
Formal Analysis of Security Properties on the OPC-UA
SCADA Protocol

Maxime Puys1, Marie-Laure Potet1, and Pascal Lafourcade1,2

(1) Verimag, University Grenoble Alpes, Gières, France
firstname.lastname@imag.fr

(2) LIMOS, University Clermont Auvergne, Campus des Cézeaux, Aubière, France
pascal.lafourcade@udamail.fr ?

Abstract. Industrial systems are publicly the target of cyberattacks since Stuxnet
[1]. Nowadays they are increasingly communicating over insecure media such as
Internet. Due to their interaction with the real world, it is crucial to prove the se-
curity of their protocols. In this paper, we formally study the security of one of the
most used industrial protocols: OPC-UA. Using ProVerif, a well known crypto-
graphic protocol verification tool, we are able to check secrecy and authentication
properties. We find several attacks on the protocols and provide countermeasures.

1 Introduction

Industrial systems also called SCADA (Supervisory Control And Data Acquisition)
have been known to be targeted by cyberattacks since the famous Stuxnet case [1] in
2010. Due to the criticality of their interaction with the real world, these systems can
potentially be really harmful for humans and environment. The frequency of such at-
tacks is increasing to become one of the priorities for governmental agencies, e.g. [2]
from the US National Institute of Standards and Technology (NIST) or [3] from the
French Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI).

Industrial systems differ from other systems because of the long lifetime of the
devices and their difficulty to be patched in case of vulnerabilities. Such specificities
encourage to carefully check standards and applications before deploying them. As it
already appeared for business IT’s protocols for twenty years, automated verification is
crucial in order to discover flaws in the specifications of protocols before assessing im-
plementations. However, the lack of formal verification of industrial protocols has been
emphasized in 2006 by Igure et al. [4] and in 2009 by Patel et al. [5]. They particularly
argued that automated protocol verification help to understand most of the vulnerabil-
ities of a protocol before changing its standards in order to minimize the number of
revisions which costs time and money.

State-of-the-art: Most of the works on the security of industrial protocols only rely on
specifications written in human language rather than using formal methods. In 2004,
? This work has been partially funded by the CNRS PEPS SISC ASSI 2016, the LabEx

PERSYVAL-Lab (ANR-11-LABX-0025), the ARAMIS project (PIA P3342-146798) and
“Digital trust” Chair from the University of Auvergne Foundation.



Clarke et al. [6] discussed the security of DNP3 (Distributed Network Protocol) and
ICCP (Inter-Control Center Communications Protocol). In 2005, Dzung et al. [7] pro-
posed a detailed survey on the security in SCADA systems including informal analysis
on the security properties offered by various industrial protocols: OPC (Open Platform
Communications), MMS (Manufacturing Message Specification), IEC 61850, ICCP
and EtherNet/IP. In 2006, in the technical documentation of OPC-UA (OPC Unified
Architecture) the authors detailed the security measures of the protocol (specially in
part 2, 4 and 6). In 2015, Wanying et al. [8] summarized the security offered by MOD-
BUS, DNP3 and OPC-UA.

On the other hand, some works propose new versions of existing protocols to make
them secure against malicious adversaries. In 2007, Patel et al. [9] studied the secu-
rity of DNP3 and proposed two ways of enhancing it through digital signatures and
challenge-response models. In 2009, Fovino et al. [10] proposed a secure version of
MODBUS relying on well-known cryptographic primitives such as RSA and SHA2. In
2013, Hayes et al. [11] designed another secure MODBUS protocol using hash-based
message authentication codes and built on STCP (Stream Transmission Control Proto-
col). To the best of our knowledge, Graham et al. [12] is the only work directly using
formal methods to prove the security of industrial protocols or find attack against them.
They proposed a formal verification of DNP3 using OFMC [13] (Open-Source Fixed-
Point Model-Checker) and SPEAR II [14] (Security Protocol Engineering and Analysis
Resource).

Contributions: We propose a formal analysis of the security of the sub-protocols in-
volved in the OPC-UA handshake, namely OPC-UA OpenSecureChannel and OPC-
UA CreateSession. These sub-protocols are crucial for the security since the first aims
at authenticating a client and a server and deriving secret keys while the second allows
the client to send his credentials to the server. To perform our security analysis, we
use one of the most efficient tools in the domain of cryptographic protocol verification
according to [15], namely ProVerif developed by Blanchet et al. [16]. It considers the
classical Dolev-Yao intruder model [17] who controls the network, listens, stops, forges,
replays or modifies some messages according to its knowledge. The perfect encryption
hypothesis is assumed, meaning that it is not possible to decrypt a ciphertext with-
out its encryption key or to forge a signature without knowing the secret key. ProVerif
can verify security properties of a protocol such as secrecy and authentication. The
first property ensures that a secret message cannot be discovered by an unauthorized
agent (including the intruder). The authentication property means that one participant
of the protocol is guaranteed to communicate with another one. Modeling credential in
ProVerif is not common and requires to understand the assumptions made in the pro-
tocol in order to model it correctly. We follow the official OPC-UA standards in our
models and checked it against a free implementation called FreeOpcUa1. Finally, using
ProVerif, we automatically find attacks against both sub-protocols and provide simple
realistic countermeasures. All sources we developed are available2.

1 https://freeopcua.github.io/
2 https://forge.imag.fr/frs/download.php/747/PPL16.tar.gz



Outline: In Section 2, we analyze the security of OPC-UA OpenSecureChannel and
OPC-UA CreateSession in Section 3. Finally, we conclude in Section 4.

2 OPC-UA OpenSecureChannel

The OpenSecureChannel sub-protocol aims to authenticate a client and a server and
allows them to exchange two secret nonces (random numbers) that will be used to derive
shared keys for the later communications. Moreover, OPC-UA can be used with three
security modes, namely None, Sign and SignAndEncrypt.

– SignAndEncrypt: messages are signed {h(m)}sk(X) and encrypted {m}pk(X), where
h is an hash function, sk(X) the secret key associated to X and pk(X) the public
key of X . This mode claims to provide secrecy of communication using symmet-
ric and asymmetric encryption, but also both authentication and integrity through
digital signatures.

– Sign: it is the same as SignAndEncrypt but messages are only signed {h(m)}sk(x),
and not encrypted.

– None: using this mode, the OpenSecureChannel sub-protocol does not serve much
purpose as it does not provide any security but is used for compatibility.

C DiscoreryEndpoint S

1.
GEReq

2.
GERes, pk(S), SignEnc, SP, UP

Generates NC

3.
pk(C), {OSCReq, pk(C), NC}pk(S), {h(OSCReq, pk(C), NC )}sk(C)

Generates NS

4.
{OSCRes, NS , ST, TTL}pk(C), {h(OSCRes, NS , ST, TTL)}sk(S)

Fig. 1. OPC-UA OpenSecureChannel sub-protocol in mode SignAndEncrypt.

This protocol is described in Figure 1. In message 1, C requests information on
S with GEReq meaning GetEndpointRequest. In message 2, DiscoveryEndpoint an-
swers with the following information where GERes stands for GetEndpointResponse,
SP for Security Policy and UP for UserPolicy. Both SP and UP are used for crypto-
graphic primitive negotiations. In message 3, C sends a nonce NC to S with OSReq
standing for OpenSecureChannelRequest. Finally in message 4, S answers a nonce NS

to C with OSCRes for OpenSecureChannelResponse, ST for SecurityToken (a unique
identifier for the channel) and TTL for TimeToLive (its life-time). The four terms GEReq,
GERes, OSCReq and OSCRes indicate the purpose of each message of the protocol.
At the end of this protocol, both C and S derive four keys (KCS , KSigCS , KSC

and KSigSC) by hashing the nonces with a function named P_hash, similar as in
TLS [18]: (KCS ,KSigCS) = P_hash(NC , NS) and (KSC ,KSigSC) = P_hash(NS , NC).



2.1 Modeling

Normally, a GetEnpointRequest would be answered by a list of session endpoints with
possibly different security modes. We suppose that the client always accepts the se-
curity mode proposed. Client’s and server’s certificates are modeled by their public
keys. Moreover, thanks to the perfect encryption hypothesis, we can abstract the cryp-
tographic primitives used. We consider an intruder whose public key would be accepted
by a legitimate client or server. Such an intruder could for instance represent a legiti-
mate device that has been corrupted through a virus or that is controlled by a malicious
operator. We consider the following security objectives: (i) the secrecy of the keys ob-
tained by C (denominated by KCS and KSigCS), (ii) the secrecy of the keys obtained
by S (denominated by KSC and KSigSC), (iii) the authentication of C on NC and (iv)
the authentication of S on NS .

2.2 Results

We model in ProVerif this protocol for the three security modes of OPC-UA for each
objective proposed. Results provided by ProVerif are shown in Table 1.

OPC-UA Security mode
Objectives

Sec KCS Sec KSC Auth NS Auth NC

None UNSAFE UNSAFE UNSAFE UNSAFE
Sign UNSAFE UNSAFE UNSAFE UNSAFE

SignEnc SAFE SAFE UNSAFE UNSAFE
Table 1. Results for OpenSecureChannel sub-protocol

Obviously, as the security mode None does not provide any security, all objectives
can be attacked. Moreover, as nonces are exchanged in plaintext in security mode Sign,
the keys are leaked. Finally, in the case of Sign and SignAndEncrypt, the intruder
reroutes messages to mount attacks on authentication in order to bypass replay pro-
tections such as timestamps as the packet’s destination is changed rather than being
replayed later. Figure 2 shows an attack on the authentication of C using NC . This at-
tack is possible because the standard OPC-UA protocol does not require explicitly to
give the identity of the receiver of a message. Thus it allows the intruder to send to
S the signed message C sent to him similarly as the man-in-the-middle attack on the
Needham-Schroeder protocol [19].

2.3 Fixed version

We propose a fixed version of the OpenSecureChannel sub-protocol using one of the
classical counter-measures for communication protocols proposed in [20]. It consists
in explicitly adding the public key of the receiver to the messages and thus avoiding
an intruder to reroute signed messages to usurp hosts, as presented in Section 2.2. This
resolves the authentication problem but, as ProVerif confirms, attacks on secrecy are
still present. In order to solve the remaining secrecy attacks, we use the key wrap-
ping [21] mechanism present in the OPC-UA standards [22–25]. All occurrences of



C I S

GEReq

GERes, pk(I), SignAndEncrypt, SP, UP

Generates NC

pk(C), {OSCReq, pk(C), NC}pk(I), {h(OSCReq, pk(C), NC )}sk(C)

pk(C), {OSCReq, pk(C), NC}pk(S), {h(OSCReq, pk(C), NC )}sk(C)

Fig. 2. Attack on NC : I usurps C when speaking to S.

NC are replaced by {NC}pk(S) in message 3 and all occurrences of NS in message 4
by {NS}pk(C). Thus in security mode Sign, all the entire messages are signed but only
the nonces are encrypted. More formally, message 3 and 4 of Figure 1 are replaced by:

3. C → S :
{

OSCReq, pk(C), {NC}pk(S), pk(S)
}

pk(S)
,
{

h(OSCReq, pk(C), {NC}pk(S), pk(S))
}

sk(C)
4. S → C :

{
OSCRes, {NS}pk(C), ST, TTL, pk(C)

}
pk(C)

,
{

h(OSCRes, {NS}pk(C), ST, TTL, pk(C))
}

sk(S)

We also use ProVerif to confirm the security of the protocol with all our counter-
measures. The results are presented in Table 2 and show that both authentication and
secrecy are now secure for security modes Sign and SignAndEncrypt. As nonces are
encrypted in security mode Sign, keys remain secret.

OPC-UA Security mode
Objectives

Sec KCS Sec KSC Auth NS Auth NC

None UNSAFE UNSAFE UNSAFE UNSAFE
Sign SAFE SAFE SAFE SAFE

SignEnc SAFE SAFE SAFE SAFE
Table 2. Results for fixed OpenSecureChannel sub-protocol

3 OPC-UA CreateSession

The OPC-UACreateSession sub-protocol allows a client to send credentials (e.g. a login
and a password) over an already created Secure Channel. This sub-protocol is presented
in Figure 3. This protocol follows the security mode that was chosen during the OpenSe-
cureChannel sub-protocol and uses the symmetric keys derived, thus encryption be-
comes symmetric and signature relies on a Message Authentication Code (MAC). Then
messages sent by C are encrypted using KCS (resp. signed with KSigCS) and mes-
sages sent by S are encrypted with KSC (resp. signed with KSigSC). More formally,
in message 1, C sends a nonce as a challenge to S with CSReq meaning CreateSes-
sionRequest. In message 2, S answers with SigNC

= {pk(C), NC}sk(S) and CSRes
for CreateSessionResponse. The message SigNC

is the response of C’s challenge and
requires S to sign with its private (asymmetric) key to prove that he is the same as in
the OpenSecureChannel sub-protocol. For this particular use, the OPC-UA standard ex-
plicitly asks to add C’s public key to the signature (which confirms the counter-measure



given in Section 2.3). In message 3, C answers S’s challenge with SigNS
and sends his

credentials to S with ASReq for ActivateSessionRequest. Finally, in message 4, S con-
firms to C that the session is created with ASRes for ActivateSessionResponse and NS2

a fresh nonce as a challenge that C should use to refresh the session when it is timed-
out. Again, CSReq, CSRes, ASReq and ASRes indicate the purpose of each message of
the protocol.

C S

{CSReq, pk(C), NC}KCS
, MAC(KSigCS , (CSReq, pk(C), NC ))

{CSRes, pk(S), SigNC
, NS}KSC

, MAC(KSigSC , (CSRes, pk(S), SigNC
, NS))

Validates SigNC

{ASReq, SigNS
, pk(C), Login, Passwd}KCS

, MAC(KSigCS , (ASReq, SigNS
, pk(C), Login, Passwd))

Validates SigNS

Validates (Login, Passwd)

{ASRes, NS2}KSC
, MAC(KSigSC , (ASRes, NS2))

Fig. 3. OPC-UACreateSession sub-protocol

3.1 Modeling

As this protocol involves logins and passwords, we assume that C uses a different pass-
word for each server he speaks with. On the contrary, as mentioned in Section 2.1,
we consider an intruder that can play a legitimate device that has been corrupted and
would obtain the credentials of the client just by playing the protocol with him. Mod-
eling of credentials is still not common in ProVerif. We use two functions: Login and
Passwd. The first one takes as parameter the public key of a host in order to associate
his login with him. This function is public for everybody. The function Passwd takes
as parameter the private key of its owner to make it secret, but also the public key of
the server to model a different password for each server. Then we provide the following
equation: verifyCreds(pk(S),Login(pk(C)),Passwd(sk(C),pk(S)))
= true. It allows the server to verify if a password and a login are matching and if the
password is the one he knows (using his public key). According to our results for the
OpenSecureChannel sub-protocol, the secrecy of the symmetric keys in security mode
Sign depends on if the protocol uses key wrapping. Again, as the OPC-UA standard is
not clear on how to use the mechanism in this mode, we check with and without this
security. This means that if keys are compromised, then the intruder has access to it. We
consider four security objectives: (i) the secrecy of the password, (ii) the authentication
of C on his password, (iii) the authentication of C on SigNS

and (iv) the authentication
of S on SigNC

.



3.2 Results

Results without key wrapping (thus with keys leaked in security mode Sign, cf. Table
1) are presented in Table 3. Again, all objectives are attacked in security mode None.
Also the secrecy of the password cannot hold even in security mode Sign since it will be
sent by the client in plaintext during a legitimate exchange. However, both challenge-
response nonces ensure authentication since the private keys are used instead of the
symmetric keys. An attack on the authentication on Passwd in security mode Sign is
found by the tool. In this attacks the intruder replaces the credentials of C by other valid
credentials and recalculates the MAC of the message using the leaked keys.

OPC-UA Security mode
Objectives

Sec Passwd Auth Passwd Auth SigNS Auth SigNC

None UNSAFE UNSAFE UNSAFE UNSAFE
Sign UNSAFE UNSAFE SAFE SAFE

SignEnc SAFE SAFE SAFE SAFE
Table 3. Results for OPC-UACreateSession sub-protocol

If we consider that key wrapping is used in the OpenSecureChannel sub-protocol
(thus without keys leaked in security mode Sign) then according to ProVerif results the
authentication on C’s password becomes secure. This analysis shows that the use of key
wrapping is crucial in security mode Sign. Thus it should be clearly said in the OPC-
UA standard since missing this feature completely breaks the security of Sign mode.
Moreover, C’s credential should also be encrypted when exchanged in Sign mode to
ensure their confidentiality. Finally, we check the source code of the free implementa-
tion of OPC-UA (FreeOpcUa). This implementation is secure since it forces encryption
of secrets even in security mode Sign.

4 Conclusion

We provided a formal verification of the industry standard communication protocol
OPC-UA, relying its official specifications [22–25]. We used ProVerif a tool for auto-
matic cryptographic protocol verification. Protocol modelings were tedious tasks since
specifications are often elusive to allow interoperability. Particularly due to unclear
statements on the use of cryptography with security mode Sign, we studied the pro-
tocol with and without counter-measures and proved the need of encryption for secrets
to ensure messages security properties. We also found attacks on authentication and
provided realistic counter-measures. We chose to focus on the two sub-protocols in-
volved in the security handshake as they represent the core of the protocol’s security.
In the future, we aim at testing the attacks we found on official implementations which
are proprietary in order to check if they filled the gap as did FreeOpcUa.

References

1. Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security & Privacy, IEEE,
9(3):49–51, 2011.



2. Keith Stouffer, Joe Falco, and Scarfone Karen. Guide to industrial control systems (ICS)
security. NIST special publication, 800(82):16–16, June 2011.

3. ANSSI. Managing cybersecurity for ICS, June 2012.
4. Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. Security issues in SCADA

networks. Computers & Security, 25(7):498 – 506, 2006.
5. Sandip C. Patel, Ganesh D. Bhatt, and James H. Graham. Improving the cyber security of

SCADA communication networks. Commun. ACM, 52(7):139–142, July 2009.
6. Gordon R Clarke, Deon Reynders, and Edwin Wright. Practical modern SCADA protocols:

DNP3, 60870.5 and related systems. Newnes, 2004.
7. D. Dzung, M. Naedele, T.P. von Hoff, and M. Crevatin. Security for industrial communica-

tion systems. Proceedings of the IEEE, 93(6):1152–1177, June 2005.
8. Qu Wanying, Wei Weimin, Zhu Surong, and Zhao Yan. The study of security issues for the

industrial control systems communication protocols. In JIMET’15, 2015.
9. Sandip C Patel and Yingbing Yu. Analysis of SCADA security models. International Man-

agement Review, 3(2):68, 2007.
10. IgorNai Fovino, Andrea Carcano, Marcelo Masera, and Alberto Trombetta. Design and

implementation of a secure MODBUS protocol. In IFIP AICT’09. 2009.
11. G. Hayes and K. El-Khatib. Securing MODBUS transactions using hash-based message

authentication codes and stream transmission control protocol. In ICCIT’13, June 2013.
12. JH Graham and SC Patel. Correctness proofs for SCADA communication protocols. In

WM-SCI’05, 2005.
13. David Basin, Sebastian Mödersheim, and Luca Viganò. An on-the-fly model-checker for

security protocol analysis. In ESORICS’03, 2003.
14. Elton Saul and Andrew Hutchison. SPEAR II – the security protocol engineering and anal-

ysis resource. 1999.
15. Pascal Lafourcade and Maxime Puys. Performance evaluations of cryptographic protocols.

verification tools dealing with algebraic properties. In FPS’15, 2015.
16. Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In

CSF’01, 2001.
17. D. Dolev and Andrew C. Yao. On the security of public key protocols. Information Theory,

IEEE Transactions on, 29(2):198–208, March 1981.
18. T. Dierks and E. Rescorla. The transport layer security (TLS) protocol, version 1.2. IETF

RFC 5246, August 2008.
19. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In TACAS’96, 1996.
20. Martín Abadi and Roger Needham. Prudent engineering practice for cryptographic proto-

cols. IEEE transactions on Software Engineering, 22(1):6, 1996.
21. Riccardo Focardi, Flaminia L Luccio, and Graham Steel. An introduction to security API

analysis. In Foundations of security analysis and design VI, pages 35–65. Springer, 2011.
22. Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC unified architecture.

Springer Science & Business Media, 2009.
23. OPC Unified Architecture. Part 2: Security model, April 2013.
24. OPC Unified Architecture. Part 4: Services, August 2012.
25. OPC Unified Architecture. Part 6: Mappings, August 2012.


