A,
the INT-PTXT advantage in this game, noted AdvINT−PTXT (A), is defined as:

AdvINT−PTXT (A) = Pr[ExptINT−PTXT (A) = 1]

where Pr[ExptINT−PTXT (A) = 1] is the probability that A wins the INT-PTXT

game.
Since we assume the encryption scheme of SR3 is both IND-CCA2 and INT-

PTXT-secure, both AdvIND−CCA2(A) and AdvINT−PTXT (A) become negligible in the
size of the keys of encryption scheme ηk. An advantage Adv(A) becomes negligible

in x, if for every positive polynomial P (x), we have ∃K,∀x > K,Adv(A) < 1
P (x) .

3.2.3 Modeling SR3

Based on the above presented model, we describe actions performed by the source
and sink using two functions, see Figure 5. The attacker has access to some of these
functions. For instance, the function GenEksrc (·)(·) below represents the normal
behavior of a node, and an attacker who has access to this function models a
chosen-plaintext attack.

– GenEksrc (·)(Data) is the function which generates a message produced by src

containing Data (whose length is ηd), using the encryption function from
{0, 1}ηp to {0, 1}ηc (where ηp = ηd + ηn and ηc ≥ ηp). This message is made
of 〈C, h, src〉 = 〈Eksrc(〈Data,N〉),H(N), src〉, where N is a fresh unpredictable
nonce of size ηn, H(N) is the hash of N , and Eksrc(〈Data,N〉) is the encryption

of the concatenation of the data and nonce. The function GenEksrc (·)(Data)
returns the pair 〈C, h, src〉, N . The nonce N is given in cleartext to represent
the knowledge of an attacker that listens to traffic in the network. Indeed, such
an attacker may have access to both the messages and their acknowledgments;
he may then know the nonces contained in the original messages.
We store all the encrypted ciphertexts in a set called Queries, initially empty.

– V erifE
−1
ksrc

(·)(〈C, h, s〉) is the function that checks whether the packet 〈C, h, s〉
is valid or not. Precisely, it checks
– whether s = src,
– whether E−1

ksrc
(C) 6=⊥, which guarantees the integrity of the encrypted data

(e.g., E−1
ksrc

(C) fails if some digit has been reversed), and authenticity (since
encryption uses a symmetric key, only entities knowing this key, i.e., the
source and sink, are able to correctly encrypt and decrypt data, conse-
quently integrity implies authenticity), and

– whether h = H(N), where 〈d,N〉 = E−1
ksrc

(C) (of course, this last check is
made only if the two first ones succeed).

If these three conditions are satisfied, then the function outputs 1 (meaning
that the message is valid), 0 otherwise.

These two functions allow us to model SR3 in CryptoVerif. Notice that, in the
following games, we replace Eksrc(·), E−1

ksrc
(·), and H(·) — the encryption, decryp-

tion, and hash functions actually used by SR3 — by the encryption, decryption,
and random oracles E(ksrc, ·), E−1(ksrc, ·), and H(·) that respectively model them.
These oracles represent knowledge accessible to the intruder.

SR3: Secure Resilient Reputation-based Routing 15

Source Sink

ksrc
$←− K ksrcksrc

1 〈C, h, src〉

2N, src

1. (〈C, h, src〉, N) = GenEksrc (·)(Data)

2. Message verification phase: V erifE
−1
ksrc

(·)(C)

Fig. 5 The SR3 protocol, using functions

3.3 Properties

The three properties we want to prove are the following:

– Confidentiality of the (encrypted) data: the probability of the adversary getting
information about the data in a message is negligible, even when the acknowl-
edgment has been sent.

– Confidentiality of the nonce: the probability of the adversary getting information
about the nonce N in a message, before the message has been delivered, is
negligible.

– Unforgeability: the probability that the adversary creates a new ciphertext C

such that V erifE
−1
ksrc

(·)(C) = 1 is negligible.

With the help of CryptoVerif, we analyzed those three properties of SR3. Each
of these three properties is evaluated thanks to a game. For each game, CryptoVerif
outputs a bound on the advantage of any adversary in that game. This bound is
obtained automatically after successive game reductions. The complete verification
code is available online [4].

3.3.1 Data Confidentiality

The first property we consider is the confidentiality of the data. The game (named
FG, for Find-then-Guess) is based on the idea that even if the adversary chooses
the set of possible data, it cannot guess which of those data is inside a given
message. On the other hand, if the attacker was able to win reliably, it would
be also effectively able to recover some information about the data contained in
messages, without knowledge of the key.

Let A be an adversary running in two phases: A1 and A2. First, A1 outputs
two data, D0 and D1, of identical size together with some information state used to
link the two attacker phases together. One of these two data is selected uniformly
at random, and a data message 〈C, h, src〉 is generated using the selected data
and the key ksrc of src, initially generated uniformly at random from K. Then,
〈C, h, src〉, the nonce N it contains, and state are given to A2. To win, A2 should

guess which of the two data is in C. During this game, A can query GenE(ksrc,·)(·),

16 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

H(·), and V erifE
−1(ksrc,·)(·).

Experiment ExptFG(A) :

ksrc
$←− K

(D0, D1, state)
$←− AGenE(ksrc,·)(·),H(·),V erifE

−1(ksrc,·)(·)
1 ()

b
$←− {0, 1}

(〈C, h, src〉, N)
$←− GenE(ksrc,·)(Db)

Return b = AGenE(ksrc,·)(·),H(·),V erifE
−1(ksrc,·)(·)

2 (〈C, h, src〉, N, state)

Let Pr[ExptFG(A) = 1] be the probability of winning the find-then-guess game.
We define the find-then-guess advantage of A against FG, noted AdvFG(A), as
follows:

AdvFG(A) = 2× Pr[ExptFG(A) = 1]− 1

We modeled this game in CryptoVerif to obtain a bound on AdvFG(A). Actu-
ally, this bound depends on the ability of the attacker A to break the encryption
scheme used by SR3, i.e., this game can be reduced to the IND-CCA2 game. This
means that the bound on AdvFG(A) depends on the advantage AdvIND−CCA2(B)
of some adversary B in the IND-CCA2 game. Precisely, for all adversaries A

– making qG queries to GenE(ksrc,·)(·), qV queries to V erifE
−1(ksrc,·)(·), and qH

queries to H(·) in the FG game, and
– running the FG-game in TA time units,

there exists an adversary B

– making qG + 1 queries to the encryption oracle E(ksrc, ·) and qV queries to the
decryption oracle E−1(ksrc, ·) in the IND-CCA2 game, and

– running the IND-CCA2 game in TB time units with TB = TA + P1(qG, qV , s)
time units, where P1(qG, qV , s) is polynomial in qG, qV , and the message size s
(see [4] for details)

such that

AdvFG(A) ≤ 2×AdvIND−CCA2(B)

Note that the IND-CCA2 property of the encryption scheme allows to obtain a
security bound which is independent from ηc. Also, qH does not appear in the
result meaning that calls to H(·) does not help the adversary in anyway.

Moreover, IND-CCA2 guarantees that for all adversaries B, AdvIND−CCA2(B),
and consequently AdvFG(A), becomes negligible in ηk, the size of the key. We
now refine and instantiate this bound to select the necessary trade-off between the
desired level of security and the mandatory minimization of the message overhead.

Illustrative Example. As an example, we now show how to fix parameters when
focusing on the S-MAC protocol [35] for which the data packet length can be up
to 250 bytes.

SR3: Secure Resilient Reputation-based Routing 17

Recall that we want to achieve the IND-CCA2 and INT-PTXT-secure properties.
Such properties can be ensured using an Encrypt-then-MAC primitive [9]. Encrypt-

then-MAC consists of an encryption primitive, e.g., AES-128 [13],4 and a Message

Authentication Code (MAC) [7], e.g., HMAC-SHA-1 or HMAC-SHA-256.5

Here, we use AES-128 [13], which outputs 128 bits (16 bytes) of ciphertext using
an input plaintext of 128 bits. To overcome the size limitation, we use AES-128
together with a block cipher mode of operation called Cipher Block Chaining (CBC)

[17]. This latter allows to securely link together several fixed-length ciphertexts,
so-called blocks. Using AES, each block will be of size 128 bits (16 bytes), and the
overhead of CBC is one block (the initialization vector), so 16 bytes. We fix here
the size of the plaintext to 208 bytes, i.e., 13 blocs of 16 bytes. So, using AES-128
together with CBC, we obtain a ciphertext constituted of 14 blocs of 16 bytes,
i.e., 224 bytes.

Then, for the MAC, we use HMAC-SHA-256 which, given an input of up to
264 bits, produces an output message authentication code (MAC) of 256 bits (32
bytes). However to reduce the overhead, we truncate this output to 9 bytes, i.e.

72 bits. Overall, we obtain a ciphertext of 233 bytes.
Then, using these parameters and several results from [5,6,8,9], we obtain the

following bound (see [4] for details):

AdvFG(A) ≤ 4×AdvRKAcomp-SHA-256∗(M) + 4×AdvPRFcomp-SHA-256(N) +

2× (qV − 1)× qV ×
(
8×AdvPRFcomp-SHA-256(O) +

1

2256

)
+

qV
270

+ 4×AdvPRFAES (I) +
196× (qG + 1)2

2127

where

– comp-SHA-256 (resp. comp-SHA-256∗) is the compression function of SHA-256
(resp. its dual function);

– the PRF-advantage AdvPRFF (X) measures the ability of an adversary X to
guess whether a given oracle is a random instance of F , a family of pseudoran-
dom functions, or a truly random function;

– AdvRKAF (X) is the PRF-advantage of X under related key attacks;
– I runs in time O(TB) and makes 14× (qG+1) queries to the encryption oracle,

modeling the encryption function of AES;
– M is a related key adversary that performs two oracle queries and has time
O(TB);

– N makes qV queries and runs in O(TB) time;
– O makes 2 queries and runs in O(T), T being the time for one computation of

comp-SHA-256.

We assume qV = 220 and qG = 230. Finally, we bound the strength of the
adversaries using estimations based on the current best attacks on AES (2126.1)
and comp-SHA-256 (2256):

– For AES, if the attacker can make NAES queries, its advantage can be estimated
by NAES

2126.1 .

4 AES stands for Advanced Encryption Standard.
5 HMAC-SHA stands for Keyed-Hash Message Authentication Code and Secure Hash Al-

gorithm.

18 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

– For SHA-256, if the attacker can makeNSHA queries to the compression function,
then the advantage of the attacker can be estimated by NSHA

2256 .

We assume NAES ≤ 270 and NSHA ≤ 2100. Hence, we obtain AdvFG(A) ≤ 2−49.

3.3.2 Nonce Confidentiality

In the next game, we evaluate whether an adversary can extract a nonce from an
undelivered message. Let A be an adversary running in two phases (A1 and A2)
that communicate using a variable named state. The game consists in giving a
challenge data message 〈C, h, src〉 to an adversary A, who should guess the nonce
inside this message in at most nbA tries. To do this, the adversary is allowed to

call GenE(ksrc,·)(·), H(·), and V erifE
−1(ksrc,·)(·). Moreover, it chooses the data that

will be contained in the challenge message.

Experiment ExptN−conf (A) :

ksrc
$←− K

(Data, state)
$←− AGenE(ksrc,·)(·),H(·),V erifE

−1(ksrc,·)(·)
1 ()

(〈C, h, src〉, N)
$←− GenE(ksrc,·)(Data)

Answers← AGenE(ksrc,·)(·),H(·),V erifE
−1(ksrc,·)(·)

2 (〈C, h, src〉, state))
Return (|Answers| ≤ nbA ∧N ∈ Answers)

The nonce confidentiality advantage of A against N−conf is defined as the prob-
ability of winning the game, i.e., Pr[ExptN−conf (A) = 1]:

AdvN−conf (A) = Pr[ExptN−conf (A) = 1]

CryptoVerif outputs that for all adversaries A:

– making qG queries toGenE(ksrc,·)(·), qV queries to V erifE
−1(ksrc,·)(·), qH queries

to H(·), and nbA tries in the N−conf game, and
– running the N−conf game in TA times units,

there exists an adversary B:

– making qG + 1 queries to E(ksrc, ·) and qV queries to E−1(ksrc, ·) in the IND-

CCA2 game, and
– running the IND-CCA2 game in TB time units with TB = TA + P2(qG, qV , s)

time units, where P2(qG, qV , s) is polynomial in qG, qV , and the message size s
(see [4] for details),

such that:

AdvN−conf (A) ≤ nbA + qH + qG
2ηn

+ AdvIND−CCA2(B)

Similarly to the previous property, this bound becomes negligible when in-
creasing ηn and ηk. Again, one can find the right values to obtain a given security
bound.

SR3: Secure Resilient Reputation-based Routing 19

Illustrative Example. Considering the encryption parameter values already fixed in
Subsections 3.3.1 and the results from [5,6,8,9], we obtain the following bound
(see [4] for details):

AdvN−conf (A) ≤ nbA + qH + qG
2ηn

+ 2×AdvRKAcomp-SHA-256∗(M) +

2×AdvPRFcomp-SHA-256(N) +

(qV − 1)× qV ×
(
8×AdvPRFcomp-SHA-256(O) +

1

2256

)
+

qV
271

+ 2×AdvPRFAES (I) +
196× (qG + 1)2

2128

(I, M, N , O are the same adversaries as those defined in Subsection 3.3.1.)
To obtain an estimation, we use the same values as in Subsection 3.3.1 and

we assume nbA = qV = 220 and qH = 240. Finally, we fix the size ηn of the nonce
to 96 (12 bytes). Hence, we obtain AdvN−conf (A) ≤ 2−49, using a ciphertext of
length 233 bytes and a nonce of 12 bytes.

3.3.3 Unforgeability

Finally, the last game evaluates the unforgeability, i.e., the ability of an intruder
to create a new valid ciphertext. Note that this property implies both indistin-
guishability and authenticity of the data. To evaluate unforgeability, the game gives

an attacker A access to both GenE(ksrc,·)(·) and V erifE
−1(ksrc,·)(·). To win, A

should return a ciphertext which is valid and which has never been encrypted by
GenE(ksrc,·)(·). Recall that the set Queries contains the ciphertext encrypted by

GenE(ksrc,·)(·).

Experiment ExptUF−CMVA(A)

Queries← ∅

ksrc
$←− K

〈C, h, s〉 ← AGenE(ksrc,·)(·),H(·),V erifE
−1(ksrc,·)(·)()

Return C 6∈ Queries ∧ V erifE
−1(ksrc,·)(C)

The unforgeability advantage of A against UF−CMV A, noted AdvUF−CMVA(A),
is defined as the probability of A winning this game, Pr[ExptUF−CMVA(A) = 1]:

AdvUF−CMVA(A) = Pr[ExptUF−CMVA(A) = 1]

Using CryptoVerif, we find that the advantage of A depends only the strength
of the authenticated encryption. Formally, for all adversaries A:

– making qG queries toGenE(ksrc,·)(·), qV queries to V erifE
−1(ksrc,·)(·), qH queries

to H(·) in the UF−CMV A game, and
– running the UF−CMV A game in TA time units,

there exists an adversary B:

– making qG queries to E(ksrc, ·) and qV + 1 queries to E−1(ksrc, ·) in the INT-

PTXT game, and

20 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

– running the INT-PTXT game in TB time units with TB = TA + P3(qG, qV , s)
time units, where P3(qG, qV , s) is polynomial in qG, qV , and the message size s
(see [4] for details)

such that:

AdvUF−CMVA(A) ≤ AdvINT−PTXT (B)

Similarly to the previous properties, AdvINT−PTXT (B) becomes negligible when
increasing ηk.

Illustrative Example. Considering the encryption parameter values already fixed
in Subsections 3.3.1-3.3.2 and the results from [5,6,8,9], we obtain the following
bound (see [4] for details):

AdvUF−CMVA(A) ≤ AdvRKAcomp-SHA-256∗(M
′) + AdvPRFcomp-SHA-256(N ′) +

(qV − 1)× qV
2

×
(
8×AdvPRFcomp-SHA-256(O′) +

1

2256

)
+
qV
272

where

– M′ is a related key adversary that performs two oracle queries and has time
O(TB);

– N ′ makes qV queries and runs in O(TB) time; and
– O′ makes 2 queries and runs in O(T), T being the time for one computation of

comp-SHA-256.

To obtain an estimation, we use the same values as in Subsections 3.3.1-3.3.2.
We obtain AdvUF−CMVA(A) ≤ 2−51.

Overall, we obtain a security level of at least 2−49 for each of the three afore-
mentioned properties (unforgeability, confidentiality of the data, and confidential-
ity of the nonce before message delivery) using a ciphertext of length 233 bytes and
a nonce of 12 bytes. As the nonce is concatenated to the data in the plaintext to
encrypt (208 bytes), the size of the data is then at most 196 bytes. Note also that
the size of the hash has to be fixed. Here, we fix it to 12 bytes (the same size as
the nonce), to prevent random collisions. In addition to the ciphertext (233 bytes)
and hash (12 bytes), a data message also contains the identifier of the source (4
bytes) and one bit for the message type (MSG). Hence, the data messages can be
encoded using less than 250 bytes, with a low overhead as up to 196 bytes of data
can be stored in, and so are supported by S-MAC. Similarly, our acknowledgment
messages are supported by S-MAC since they can be encoded using 12 bytes for
the nonces, 4 bytes for the source identifier, and one bit for the message type ACK

(hence less that 250 bytes).

3.4 Symbolic Analysis of SR3

We conducted a symbolic analysis of SR3, focusing on authentication, using the
tool Scyther [15]. Overall, the symbolic analysis focuses more on the protocol than
on the cryptography, because of few key differences with the previous section.

SR3: Secure Resilient Reputation-based Routing 21

First, this analysis is done in the symbolic model instead of computational model.
This model assumes the perfect encryption hypothesis, which specifies that cryp-
tographic primitives are perfect black-boxes, and the attacker can only interact
with them through the expected properties: for instance, the attacker can decrypt
Ek(x) if and only if he has knowledge of k. This knowledge is built from a Dolev-
Yao model [16], which specifies that the attacker only knows what can be built or
deduced from the communications he overhears.

The symbolic model is more restrictive for an attacker than the computational
model. Here, we still use the description given in Figure 4 (page 11), but we
consider an independent source node. Also, instead of proving security properties
for a single session of the protocol, we determine whether the attacker can execute
a bounded number of sessions of the protocol to achieve its goal. The attacker can
alter, delete, or create messages, based on its current knowledge, and it can also
initiate new protocol sessions.

We focus on authentication, more precisely non-injective agreement for both
participants. This property is defined in the hierarchy given in [28]. Consider two
actors, A and B, running a protocol. If the protocol verifies this property, it guar-
antees that if A completes a run of the protocol, apparently with B, then B has
previously been running the protocol, apparently with A, and both A and B agreed
on the same data (in our case, this data is both Data and N).

We model the authenticated encryption by decomposing an Encrypt-then-MAC

primitive into two parts: an encryption and a MAC (Message Authentication Code)
part. Our modeling for Scyther is available online [4] and we experimented it setting
the bound on the number of sessions to 100. Under this condition, Scyther reported
that SR3 provides the aforementioned authentication property for both actors A
and B.

4 Experimental Results

In this part, we evaluate our protocol with respect to classical measures, namely,
delivery rate of the messages, fairness, and number of hops. We also study the
resiliency of SR3 against several attack scenarios. For that purposes, we ran simu-
lations using Sinalgo [34], an event-driven simulator for WSNs, and we compared
the performances of SR3 to those of six other routing protocols.

4.1 Experimental Conditions

We deployed sensors uniformly at random on a square plane. We positioned the
sink at the center of the square plane. The compromised nodes are selected uni-
formly at random among other sensors. Two nodes can communicate if and only
if their Euclidean distance is less or equal to a preset fixed range, i.e., the topol-
ogy is a Unit Disk Graph (UDG). We only considered connected topologies. The
communication links are asynchronous and FIFO. To enforce asynchronism (i.e.,
to maximize interleavings of events), the transmission time of each link follows an
exponential random distribution of parameter λ = 1 (so, the average transmission
time is 1). Only honest sensors generate data to route. The time between two

22 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

consecutive data generations at the same sensor also follows an exponential ran-
dom distribution, whose parameter λ is the same for all sensors and whose value
depends on the average degree δ and the number of sensors n in the network, to

prevent congestion, namely λ =
√
δ

10n .
If we fix the number of nodes n and the range of the UDG, we can tune the size

of the simulation area to control the expected average degree δ of the network. In
our simulations, n varies from 50 to 400 and δ varies from 8 to 32. The percentage of
compromised nodes varies from 0 to 30%. We considered various attack scenarios,
where compromised nodes made selective forwarding: each compromised node drops
received messages with a probability p ∈ (0, 1] (if p = 1, the node is called a
blackhole). In addition, some compromised nodes may have some additional “bad”
skills, e.g., they may be wormholes or Sybil. A compromised node is said to be Sybil
when it pretends to be multiple, distinct nodes in the system. A wormhole is a
compromised node, typically far from the sink, which (temporarily) violates the
UDG topology by directly communicating (via a fast private medium) with the
sink in order to attract the traffic.

For each setting (number of nodes, average degree, attack scenario, amount of
compromised nodes, and routing algorithm), we ran simulations over 20 UDGs,
randomly generated. In each simulation, 500 000 data are generated. The simula-
tion stops once all messages have been routed or lost. We made more than 13 000
simulation runs and the overall number of generated data is greater than 6 billion.

4.2 List Sizes

SR3 uses three lists, whose respective sizes are bounded. We made several exper-
iments to set the size of each list to the appropriate value. Of course, the size of
these three lists are influenced by the network load, which in turn is influenced
by the transmission time, drop rate, and data generation time intervals (all those
parameters have been set in Subsection 4.1).

We consider first the list LReputation. We experiment several possible values for
its size, sR. In these experiments, we implement LAckRouting and LSent as infinite
lists, which correspond to their ideal (yet impractical) behavior, to prevent any
side effect.

When the behavior of malicious nodes is homogeneous over the time, the
greater sR is, the better the delivering rate is. However, if sR is big, this results
in increasing the time required to refresh the content of the list. So, in the case of
malicious nodes that suddenly change their behavior (i.e., a sinkhole attack), the
system spends more time to recover if sR is big. In other words, if the behavior of
malicious nodes is heterogeneous with time, a large list LReputation would reduce
the adaptivity, and consequently the overall delivery rate, of our algorithm.

To create a sinkhole attack, we use wormholes: their ability makes them more
attractive than other nodes, as they allow delivering messages faster to the sink.
During the first third of the simulation, wormholes send all received data messages
in their channel directly connected to the sink and route acknowledgments as
honest nodes in order to obtain a high reputation. Next, they become blackholes,
i.e., they drop all messages they receive.

The necessary tradeoff to obtain when choosing the value of sR is illustrated
in Figure 6, where results are given for a network of 200 nodes, average degree 16,

SR3: Secure Resilient Reputation-based Routing 23

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000A
v
e

ra
g
e
 d

e
liv

e
ry

 r
a

te
 o

f
m

e
s
s
a
g
e

s
]
x
-(

5
.1

0
4
).

.x
]

The x
th

message has been processed

List size 5
List size 10
List size 40

Fig. 6 Average delivery rate (10% of WH/BH, 10% of BH, n = 200, δ = 16)

and 10% of blackholes, and 10% of wormholes/blackholes which become blackholes
after the first third of the simulation. For each point (x, y) of the curves, y is the
delivery rate computed over a window of 50 000 messages, from the (x− 50000)th

to the xth emitted message.

We test the aforementioned scenario with several values for sR — from 5 to
40. For each size, we run simulations on networks of sizes 100, 200, and 400 with
average degrees 8, 16, and 32, and containing both 10% of blackholes (BH) and
10% of wormholes/blackholes (WH/BH). We made 10 simulations (each with a
different topology) for each setting (list size, number of nodes, degree). The overall
results are summarized in Table 1. In each cell of the table, we print the value of
sR that offers the best average delivery rate.

Number of nodes
100 200 400

Average degree
8 10 5 5
16 15 10 5
32 20 15 5

Table 1 Best observed LReputation size sR, when facing 10% BH and 10% WH/BH.

An important fact does not appear in Table 1: the average delivery rate is very
similar for a large range of list sizes. We chose sR = 10, which appeared to be a
good compromise in each setting.

Next, we consider the list LSent. The size of both LSent and LAckRouting are
bounded for practical reasons only. Indeed, sensors have tight local memories. Now,
having infinite sizes for those lists would offer the best behavior. The goal here is to
find a reasonable size that achieves the adequate trade-off between performances
and resource consumption.

To set the size sS of LSent, we led experiments, where sR = 10 (the value we
choose previously), but where LAckRouting is still implemented as an infinite list.

24 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5

P
ro

p
o

rt
io

n
 o

f
a

c
c
e

p
te

d
 a

c
k
n

o
w

le
d

g
m

e
n

ts

Size of LSent

SR3
99%

Fig. 7 Proportion of accepted acknowledgments, depending on LSent size (n = 200 and δ = 8)

In those experiments, our goal is to minimize the proportion of events called
false negatives. We call false negatives valid acknowledgments that return to their
destination, while their corresponding nonce has been removed from LSent. In that
case, the valid acknowledgment is simply discarded.

We made our simulations in safe networks, because this corresponds to the
worst case (in terms of number of false negatives), where the routes followed by
data messages and acknowledgments are longer.

We tested sS with values 1, 3, 5, 7, and 9. The results for a particular setting
is depicted in Figure 7. Actually we obtained similar results for each setting. We
can see value 3 for sS is sufficient to reach our objective of 99% of accepted
acknowledgments. Therefore, we chose to set sS to 3.

Finally, we repeated the same process to set the size sA of LAckRouting using
the sizes previously selected for LReputation (10) and LSent (3). Again, we tried to
minimize the proportion of false negatives. If the list is too small, more messages
would be randomly routed, which would in turn increase the delay before they
reach their destination, and consequently, increase the number of false negatives.

SR3: Secure Resilient Reputation-based Routing 25

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 3 4 5 6 7 8 9

A
c
c
e

p
te

d
 a

c
k
n

o
w

le
d

g
m

e
n

ts
 p

ro
p

o
rt

io
n

Size of LAck

SR3
99%

Fig. 8 Proportion of valid acknowledgments, depending on LAckRouting size (n = 200 and

δ = 8)

Figure 8 is an example of results we obtained, using the same setting as the
previous example (200 nodes, average degree 8). Other settings give similar re-
sults. The proportion of accepted acknowledgments stagnates from the size 5 for
LAckRouting, so we chose that value for sA.

4.3 Benchmark Protocols

Resiliency is the property targeted by our experiments. It has been introduced
by Erdene-Ochir et al [22]. In this latter paper, they study resiliency of some
classical protocols. They propose new routing solutions dedicated to resiliency
in [19]. Hence, in the following, we compare SR3 to a panel of six algorithms
proposed and/or studied in these two papers [19,22].

More precisely, in [22], Erdene-Ochir et al propose a classification of routing
protocols:

– Topological-based protocols that use topological information (e.g. hop distances)
to deterministically determine the routes.

– Probabilistic protocols.
– Geographic protocols that determine the routes using GPS information.
– Hierarchical protocols, such as RPL [1], that split source nodes into different

routing roles.

As in [22], we exclude this latter category from our panel because, in our scenario
all source nodes play the same role. Again, similarly to [22], we consider one
member of each of the three first categories (actually the same as those studied
in [22]):

1. The Gradient-Based Routing (GBR) [33] is a topological-based protocol which
routes messages along a DODAG, this latter being based on hop distances and
rooted at the sink. Precisely, a source node forwards all messages it receives
to its (preferred) parent in the DODAG, i.e., a neighbor of lowest level in the
DODAG.

26 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

2. The Uniform Random Walk (RW) [2] is a probabilistic protocol in which the
message holder selects the next hop destination uniformly at random among
its neighbors until the message reaches the sink.

3. The Greedy-Face-Greedy protocol (GFG) [14] is a geographic routing protocol
where two modes are alternatively used: Greedy and Face. The Greedy mode
(which routes according to the smallest geographic distance) is preferably used,
but may lead a message to a dead end. In this case, the Face mode allows the
message to escape.

Notice that GBR is close to the hierarchical protocol RPL [1], since RPL is also
based on a DODAG rooted at the sink.

We also compare SR3 to the three resilient solutions proposed by Erdene-
Ochir et al in [19]. These solutions are respectively called RGBR, PRGBR, and
PRDGBR in the following. These three protocols are actually variants of the RGB
protocol, where some uncertainty is introduced using randomness to make them
less predictable by an adversary.

4. RGBR uses the levels of neighbors in the DODAG: each sensor chooses next
hop for each message uniformly at random among its lowest-level neighbors.

5. In PRGBR, each sensor chooses between two modes: (1) with probability 0.4
the message is routed according to RGBR; (2) with probability 0.6 the message
is routed to a neighbor of same level (if no such a neighbor exists, the sensor
uses mode (1)).

6. PRDGBR duplicates the message at each hop and routes the two messages in-
dependently using PRGBR. To avoid congestion, each node drops the received
copies of messages it already saw.

Notice that an identical approach has been recently used to propose resilient vari-
ants of RPL [23].

4.4 Some Scenarios and Results

4.4.1 Average Delivery Rate

Figures 9-11 show the delivery rates observed in networks of average degree δ = 8,
16, and 32, facing 30% of blackholes (BH). The size of the networks varies from
50 to 400 nodes. (Note that, with 30% of blackholes, several honest nodes cannot
safely reach the sink and consequently have delivery rate zero.) We remark that
SR3 always offers a better delivery rate than the other protocols on networks of
average degrees 8 and 16. In networks of average degree 32, its delivery rate is
approximately the same as PRDGBR, while still better than the other protocols.
In particular, the greater the networks are, the greater the gap is.

Figure 12 shows the delivery rates observed in networks of size n = 200 facing
30% of blackholes (BH). The average degree of the networks varies from 8 to 32.
Again, we can remark that SR3 always offers the best delivery rate in that case.
Moreover, as for RW and GFG, the average delivery rate of SR3 is insensitive to
the degree variation. In contrast, the observed delivery rates for gradient-based
protocols are low in sparse networks. In high-density networks, the performances
of PRDGBR match those of SR3. However, SR3 use only two messages per data,

SR3: Secure Resilient Reputation-based Routing 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 d

e
liv

e
ry

 r
a

te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 9 Average delivery rate (30% of BH nodes, δ = 8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 d

e
liv

e
ry

 r
a

te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 10 Average delivery rate (30% of BH nodes, δ = 16)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 d

e
liv

e
ry

 r
a

te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 11 Average delivery rate (30% of BH nodes, δ = 32)

28 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30

A
v
e

ra
g

e
 d

e
liv

e
ry

 r
a

te

Degree

Delivery rate in presence of black holes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 12 Average delivery rate (30% of BH nodes, n = 200)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

iv
er

y
ra

te

Drop rate of the compromised nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 13 Average delivery rate (20% of SF nodes, n = 200, δ = 8)

while PRDGBR duplicates the messages at each hop, and consequently heavily
increases the load of the network.

SR3 also efficiently combats the selective forwarding (SF) attacks. Figure 13
shows the average delivery rates observed in networks of size n = 200 and average
degree δ = 8 that have to face 20% of compromised nodes, according to the drop
rate of these nodes. We can observe that, except RW, all protocols of the panel
achieve a graceful degradation in delivery rate when the drop rate increases. Still,
SR3 offers one of the best performance. Only PRDGBR has performances close
to those of SR3 when the drop rate is 100% (that is, when compromised node
are actually blackholes). But again, this performance comes at the price of a high
communication overhead.

We also considered networks of size n = 200 and average degree δ = 8, where
10% of nodes are both blackholes and Sybil (SY). The number of pseudonymous
identifiers of these compromised nodes varies from 1 to 10. We can observe in
Figure 14, that except for GFG, adding Sybil nodes does not change the relative
performances in the panel. Actually, GFG is insensitive to Sybil attacks because

SR3: Secure Resilient Reputation-based Routing 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 d

e
liv

e
ry

 r
a

te

Number of pseudonymous identities per SY node

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 14 Average delivery rate (10% of SY nodes, n = 200, δ = 8)

Algorithm Average delivery rate Standard deviation
GFG 0.117 0.308
GBR 0.487 0.487
RGBR 0.491 0.307
PRGBR 0.306 0.223
PRDGBR 0.750 0.179

RW 0.008 0.017
SR3 0.777 0.060

Fig. 15 Average delivery rate and standard deviation of the delivery rate of nodes (30% of

BH, n = 200, δ = 32)

it does not use node identifiers. Now, still in that case, SR3 offers the best perfor-
mances.

4.4.2 Fairness

Fairness among the delivery rates of honest nodes is a desired property in routing
protocols. A classical way to capture this property is to compute the standard
deviation of the delivery rates of honest nodes [20]. Figure 15 shows the average
and standard deviation of delivery rates observed in networks of size n = 200
and average degree δ = 32, when facing 30% blackholes. The smaller the standard
deviation is, the fairer the algorithm is. Now, a shortcoming of this measure is that
when the delivery rates are uniformly bad (like for example in RW), the observed
fairness is good. So, analyzed alone, this measure is misleading.

Instead, we propose here to visualize the distributions of delivery rates. Fig-
ure 16 shows an example of our method. In this figure, we consider the same
simulations as in Figure 15. There is one column per algorithm of the panel. Each
column represents the range of possible delivery rates from 0 to 100%, by intervals
of 10%. The color shade encodes the proportion of nodes having the correspond-
ing delivery rate. Consider, for example, the RW protocol: almost all nodes have
a delivery rate of less than 10%. In contrast, using SR3, almost all nodes have a
delivery rate greater or equal to 70%. We can clearly observe two classes of pro-
cesses when looking at GFG and GBR: nodes have either 0% or 100% of delivery

30 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

0

10

20

30

40

50

60

70

80

90

100

GFG

0

10

20

30

40

50

60

70

80

90

100

GBR

0

10

20

30

40

50

60

70

80

90

100

RGBR

0

10

20

30

40

50

60

70

80

90

100

PRGBR

0

10

20

30

40

50

60

70

80

90

100

PRDGBR

0

10

20

30

40

50

60

70

80

90

100

RW

0

10

20

30

40

50

60

70

80

90

100

SR3

Fig. 16 Average delivery rate distribution (30% of BH, n = 200, δ = 32)

0

10

20

30

40

50

60

70

80

90

100

GFG

0

10

20

30

40

50

60

70

80

90

100

GBR

0

10

20

30

40

50

60

70

80

90

100

RGBR

0

10

20

30

40

50

60

70

80

90

100

PRGBR

0

10

20

30

40

50

60

70

80

90

100

PRDGBR

0

10

20

30

40

50

60

70

80

90

100

RW

0

10

20

30

40

50

60

70

80

90

100

SR3

Fig. 17 Average delivery rate distribution (30% of BH, n = 200, δ = 8)

rate; these protocols are unfair. The probabilistic variants of GBR are fairer: the
delivery rates are spread on the whole range, but still these results are weaker than
those observed for SR3.

We also provide other results in Figure 17. Simulations were run on networks
of size n = 200 with an average degree δ = 8, also when facing 30% blackholes.
Overall, we observe results similar to the previous setting, with a few differences.
First, GBR and the variants have overall lower deliver rate and fairness, as they be-
have better in highly connected networks. Also, in this special case, there are more
nodes which lost all of their messages, as there is no guarantee for the existence
of safe paths for all sources.

SR3: Secure Resilient Reputation-based Routing 31

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 18 Average number of hops in safe networks (δ = 8)

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 19 Average number of hops in safe networks (δ = 16)

4.4.3 Average Number of Hops

Here, we are only interested in the messages that are successfully delivered. So,
we consider safe networks. Figures 18-20 show the average number of hops of data
messages in networks of average degree respectively δ = 8, 16 and 32, where the
size n varies from 50 to 400. First, note that we do not show results for RW in
the figure because they are drastically worse than other protocols of the panel,
e.g., for 50 nodes and δ = 16, its average number of hops is 40, and for 400
nodes and δ = 16, its average number of hops is 529. Then, by definition, routes
followed using GBR or RGBR are optimal. Finally, SR3 generates longer routes
than the geographical and gradient-based protocols due to its lack of knowledge
about the network. However, this length stays reasonable (i.e. we always observed
lengths drastically smaller than n), and scales with the number of nodes. Note
that Greedy-Face-Greedy does not behave well in some low-degree graphs, this is
due to the existence of dead ends in those graphs.

32 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

o
p

s

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 20 Average number of hops in safe networks (δ = 32)

4.4.4 Self-adaptativity

Thanks to its reputation mechanism, SR3 self-adapts to the variations of the hostile
environment. To see this, consider the following scenario: in a network of n =
200 nodes with average degree δ = 8, we assume 5% of blackholes and 5% of
wormholes/blackholes (WH/BH), that first behave as wormholes to attract the
traffic, and then become blackholes after one third of the simulation. Such nodes
appear more attractive to their neighbors because they allow delivering messages
faster. Figure 21 shows the evolution of the delivery rates of each protocol: for
each point (x, y) of the curves, y is the delivery rate computed over a window of
10 000 messages, from the (x − 10000)th to the xth emitted message. Only SR3
recovers from this attack.

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

A
vg

. d
el

iv
er

y
ra

te
 o

n
th

e
w

in
do

w
 (x

-1
04 ..x

]

The xth message has been processed (either delivered or lost)

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 21 Average delivery rate (5% of WH/BH, 5% of BH, n = 200, δ = 8)

We show in Figure 22 the average delivery rate distribution in the same setting
as previously. We see that the deterministic protocols cause nodes to deliver either

SR3: Secure Resilient Reputation-based Routing 33

none, one third or all their messages. The randomization used in the GBR variants
causes a more spread out distribution, but there is still a large concentration of
nodes delivering between 30 and 40 percent of their messages. Finally, as observed
before, SR3 is fair: most nodes deliver more than 70 percent of all their messages,
whereas for the other protocols managing to deliver some data, the delivery rates
of the nodes in this scenario strongly depend on their position in the network.

0

10

20

30

40

50

60

70

80

90

100

GFG

0

10

20

30

40

50

60

70

80

90

100

GBR

0

10

20

30

40

50

60

70

80

90

100

RGBR

0

10

20

30

40

50

60

70

80

90

100

PRGBR

0

10

20

30

40

50

60

70

80

90

100

PRDGBR

0

10

20

30

40

50

60

70

80

90

100

RW

0

10

20

30

40

50

60

70

80

90

100

SR3

Fig. 22 Average delivery rate distribution (5% of WH/BH, 5% of BH, n = 200, δ = 8)

5 Concluding Remarks

We proposed SR3, a secure and resilient algorithm for convergecast routing in wire-
less sensor networks. Using lightweight cryptographic primitives, SR3 achieves data
confidentiality and unforgeability. Using simulations, we showed the resiliency of
SR3 in various attack scenarios, including selective forwarding, blackhole, worm-
hole, and Sybil nodes. The comparative study shows that the resiliency accom-
plished by SR3 is drastically better than the one achieved by several routing pro-
tocols of the literature, even those whose targeted metric is resiliency.

The immediate perspective of this work is to study the performances of SR3 in
a more dynamic environment, e.g., networks with mobile nodes or networks where
nodes are added/removed on the fly.

An implementation of SR3 in a WSN testbed platform is currently being fi-
nalized, the preliminary results are promising, and it should be ready soon for
real-world experimentations.

Acknowledgments

The authors are grateful to Bruno Blanchet for his meticulous reading of the paper
and his numerous suggestions.

34 Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

References

1. Accettura, N., Grieco, L., Boggia, G., Camarda, P.: Performance analysis of the RPL
routing protocol. In: Mechatronics (ICM), 2011 IEEE International Conference on, pp.
767 –772 (2011)

2. Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, universal
traversal sequences, and the complexity of maze problems. In: 20th Annual Symposium
on Foundations of Computer Science, pp. 218–223 (1979)

3. Altisen, K., Devismes, S., Jamet, R., Lafourcade, P.: SR3: Secure resilient reputation-based
routing. In: Distributed Computing in Sensor Systems (DCOSS), 2013 IEEE International
Conference on, pp. 258–265 (2013). DOI 10.1109/DCOSS.2013.33

4. Altisen, K., Devismes, S., Jamet, R., Lafourcade, P.: SR3 supplementary material (2013).
URL http://www-verimag.imag.fr/~devismes/SR3/

5. Bellare, M.: Symmetric encryption. https://cseweb.ucsd.edu/~mihir/cse207/w-se.pdf
6. Bellare, M.: New proofs for nmac and hmac: Security without collision-resistance (2006).

URL https://cseweb.ucsd.edu/~mihir/papers/hmac-new.html. An extended abstract of
this paper appeared in Advances in Cryptology - Crypto 2006 Proceedings, Lecture Notes
in Computer Science Vol. 4117, C. Dwork ed, Springer-Verlag, 2006.

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication.
In: Proceedings of the 16th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’96, pp. 1–15. Springer-Verlag, London, UK, UK (1996). URL
http://dl.acm.org/citation.cfm?id=646761.706031

8. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message
authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000). DOI 10.1006/jcss.1999.
1694. URL http://dx.doi.org/10.1006/jcss.1999.1694

9. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491 (2008). DOI
10.1007/s00145-008-9026-x. URL http://dx.doi.org/10.1007/s00145-008-9026-x

10. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Proceedings of the 1st ACM conference on Computer and communications
security, pp. 62–73 (1993)

11. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient cryptography. In: T. Okamoto (ed.) Advances in
Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000,
Proceedings, Lecture Notes in Computer Science, vol. 1976, pp. 317–330. Springer (2000).
DOI 10.1007/3-540-44448-3 24. URL http://dx.doi.org/10.1007/3-540-44448-3_24

12. Blanchet, B.: A computationally sound mechanized prover for security protocols. IEEE
Trans. Dependable Sec. Comput. 5(4), 193–207 (2008)

13. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full aes. In:
Advances in Cryptology–ASIACRYPT 2011, pp. 344–371. Springer (2011)

14. Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad
hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

15. Cremers, C.J.: The scyther tool: Verification, falsification, and analysis of security proto-
cols. In: Computer Aided Verification, pp. 414–418. Springer (2008)

16. Dolev, D., Yao, A.: On the security of public key protocols. Information Theory, IEEE
Transactions on 29(2), 198–208 (1983)

17. Ehrsam, W., Meyer, C., Smith, J., Tuchman, W.: Message verification and transmission er-
ror detection by block chaining (1978). URL http://www.google.com/patents/US4074066.
US Patent 4,074,066

18. Eisenbarth, T., Kumar, S.: A survey of lightweight-cryptography implementations. Design
& Test of Computers, IEEE 24(6), 522–533 (2007)

19. Erdene-Ochir, O., Kountouris, A., Minier, M., Valois, F.: Enhancing resiliency against
routing layer attacks in wireless sensor networks: Gradient-based routing in focus. Inter-
national Journal On Advances in Networks and Services 4(1 and 2), 38–54 (2011)

20. Erdene-Ochir, O., Kountouris, A.A., Minier, M., Valois, F.: A new metric to quantify
resiliency in networking. IEEE Communications Letters 16(10), 1699–1702 (2012). DOI
10.1109/LCOMM.2012.081612.121191. URL http://dx.doi.org/10.1109/LCOMM.2012.
081612.121191

21. Erdene-Ochir, O., Minier, M., Valois, F., Kountouris, A.: Resiliency of wireless sensor
networks: Definitions and analyses. In: Telecommunications (ICT), 2010 IEEE 17th In-
ternational Conference on, pp. 828–835 (2010)

SR3: Secure Resilient Reputation-based Routing 35

22. Erdene-Ochir, O., Minier, M., Valois, F., Kountouris, A.: Toward resilient routing in wire-
less sensor networks: Gradient-based routing in focus. In: Proceedings of the 2010 Fourth
International Conference on Sensor Technologies and Applications, SENSORCOMM ’10,
pp. 478–483 (2010)

23. Heurtefeux, K., Erdene-Ochir, O., Mohsin, N., Menouar, H.: Enhancing RPL resilience
against routing layer insider attacks. In: L. Barolli, M. Takizawa, F. Xhafa, T. Enokido,
J.H. Park (eds.) 29th IEEE International Conference on Advanced Information Networking
and Applications, AINA 2015, Gwangju, South Korea, March 24-27, 2015, pp. 802–807.
IEEE Computer Society (2015)

24. Hu, Y., Perrig, A., Johnson, D.: Ariadne: A secure on-demand routing protocol for ad hoc
networks. Wireless Networks 11(1-2), 21–38 (2005)

25. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of op-
eration. In: G. Goos, J. Hartmanis, J. van Leeuwen, B. Schneier (eds.) Fast Software
Encryption, Lecture Notes in Computer Science, vol. 1978, pp. 284–299. Springer Berlin
Heidelberg (2001). DOI 10.1007/3-540-44706-7 20. URL http://dx.doi.org/10.1007/
3-540-44706-7_20

26. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48(177), 203–209
(1987)

27. Liu, D., Ning, P.: Multilevel tesla: Broadcast authentication for distributed sensor net-
works. ACM Transactions in Embedded Computing Systems (TECS) 3, 800–836 (2004)

28. Lowe, G.: A hierarchy of authentication specifications. In: Computer Security Foundations
Workshop, 1997. Proceedings., 10th, pp. 31–43. IEEE (1997)

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Advances in Cryptology CRYPTO
85 Proceedings, vol. 218, pp. 417–426 (1986)

30. Papadimitratos, P., Haas, Z.: Secure Routing for Mobile Ad hoc Networks. In: Proceedings
of the SCS Commnication Networks and Distributed Systems Modeling and Simulation
Conference (CNDS), pp. 193–204 (2002)

31. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.: Spins: Security protocols for
sensor networks. Wireless networks 8(5), 521–534 (2002)

32. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and cho-
sen ciphertext attack. In: J. Feigenbaum (ed.) Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1991, Proceedings, Lecture Notes in Computer Science, vol. 576, pp. 433–
444. Springer (1991). DOI 10.1007/3-540-46766-1 35. URL http://dx.doi.org/10.1007/
3-540-46766-1_35

33. Schurgers, C., Srivastava, M.: Energy efficient routing in wireless sensor networks. In:
Proceedings of MILCOM 2001, pp. 357–361 (2001)

34. Sinalgo: Simulator for network algorithms. http://www.disco.ethz.ch/projects/sinalgo/.
Distributed Computing Group at ETH Zurich

35. Ye, W., Heidemann, J.S., Estrin, D.: Medium access control with coordinated adaptive
sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12(3), 493–506 (2004).
DOI 10.1109/TNET.2004.828953. URL http://dx.doi.org/10.1109/TNET.2004.828953

