
SAMBA: A System for Secure Federated
Multi-Armed Bandits

Gael Marcadet
Univ. Clermont Auvergne, CNRS LIMOS

gael.marcadet@uca.fr

Radu Ciucanu
Univ. Grenoble Alpes, CNRS LIG

radu.ciucanu@univ-grenoble-alpes.fr

Pascal Lafourcade
Univ. Clermont Auvergne, CNRS LIMOS

pascal.lafourcade@uca.fr

Marta Soare
Univ. Grenoble Alpes, CNRS LIG
marta.soare@univ-grenoble-alpes.fr

Sihem Amer-Yahia
CNRS LIG, Univ. Grenoble Alpes

sihem.amer-yahia@univ-grenoble-alpes.fr

Abstract—The federated learning paradigm allows several
data owners to contribute to a machine learning task without
exposing their potentially sensitive data. We focus on cumulative
reward maximization in Multi-Armed Bandits (MAB), a classical
reinforcement learning model for decision making under uncer-
tainty. We demonstrate SAMBA, a generic framework for Secure
federAted Multi-armed BAndits. The demonstration platform is
a Web interface that simulates the distributed components of
SAMBA, and which helps the data scientist to configure the end-
to-end workflow of deploying a federated MAB algorithm. The
user-friendly interface of SAMBA allows the users to examine
the interaction between three key dimensions of federated MAB:
cumulative reward, computation time, and security guarantees.
We demonstrate SAMBA with two real-world datasets: Google
Local Reviews and Steam Video Game.

I. INTRODUCTION

Federated learning is a computing paradigm where multiple
data owners collaborate in executing a machine learning algo-
rithm, while storing locally their raw, potentially sensitive data,
which is never exchanged or transferred. Federated learning
is a timely topic that touches several communities, as also
emphasized in a recent survey [1]: “a longstanding goal pur-
sued by many research communities (including cryptography,
databases, and machine learning) is to analyze and learn from
data distributed among many owners without exposing that
data”. The recent emergence of federated learning has led
to developing algorithms for offline learning tasks such as
supervised learning [1].

We focus on Multi-Armed Bandits (MAB), a popular model
of online and reinforcement learning [2, Ch. 2]. In the MAB
model, a learning agent sequentially chooses an action (pull
a bandit arm) and the environment responds with a stochastic
outcome (reward) coming from an unknown distribution asso-
ciated with the chosen action. The agent has to continuously
face the so-called exploration-exploitation dilemma and decide
whether to explore by choosing actions with more uncer-
tain associated values, or to exploit the information already
acquired by choosing the action with the seemingly largest
associated value. In particular, bandits can be used to model
online recommendations: the arms are the objects that might
be recommended and a reward is the user’s response to

Data Customer (DC)Central
Orchestration Server

Data OwnerK
(DOK)

. . .Data Owner 1
(DO1)

Budget N

Cumulative
reward

Fig. 1. Federated cumulative reward maximization in multi-armed bandits.

a recommendation e.g., the click through rate or the score
associated with the recommendation.

Existing federated MAB algorithms [3], [4], [5] essentially
rely on differential privacy to protect the data. Differential
privacy adds noise in the data, which alters the output, while
our complementary cryptography-based approach guarantees
that the output is correct by computations on encrypted data
on a server that does not see in clear the data it manip-
ulates. Whereas differential privacy takes roughly the same
computation time as the standard algorithm, the cryptographic
approach has an increased computation time due to the use
of cryptographic primitives. The two approaches (differential
privacy and cryptography) could be potentially used jointly to
tackle the complementary data protection issues.

We recently developed SAMBA [6], a generic federated
framework that is guaranteed to return exactly the same
cumulative reward as standard bandit algorithms [2, Ch. 2],
while ensuring formally proven security properties. Here, we
demonstrate SAMBA by presenting the main features of its
Web interface (see video at1), which simulates the distributed
components of SAMBA and allows to explore the trade-offs
between three key dimensions of federated MAB: cumulative
reward, computation time, and security guarantees. SAMBA is
open source2, which allows more advanced users to plug their
own data or bandit algorithms.

1https://www.youtube.com/watch?v=CSyVVmrhGH4
2https://github.com/gamarcad/samba-demo

https://www.youtube.com/watch?v=CSyVVmrhGH4
https://github.com/gamarcad/samba-demo


Architecture: As depicted in Fig. 1, we assume that the
data i.e., the reward functions associated to K bandit arms are
stored locally by K data owners (DO1, . . . ,DOK). The data is
potentially sensitive, hence it should remain stored locally and
cannot be seen in clear by any participant other than its owner
(this is why we depict locks near each DOi). As typically done
in federated learning, we assume that the learning algorithm
is done by some central orchestration server (referred to as
server in the sequel). The data customer (DC) sends a budget
N to the server and receives the cumulative reward. Moreover,
we assume that the participants are honest-but-curious i.e.,
they correctly do the required computations, but try to gain as
much information as possible based on the data that they see.
In particular, we aim at minimizing the data leakage to the
server (this is why we also depict a lock near the server) e.g.,
the server cannot see rewards produced by each data owner.

Demonstration scenario: To motivate the aforementioned
architecture, we present a scenario based on federated learning
in recommendation systems [3][5], which is at the core of
the demonstration of SAMBA, as detailed in the next sections.
The K data owners are K local stores, each of them being
able to recommend items based on potentially sensitive data.
Moreover, the data customer is a parent company that displays
on its Web site recommended items that can come from any
of the K local stores. Given a budget N (i.e., total number
of recommended items that can be sequentially displayed by
the parent company), the goal of the parent company is to
maximize the cumulative reward (i.e., maximize the sum of
obtained user ratings on the recommended items). The bandit
algorithm has to decide how to sequentially choose the N
recommended items, which should come from the K local
stores. The aforementioned recommendation systems motivat-
ing example can be easily adapted to other classical federated
learning applications where security is of paramount impor-
tance e.g., commercial, financial, and medical domains [1].

We will demonstrate SAMBA, a generic framework for se-
cure cumulative reward maximization in MAB. We refer to [6]
for a technical report presenting the design and implementation
of SAMBA. The main features of SAMBA are:

• Federated. Data is generated locally and remains de-
centralized. Each data owner stores its own data and
cannot read the data of the other data owners. Moreover,
a server organizes the learning, but never sees raw data.
Among the main federated learning settings surveyed
in [1], SAMBA focuses on the cross-silo setting, using
feature-partitioned (vertical) data i.e., each data owner
has data pertaining to a single bandit arm.

• Generic. SAMBA can be instantiated with several text-
book MAB algorithms [2, Ch. 2], [7], including UCB,
ε-greedy, Softmax and Thompson Sampling.

• Secure. SAMBA relies on different techniques that ensure
provable security properties: (1) AES-GCM encryption
scheme3 to hide data from network observers, (2) Paillier

3https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf https://nvlpubs.
nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

encryption scheme [8] that is additive homomorphic and
allows to sum up partial rewards from each data owner
directly in the encrypted domain, (3) random permuta-
tions to hide which arm is pulled at a round, and (4)
multiplicative masks to hide arm scores.

• Correct. SAMBA returns the same cumulative reward as
the standard centralized version of each algorithm, which
holds because the employed cryptographic schemes and
distribution of tasks do not change the arm pulling
strategy and the cumulative reward.

• Efficient. SAMBA requires a number of cryptographic op-
erations linear in the size of the data: O(NK) AES-GCM
encryptions and decryptions, K Paillier encryptions, and
one Paillier decryption.
Demonstration highlights: The general goal of this

demonstration is to motivate and showcase SAMBA, by relying
on its intuitive interface that helps a data scientist in deploying
the end-to-end workflow of a federated MAB algorithm. The
attendees will examine the interaction between three key di-
mensions of federated MAB: cumulative reward, computation
time, and security guarantees, by configuring different param-
eters and visualizing their impact on the global performance.
For instance, there are security options that can be turned on or
off, and the data scientist may decide to keep only a subset of
them; increasing the security implies an increased computation
time. The computation time also depends on the concrete
computations needed in the chosen MAB algorithm. Several
textbook MAB algorithms can be instantiated in SAMBA and
their returned cumulative reward depends on the specificity of
each dataset. Hence, SAMBA allows to tune the preprocessing
parameters, which yield different MAB input, hence different
relative performance of the instantiated MAB algorithms.

In Section II, we present an overview of SAMBA. Then,
Section III describes our demonstration scenarios.

II. SYSTEM OVERVIEW

We provide a screenshot of the SAMBA interface in Fig.2.
We next give an overview of the four emphasized zones, and
give some intuitions on how SAMBA works. We refer to our
technical report [6] for the detailed architecture, pseudocode,
theoretical analysis (genericity, security, correctness, complex-
ity), as well as an empirical evaluation.

Zone A: Parameter Setup and Preprocessing: Zone A is
the interactivity zone, where the user can set up the different
parameters. First, the user can choose the MAB algorithm, and
its input K (number of bandit arms = number of data owners)
and N (budget = number of allowed pulls).

Furthermore, the uncertain MAB environment is distributed
across the K data owners: each data owner DOi has a
Bernoulli distribution with expected value µi that is unknown
to all other participants. Pulling the arm of DOi randomly
returns 0 or 1 according to its associated Bernoulli distribution
i.e., the probability of returning 1 is µi and the probability of
returning 0 is 1 − µi. The values µi are computed using a
simple technique from the literature of MAB applied to rec-
ommendation [9]. For instance, a dataset plugged in SAMBA

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf


B C

D

A

Fig. 2. Interface of SAMBA.

is Google Local Reviews [10], [11], which contains reviews
about businesses from Google Maps. Such reviews include
information for each business as well as ratings, together with
(personal) information on the users that provided the ratings.
Given K such businesses and some threshold, we consider
each business as a data owner and we compute µi = {# of
ratings above a threshold for DOi} / {# of ratings received
by DOi}. In addition to Google Local Reviews, the other
dataset currently available in SAMBA is Steam Video Game4,
which is preprocessed similarly. Demo attendees can choose
the dataset and the threshold, which yield different µi, thus
allowing to compare the performance of MAB algorithms
in settings yielding different cumulative rewards. As a side
note, such rating datasets capture the quintessence of federated
MAB. The data owners store locally their potentially sensitive
data, and they may have competing interests hence they do not
share personal data about the users who provided the ratings.
Moreover, the aforementioned preprocessing to build µi from
a rating dataset could be easily modified to explicitly take into
account sensitive data e.g., instead of considering all ratings,
take only those from users within a certain age range and
living in a certain neighborhood.

In addition to choices related to MAB algorithms and input,
in Zone A the user can also turn on or off security options
(whose impact is depicted in the other zones of the interface).
Zone A also has buttons allowing to run SAMBA step-by-step,
and logged messages explaining each time step’s actions.

Zone B: Federated Architecture and Pseudocode: On the
top of Zone B, the user sees the federated architecture of
SAMBA, which is basically the same cf. Fig. 1, except that
the central orchestration server is split in two nodes (Comp

4https://cseweb.ucsd.edu/∼jmcauley/datasets.html

and Controller). Each DOi is annotated with {the number of
rewards it produced} / {the number of times it was pulled}.
The distribution of tasks between two server nodes is necessary
to ensure the SAMBA’s security properties. At each time
step, each DOi applies an order- and proportion-preserving
multiplicative mask to its updated arm score, which is then
encrypted. Controller receives the encrypted arm scores of all
DOi, applies a random permutation to hide the real i of each
encrypted arm score, then sends them to Comp. Comp decrypts
the messages received from Controller and thus it can see the
masked arm scores, without knowing their true value (before
applying the mask), nor their DOi (due to the permutation
made by Controller). Comp identifies the permuted argmax
index, which will trigger the pull at the next step.

The pseudocode of each SAMBA participant in Zone B
combines SAMBA instructions necessary in all federated MAB
algorithms, with algorithm-specific instructions, as determined
by the MAB algorithm choice in Zone A. Some lines of the
pseudocode are highlighted to show what is run at the current
step in the simulation of SAMBA. Depending on the current
step in the simulation of SAMBA, there are also some arrows
between nodes in Zone B, whose exchanged messages are
further developed in Zone C.

We finally note that there is a color code relating the SAMBA
participants from the top of Zone B to their corresponding
pseudocode in the bottom of Zone B, to their messages in
Zone C, and to their time shares in the pie charts of Zone D.

Zone C: Exchanged Messages: Zone C is split in two:
on the left the user sees in clear the messages exchanged
between participants (“Non-Secure” version), whereas on the
right the user sees messages as modified by the different
security options (“Secure” version). Turning on or off the

https://cseweb.ucsd.edu/~jmcauley/datasets.html


security options in Zone A has an impact on the messages
seen on the right of Zone C, and we have a color code to
easily observe the relation between the security options and the
exchanged messages. Note that during the bulk of the SAMBA
simulation, only AES, mask, and permutation can be observed,
whereas Paillier is useful only at the end, when summing
up the partial sums of rewards of each DOi directly in the
encrypted domains, before sending the cumulative reward to
the data customer DC.

Zone D: Performance Study: On the top of Zone D, the
user visualizes the time shares of each SAMBA participant,
the DOi being summed up for ease of readability. Turning
on or off the different security options dynamically changes
the shares in the pie chart. On the bottom, the user compares
running time of non-secure vs secure algorithms. Turning on
or off the security options and observing their specific impact
on the exchanged messages in Zone C and on the time shares
in Zone D is helpful for a data scientist user (not necessarily
a cryptographic expert) to decide which security options to
activate when deploying a federated MAB algorithm. More-
over, in Zone D we have a “History” button that allows to
see logs on all already simulated federated MAB algorithms,
which additionally include the returned cumulative rewards.

III. DEMONSTRATION SCENARIOS

Our first scenario motivates the need for secure federated
MAB systems, whereas our second scenario showcases the
features of SAMBA summarized in Section II. The demonstra-
tion platform is a Web interface that simulates the distributed
components of SAMBA. In both scenarios, attendees will get
to choose among rating datasets cf. Section II (Google Local
Reviews and Steam Video Game). The attendees will play the
role of a data scientist working for a parent company who
wants to answer the following question that constitutes the
potential purpose of secure federated MAB: Assume a budget
of N items that we can sequentially display on our website and
each of these items comes from one among K local businesses.
How should we sequentially choose the N items, while (i)
maximizing the cumulative reward (i.e., the click through rate),
(ii) minimizing the computation time, and (iii) ensuring data
security guarantees for each local business?

Motivating SAMBA: The goal is to illustrate the need
for a generic and secure federated system for MAB, where
multiple algorithms can be plugged in, and which is easily
configurable via an interactive user-friendly interface. The
attendees will get to experience secure and non-secure MAB
algorithms. To do that, the attendees will first be invited to
design a federated version of some standard MAB algorithm
(e.g., UCB or ε-greedy) and observe the different security
leaks that occur in naive attempts, even for small budgets and a
small number of data owners. At any point, the attendees may
choose to see the federated secure version of the concerned
algorithm in SAMBA and we will briefly discuss the different
conception choices. We will also illustrate how rating datasets
are preprocessed as input to MAB algorithms, and what are
the security leaks if the preprocessing is done in a centralized

instead of a federated architecture. To sum up, this scenario
will show that one should master different domains (data
management, machine learning, and cryptography) to design
end-to-end federated learning workflows with provably-secure
properties. Attendees will be aware that they would benefit
from the visual interface of SAMBA, which helps them to make
decisions before deploying a federated MAB algorithm.

Showcasing SAMBA: Attendees will effectively use
SAMBA and simulate an entire workflow of federated MAB
algorithms, using the different features of the four zones that
we explained in Section II. The attendees will first get to
configure in Zone A the different parameters of SAMBA,
and then they will observe in Zone B and C what each
participant is doing at some step and what are the exchanged
messages. Various settings of the security options (AES,
Paillier, random permutations, multiplicative masks) will be
tried to interactively point out their impact on the exchanged
messages, but also on the computation time (Zone D). Hence,
the attendees will understand why each security option brings
a complementary protection against security leaks. We will
also discuss cases when all options are needed vs cases when
it may be acceptable to turn off a certain option.

At any time, the attendees will be able to click the “His-
tory” button from Zone D and also compare the cumulative
rewards returned by several SAMBA simulations of different
MAB algorithms. Hence, the attendees will have all necessary
information to examine the interaction between the three key
dimensions of federated MAB: cumulative reward, computa-
tion time, and security guarantees.

Acknowledgements: This work has been partially sup-
ported by MIAI@Grenoble Alpes (ANR-19-P3IA-0003), two
projects funded by EU Horizon 2020 research and innovation
programme (TAILOR under GA No 952215 and INODE under
GA No 863410), and the French BPI project D4N.

REFERENCES

[1] P. Kairouz and et al., “Advances and Open Problems in Federated
Learning,” Foundations and Trends in Machine Learning, vol. 14, no.
1–2, pp. 1–210, 2021.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[3] C. Shi and C. Shen, “Federated Multi-Armed Bandits,” in AAAI, 2021,
pp. 9603–9611.

[4] Z. Zhu, J. Zhu, J. Liu, and Y. Liu, “Federated Bandit: A Gossiping
Approach,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 5, no. 1, 2021.

[5] T. Li, L. Song, and C. Fragouli, “Federated Recommendation System
via Differential Privacy,” in International Symposium on Information
Theory (ISIT), 2020, pp. 2592–2597.

[6] R. Ciucanu, P. Lafourcade, G. Marcadet, and M. Soare, “SAMBA:
A Generic Framework for Secure Federated Multi-Armed Bandits,”
Journal of Artificial Intelligence Research (JAIR), vol. 73, pp. 737–765,
2022.

[7] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, “A Tutorial
on Thompson Sampling,” Foundations and Trends in Machine Learning,
vol. 11, no. 1, pp. 1–96, 2018.

[8] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in EUROCRYPT, 1999, pp. 223–238.

[9] P. Kohli, M. Salek, and G. Stoddard, “A Fast Bandit Algorithm for
Recommendation to Users With Heterogenous Tastes,” in AAAI, 2013,
pp. 1135–1141.

http://incompleteideas.net/book/the-book-2nd.html


[10] R. Pasricha and J. McAuley, “Translation-Based Factorization Machines
for Sequential Recommendation,” in RecSys, 2018, pp. 63–71.

[11] R. He, W. Kang, and J. McAuley, “Translation-Based Recommendation,”
in RecSys, 2017, pp. 161–169.


	Introduction
	System Overview
	Demonstration Scenarios
	References

