
Automatic Implementations Synthesis of Secure
Protocols and Attacks from Abstract Models

Camille Sivelle1, Lorys Debbah1, Maxime Puys1⋆[0000−0001−6127−9816], Pascal
Lafourcade2[0000−0002−4459−511X], and Thibault Franco-Rondisson1

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, Grenoble F-38000, France
Firstname.Name@cea.fr

2 LIMOS, University Clermont Auvergne, CNRS UMR 6158, France
Pascal.Lafourcade@uca.fr

Abstract. Attack generation from an abstract model of a protocol is
not an easy task. We present BIFROST (Bifrost Implements Formally
Reliable prOtocols for Security and Trust), a tool that takes an abstract
model of a cryptographic protocol and outputs an implementation in C
of the protocol and either a proof in ProVerif that the protocol is safe
or an implementation of the attack found. We use FS2PV, KaRaMeL,
ProVerif and a dedicated parser to analyze the attack traces produced by
ProVerif. If an attack is found then BIFROST automatically produces C
code for each honest participant and for the intruder in order to mount
the attack.

1 Introduction

The security of a communication protocol involves two different aspects: (i) the
security of the protocol itself and (ii) the security of the cryptographic schemes
involved. Several tools are now available to formally prove the intrinsic security
of both protocols (like ProVerif [19], Scyther [23] or Tamarin [32]) and primitives
(like CryptoVerif [20] or Easycrypt [9]) see [8] for a survey. However, another
issue comes into play. Security flaws often appear when implementing code for
a given protocol, even for a proven secure one. In this case, the attack does not
rely on an intrinsic flaw of the protocol, but involves vulnerabilities related to
the code design or even from the programming language. It also happens too
often that the implementation is a slightly different protocol than the one proven
(for instance the order of the content of an encrypted message is changed) and
thus have the formal proof becoming meaningless. In 2014, the Heartbleed [27]
attack over SSL/TLSv1.0 whose feasibility had been formally proven in [16] is
an example of an attack targeting the implementation. We can also mention
a famous attack of the SSH protocol in Debian Linux distributions where the
generation of a fresh nonce was wrongly implemented [5]. Hence implementing
a secure protocol is a sensitive task and every detail is important.
⋆ Corresponding author: Maxime PUYS, CEA-Leti, 17 rue des Martyrs, 38054

GRENOBLE CEDEX 9, France, Maxime.Puys@cea.fr

Maxime.Puys@cea.fr

Contributions: We propose an automatic tool-chain named BIFROST (Bifrost
Implements Formally Reliable prOtocols for Security and Trust), that takes as
input a cryptographic protocol modeled in F*, we call this input a protocol model
in the rest of the paper, and combines the following existing tools: FS2PV [17],
KaRaMeL [38] (formerly known as KreMLin) and ProVerif [19]. BIFROST pro-
duces:

1. An implementation in C from a protocol modeled in F*.
2. If the protocol is safe then a proof in ProVerif is produced.
3. If ProVerif finds a flaw then an implementation in C of the attack is given.

BIFROST supports several standard cryptographic primitives that correspond
to those supported by ProVerif. We are able to use several symmetric encryption
schemes, public key encryption schemes, signatures schemes and hash functions.
All these primitives are wrapped around widely-known cryptographic primitive
libraries such as MbedTLS. BIFROST unifies their APIs and make them directly
compatible with verification tools such ProVerif. BIFROST has been successfully
tested on the famous Needham-Schroeder [34] and Otway-Rees [36] protocols,
alongside a MAC based password protocol taken from [17].

Formal verification tools need to over-approximate an attacker’s capabilities
in order to be sure that a protocol is secure in regards to a given property.
Therefore, the attacks generated by such tools can sometimes not be feasible
in practice. If the protocol was not found secure, the attack implementation
generated by BIFROST can be played along with the protocol implementation
previously generated. If the execution of the attack found by formal verifica-
tion succeeds, it proves its feasibility in a practical context. This can give an
automatic confirmation that the protocol is not secure, rather than manually
implementing the attack.

Related Work: Several tools can be related to BIFROST. We classify them in
three categories: (i) generic code verification tools, (ii) cryptographic protocol
verification tools, (iii) tools specifically designed to generate code from verifiable
protocol models. Generic code verification and cryptographic protocol verifica-
tion tools are not directly related works to BIFROST, but they are related to
the basic blocks used in the approach. Thus, we will mainly mention the one
used within BIFROST and their main competitors.

Generic code verification tools: They have been developed for several tens of
years. Among many other reference tools we can list:

– The B method [6] is a formal method software development framework pro-
posed by Abrial et al. in 1996 based on set theory and first order logic in order
to write and check code specifications. The goal is to both check consistency
of specifications and code.

– Frama-C [24] is a tool developed in 2012 by Cuoq et al. that performs static
analysis on C programs. Various analyses are supported such as dead code
deletion, value analysis or weakest-precondition calculus.

2

– F* [40] is a general-purpose functional programming language designed by
Swamy et al. in 2013 which allows to specify properties alongside code. Then,
various analyses can be performed on the code such as dependent types,
monadic effects, refinement types, and a weakest precondition calculus.

We use F* models in BIFROST, due to their compatibility with the other bricks
used in our toolchain.

Cryptographic protocol verification tools: They have been developed since 1995,
when G. Lowe found an attack on the formerly proven Needham-Schroeder proto-
col [31]. Such tools often implement the Dolev-Yao [26] intruder model and check
all possible actions for an attacker interacting with multiple sessions of a given
protocol in parallel to verify security properties such as secrecy or authentica-
tion. Multiple tools have been introduced since 1995 [8] and benchmarked [30,8].
Among them we can list:

– Tamarin [32] is a security protocol prover designed by Meier et al. since 2013.
Tamarin is able to handle an unbounded number of sessions. Protocols are
specified as multi-set rewriting systems with respect to temporal first-order
properties. It relies on Maude [28] and supports equational theories such as
Diffie-Hellman.

– DY* [14] is a tool developed by Bhargavan et al. in 2021. It is an implemen-
tation of the Dolev-Yao intruder model in F* and allows security properties
verification on a protocol taking advantage of the internal F* prover. It is
however currently unable to produce attack traces.

– ProVerif [19] is developed by Blanchet et al. since 2001 and relies on Horn
clause analysis to check an unbounded number of sessions.

We chose ProVerif in our tool chain, since it is stable and that several bricks of
our approach are compatible with this well established tool.

Cryptographic protocol code generation tools: There exist some tools allowing to
generate code from verifiable protocol models, such as BIFROST.

– Spi2Java [37] is a framework proposed in 2004 that automatizes the gener-
ation of Java implementations from protocols described in spi calculus, an
extension of pi-calculus. This method allows for formal verification of se-
curity properties through translation of the spi-calculus specifications to a
format that can be verified by ProVerif prior to code generation.

– In 1993 and in 2009, Bieber et al. [18] and Benaissa et al. [12] respectively
proposed an approach to analyze the security of cryptographic protocols
using the Event-B framework. To the best of our knowledge, they partly
implement the Dolev-Yao model as a library for the internal verifier of Event-
B, allowing them to specify lemmas describing security properties to be
proven such as secrecy and authentication. It is however unclear if their
approach is able to find an attack trace. As their framework relies on Event-
B, specifications can be refined into C-like code.

3

– In 2009, Bhargavan et al. [15] proposed a compiler allowing to translate pro-
tocols modeled in some ad-hoc language into ML-like implementations. They
provide various security verifications through a custom type-checker [13]
which performs security verifications similar to ProVerif and Tamarin.

– AnBx [33] is an IDE developed in 2015 by Modesti. It extends the Alice
& Bob (AnB) protocol model making it compatible with OFMC [10], a
protocol verifier such as ProVerif. After verification, the protocol model can
be translated into Java.

– Jasmin [7] is a cryptographic primitive verification tool, developed by Almeida
et al. in 2017. It takes a primitive model as input, written in a specific lan-
guage, and checks it against memory flaws or cache timing attacks. The
model is then translated in a subset of the C language. Yet, it is worth not-
ing that even if Jasmin shares resemblance with the frameworks described
above, it only applies to cryptographic primitives rather than to protocols,
which are complementary.

Finally, several previous works mention that they perform protocol synthesis.
However, if their works share resemblance with ours, this terminology should not
be confused with protocol implementation synthesis which aims at automatically
generating executable protocol implementations. For instance, Bellare et al. [11]
and Katz et al. [29] synthesize protocol models resistant to active intruders from
protocol models resistant to passive intruders in the context of authenticated
group key exchange. Cortier et al. [22] translate a single-session protocol into a
multi-session protocol secure against a Dolev-Yao intruder. Sprenger [39] et al.
rely on Isabelle/HOL [35] to write secure-by-design protocol models. In 2008,
Bhargavan et al. [17] synthesize ProVerif models from F# protocol implemen-
tations in a tool called FS2PV. We are using FS2PV in BIFROST because it
is compatible with ProVerif and it will help us in our goal to generate attack
implementations in C.

Overall, only cryptographic protocol code generation tools are direct com-
petitors to BIFROST. All other presented works are related to internal tools
used within BIFROST (e.g., cryptographic protocols verification tools). More-
over, to the best of our knowledge, if all tools mentioned above are able to
faithfully translate a protocol from a provable model into a programming lan-
guage (with their own limitations), none of them are dealing with attacks found
by the verification tools.

Outline: In Section 2, we introduce the BIFROST framework. In Section 3, we
delve into the technical challenges regarding automatic code generation from
protocol models and explaining the inner-workings of BIFROST. In Sections 4
and 5, we respectively present the cryptographic primitives supported and how
we automatically generate code for attacks found. In Section 6 we give a detailed
example of the approach on the Needham-Schroeder protocol which will be part
of technical report of this paper and in the manual of BIFROST. Finally, we
conclude in Section 7.

4

2 Overview of BIFROST

Our aim is, with the same input file, to be able to generate C code with KaRaMeL
and a π-calculus file for ProVerif. For this, we use a subset of F* that is compat-
ible both with the subset of F# that is used by FS2PV, and also with low* (the
subset of F* that can be compiled into C) in order to be able to use KaRaMeL.
In the rest of the paper, we denote this subset F$. When it is clear from the
context we also use F*. In Figure 1, we describe the BIFROST approach. From
a cryptographic protocol model (1) the user needs to write an F$ file. In step
(2), we generate a π-calculus model using FS2PV, which can then be verified by
ProVerif in step (3) with respect to the security properties described in a .query
file. If the protocol is safe and ProVerif proves the security of the requested prop-
erties in step (4), we apply KaRaMeL in step (5) to the initial model in F$ to
generate C code corresponding to the implementation of the roles of each partic-
ipant in the protocol (6), thus bridging the gap between the formal verification
of the protocol and its implementation. If the protocol is not safe it means that
ProVerif found an attack in step (7), then we parse the ProVerif attack trace
using a tool we have developed (8) to generate the corresponding F$ code. We
apply KaRaMeL to the obtained F$ files to automatically generate the C code
implementing the role of the attacker in the protocol.

Protocol
Model FS2PV ProVerif

SAFE

KaRaMeL
Protocol

Implementation

UNSAFE

ParserKaRaMeL
Attack

Implementation

1 2 3

4

5 6

7

8910

F$ π-calc

C

Attack
trace

F$C

Fig. 1: The BIFROST toolchain.

In the following, we describe in Section 3 some of the challenges for trans-
forming abstract models into a practical implementation. We then present, in
Section 4, the different cryptographic primitives that are available in BIFROST
and how we integrate them to allow crypto-agility. Finally, we show, in Section 5,
how we manage to generate attack implementations from ProVerif traces.

5

3 From Abstract Model to Implementation

The translation from an abstract model to a concrete implementation brings
several challenges. The F$ model which serves as an input for our toolchain relies
on a set of functions for cryptographic primitives, network operations and data
manipulation, which are all currently imposed by FS2PV. One important point
is that FS2PV only uses an abstract definition of these function to translate the
input F$ protocol description into a ProVerif model. However, when generating
the C implementation of the protocol, all these functions must also be defined
with their proper implementation. Moreover, their implementation must fit their
purpose in the real world. For instance, if the Net.send function is internal
to FS2PV for its analysis at the abstract model phase, it must actually be
sending packets on a network when called by real code. Some abstract functions
can have multiple implementations depending on user choices. For instance, a
Crypto.symenc function can be translated into AES or ChaCha encryption while
Net.send can translate to a TCP/IP send or a LoraWan send depending on
context. On the other hand, some functions defined and called within the abstract
model do not serve any purpose in the implementation (such as π-calculus’ fork).

BIFROST libraries. To this end, we propose a series of C libraries Crypto, Net,
Data and Pi, implementing all the necessary functions to link and run the C
code produced by KaRaMeL from our model. Figure 2 describes the translation
of the different libraries of abstract functions into their implementations.
– Data contains several functions necessary for data types manipulation. In

FS2PV representation, the principal data type is the Byte, which can rep-
resent variables of various size and nature, as it could be a nonce as well as
a key, or even a concatenation of different Bytes. This is problematic in C,
as those can hardly be represented by the same data structures and might
introduce some type flaw attacks, as the one existing on the fixed version
of Needham-Schroeder by G. Lowe, where a confusion between identity and
nonces allows an intruder to mount an attack [21]. The solution we proposed
in our Data library is to define the Byte as a C structure, composed of an
integer representing the subtype of the object, an integer representing the
size of the object and an union of the C structures corresponding to each
possible subtype (nonce for example).

– Crypto gathers all the functions relative to the cryptographic operations in
the protocol. Most of its functions are meant to be crypto-agile and thus are
algorithm agnostic wrappers to specific primitives such as RSA or AES.

– The Net library of BIFROST includes basic network operations. As of now,
they are implemented on either TCP/IP sockets or low level UART con-
nections. However, supporting various protocols is possible with BIFROST
but it is important to ensure the compatibility with the network model of
ProVerif.

– Finally, the Pi library relates to internal π-calculus functions used by ProVerif
for its analysis (mainly for process scheduling) and does not have any real
purpose in real life. Thus, this module does not need to be translated into C.

6

Abstract Model

Implementation

Crypto.fst
symenc, ...

Net.fst
netsend, ...

Data.fst
tuple, ...

Pi.fst,
fork, ...

Protocol.fst

KaRaMeL

Protocol.c

Crypto.c
aes,

chacha

Net.c
tcp_send,
uart_send

Data.c
tuple

Fig. 2: Abstract functions libraries translated into C code.

Keys management. Another difference between the protocol model and the role
implementation is the way that keys are managed. When verifying a protocol
with ProVerif, private keys are often modeled as terms freshly generated at
the beginning of the protocol, public keys being derived from these terms and
published on a public channel. This is sufficient to consider that each participant
knows a given public key in the formal model. However, this traditional setup
for verification, consisting in broadcasting keys or supposing that participants
already know each other’s public keys beforehand is more complicated to pull
off on real hosts. Within BIFROST, we use the following key management to
reconcile both formal verification and implementation usability (it can also apply
to any supposedly pre-shared keys): two distinct main functions are defined for
the formal verification and the implementation generation. One is required by
FS2PV in which each participant role is called with keys created by abstract
methods from FS2PV. This file is then translated as the main process clause used
by ProVerif to setup roles instances. On the other hand, KaRaMeL produces C
code for every participant, plausibly running on different systems, and each of
them requires its main function. Thus, the role of each participant is described in
a F$ file containing a role function, which takes in argument the keys, and a main
function, in which the keys are loaded from a .pem file. This choice presupposes
that the keys are generated and stored on each system executing a participant’s
role beforehand, which is common for embedded devices.

7

4 Cryptographic Primitives

To allow crypto-agility by letting the user choose a cryptographic algorithm
among different options, we decided to handle all the following schemes and to
implement several algorithms for each of them.

– Symmetric encryption uses a key shared by both participants to encrypt
and decrypt data. Symmetric keys are often smaller than asymmetric keys
which allows communication to be fast. We support three algorithms for
symmetric encryption: AES-128/192/256 in CBC mode, Blowfish in CBC
mode and Chacha20.

– Message Authentication Code uses symmetric keys to check the integrity
and authenticity of data. We support the following four algorithms: AES with
CMAC, Poly1305-AES, Chacha20-Poly1305 and HMAC.

– Hashing has a lot of applications in cryptography. It can be used to compute
fingerprints for example. We support two hashing algorithms: SHA2 and
RIPEMD160.

– Asymmetric encryption uses a public key, private key pair to encrypt
and decrypt. It is often used to transfer symmetric keys. We support two
algorithms for asymmetric encryption: RSA-OAEP and RSA-PKCS1-v1.5.

– Asymmetric signature uses a public key, private key pair to check for
the integrity and the authenticity of data. We support three algorithms for
asymmetric signature: RSA-PKCS1-v1.5, RSA-PSS and ECDSA.

Cryptographic primitives management in BIFROST relies on MbedTLS[1], a
C library developed by ARMmbed. It implements the TLS [25] protocol and re-
quired cryptographic primitives. MbedTLS is designed to fit on small embedded
systems. However, one of the key concerns of BIFROST is to allow for crypto-
agility, which would in our case translate as the possibility for the toolchain
to handle both different algorithms and different cryptographic libraries, such
as OpenSSL [3] or OpenQuantumSafe [2], in order to fit as easily to existing
code base. In practice, any cryptographic operation requires different MbedTLS
function calls (e.g., to set the seed or initialize the context before encrypting).
As all these atomic function calls are not defined within FS2PV and ProVerif,
granularity differs with MbedTLS. Thus, we created a C library composed of
functions that would act as wrappers above MbedTLS’s functions. More pre-
cisely, we wanted those wrappers to encompass every intermediate function of
MbedTLS (or another library) to provide a more generic function to the user,
which would also fit the granularity of protocol models. The use of this library
also allows the user to choose the primitives to use for a given protocol.

Different options allow us to choose which primitive to use. The choice of
which primitive should be used is currently left to the user of BIFROST (which
is the protocol modeler and not the final user). This choice is partly motivated by
the context of embedded systems where not all primitives are supported by chip
vendors and some freedom in the choice can be important. Yet, letting any user
choose their cryptographic primitives will often lead to vulnerable systems. While

8

leaving room for freedom of choice, we intend to support cryptographic suites3
which will automatically include a combination of validated cryptographic prim-
itives with their proper configuration (e.g., ECDHE_PSK_WITH_AES_128_
GCM_SHA256). By defining the right macros, preprocessor will comment out
code for unused primitives. In a similar way, the user can choose the size of its
keys with preprocessor directives, the idea being to give the user maximum con-
trol over the parameters for each primitive. This control is the one that MbedTLS
provides so we did not restrict the options provided by the library but we eased
the way to select them. This allows a user to custom the protocol by choosing
the cryptographic primitives’ parameters he wishes to use.

5 Attack Generation

The generation of the attack implementation is based on the output printed by
ProVerif in case an attack is found. This output corresponds to an attack trace in
applied π-calculus which describes the steps performed by the intruder to violate
the specified security property. As already presented in Figure 1, the approach
we chose for this part was to first parse the attack trace from ProVerif’s output in
order to obtain an abstract syntax tree (8), and to use that tree to generate the
F$ file implementing the actions described in the trace. We then apply KaRaMeL
(9) to that F$ file to generate the C implementation of the attacker’s role (10).
We motivate the choice of generating F$ code and using KaRaMeL rather than
generating C code directly from the syntax tree for the coherency it guarantees
with the C code generated from the protocol model with KaRaMeL. To our
knowledge, there is no tool or framework allowing to generate executable code
for an attack found by a protocol verification tool. The generated C code can
then be compiled and executed alongside a normal protocol session (or more if
needed) in order to play the attack.

ProVerif Attack Trace Parsing: To parse the attack traces from the ProVerif
outputs, we have chosen to proceed in Python, using the Lark module [4]. Lark
is a parsing library able to parse any context-free grammar, using an advanced
grammar language based on EBNF, a metalanguage that allows to describe the
syntactic rules of programming languages. The first step is therefore to deter-
mine the grammar of ProVerif outputs and to describe it in EBNF language.
Globally, an attack trace is made up of a succession of lines that can be consid-
ered as instructions. We consider four different types of instructions in ProVerif’s
language: in, out, new and event.

1 in (c , (Bob ,M_1)) with M_1 = pk (skB_1) at {5}
2 out (c ,M_6) with M_6 = aenc (n_3 , pk (skB_1)) at {12}

Listing 1.1: Example of in/out instructions.

3 https://ciphersuite.info/cs/

9

https://ciphersuite.info/cs/

The in and out instructions aim to send and receive messages from a channel
and have the same grammar. The elements that we want to retrieve in our syntax
tree are:

1. their two arguments (for example c and M_6 for the out of Listing 1.1),
2. the equality given after the with keyword (for instance M_1 = pk(skB_1)

for the in),
3. the line number in the process (5 or 12).

In Listing 1.1, c, M_6, and M_1 are variable or channel names, pk(skB_1)
or aenc(n_3, pk(skB_1)) are functions applied these variables. As terms can
be functions applied multiple times to another term, we define values as either
ground terms or function results and line numbers correspond to natural num-
bers. Then, we can define the in and out instructions as in Listing 1.2.

1 out : "out" "(" va l " ," va l ") " "with" va l "=" va l " at " "{" l i n e "}"
2 in : " in " "(" va l " ," va l ") " "with" va l "=" va l " at " "{" l i n e "}"

Listing 1.2: Grammar for in/out instructions.

We also define similar rules for new and event keywords. The new instruction
allows a participant or the intruder to generate a fresh term. On the other hand,
event does not have any effect on the protocol but allows to place markers in
the trace which can be used for reachability properties. Their form is shown in
Listing 1.3.

1 new n_1 c r e a t i n g n_3 at {21}
2 event endB(A, pk (skA_1) ,Bob , pk (skB_1) ,n_2) at {25}

Listing 1.3: Example of new/event instructions.

Similarly, these instructions are translated in EBNF as shown in Listing 1.4.

1 new : "new" va l " c r e a t i n g " va l " at " "{" l i n e "}"
2 event : " event " va l " at " "{" l i n e "}" "(goa l) "?

Listing 1.4: Grammar for new/event instructions.

Generating F$ Code: From the syntax tree obtained, we write a program that
generates a code in F$. Processing will differ according to the type of instruction.
An out corresponds for example to a sending by one of the hosts defined in the
protocol. As the code generated at this step corresponds to the behavior of the
intruder, a call to F$ Net_recv function is performed on the channel indicated
by the variable stored in the AST. Similarly, an in means that the intruder must
send the given message on the channel, leading to a call to Net_send. When
the declaration in the with statement involves functions, for example M_6 =
aenc(n_3, pk(skB_1)), we translate these into the corresponding functions in
our libraries. The events could be ignored since they do not bring anything to
the attack in itself. We therefore simply use a logging system when an event is
raised. The case of the new requires a little more work because ProVerif does
not distinguish the generation of nonces from the generation of encryption keys.

10

However, the functions that are assimilated in F$ are not the same. To remedy
this problem, we use a preprocessing function that goes through the tree a first
time to determine on one hand if the generation of each variable is done by the
intruder, and on the other hand, the type of this variable. The latter is given by
the functions that are applied to it after creation. The algorithm used for the
generation of the code can therefore be summarized as shown in Listing 1.5.

1 ast_to_fdo l la r (t r e e) :
2 i n i t i a l i z e the output s t r i n g to ""
3
4 # Preproce s s ing
5 f o r each i n s t r u c t i o n :
6 i f i t i s a new :
7 s t o r e the type o f the va r i ab l e dec l a r ed
8 output a l l the d e c l a r a t i o n s with t h e i r c o r r e c t types
9

10 # Main p ro c e s s i ng
11 f o r each i n s t r u c t i o n :
12 determine the type us ing the f i r s t c h i l d node o f the t r e e
13 i f i t i s o f type " in " :
14 add to output a " l e t . . . = . . . " d e f i n i n g the va r i ab l e
15 add to output a Net_send (. . . , . . .)
16 i f i t i s o f type "out " :
17 add to output a " l e t . . . = . . . " d e f i n i n g the va r i ab l e
18 add to output a Net_recv (. . . , . . .)
19 i f i t i s o f type " event " :
20 add to output a log (. . . , . . .)
21 i f i t i s o f type "new" :
22 do nothing (a l r eady proce s sed during the p r ep ro c e s s i ng)
23 re turn output

Listing 1.5: F$ code generation.

6 An Example: the Needham-Schroeder Protocol

We show how BIFROST can be applied on the well-known Needham-Schroeder
protocol. We first describe this protocol in Section 6.1, then we show in Sec-
tion 6.2 how this protocol is modeled in F$ and it is translated into C code using
BIFROST. Finally, we detail in Section 6.3 the generation of the implementation
of an attack on this protocol from the attack trace found by ProVerif.

6.1 The Needham-Schroeder Protocol

The Needham-Schroeder [34] protocol is a mutual authentication protocol in-
volving two parties A and B. They wish to agree on a shared value that they
will use to secure further communications. In this protocol, messages are sent on
an insecure channel. NA, NB are nonces, pkA, pkB are public keys and (m)pkB

11

symbolizes the public encryption of the message m. The first message (A,NA)pkB

is used to initiate a new session between A and B. The second message is used
by A to authenticate B and the third one is used by B to authenticate A. Nonces
are also used to prevent replay attacks.

A −→ B :(A,NA)pkB

B −→ A :(NA, NB)pkA

A −→ B :(NB)pkB

In 1996 G. Lowe [31] found a famous attack on this protocol. This attack as-
sumes that a dishonest agent I impersonates the honest agent B in the previous
protocol, leading to a man-in-the-middle attack.

A −→ I :(A,NA)pkI

I −→ B :(A,NA)pkB

B −→ I :(NA, NB)pkA

I −→ A :(NA, NB)pkA

A −→ I :(NB)pkI

I −→ B :(NB)pkB

With this attack, the intruder obtains both NA and NB which allows him to
derive any secret based on those two nonces. He also impersonates A when
speaking to B. This vulnerability was fixed by Gavin Lowe [31] by modifying
only one message in the Needham-Schroeder-Lowe (NSL) protocol:

A −→ B :(A,NA)pkB

B −→ A :(NA, NB , B)pkA

A −→ B :(NB)pkB

One can see that with this variant, the intruder is not able to get the nonce
NB . Indeed, as the intruder tries to perform the attack, A will cipher with pkI as
she is willingly talking with the intruder. However, upon reception of the second
message containing the identity of B, A will realize she is not talking to I as she
was willing to initially and will not send the last message, thus preventing I from
getting the last nonce.

6.2 From Protocol Model to Implementation

The code 1.6 is the role of A in the Needham-Schroeder protocol in F$, and the
code 1.7 is the protocol implementation in C generated by KaRaMeL are given
in Figure 3. The code for B is similar. We can see that in F$ code 1.6, we start
by establishing the communication channel 10.0.0.2, port 80 (which we will
use for the IP address of B). Then a pair of keys is generated and public keys

12

1 let roleA host : Int32.t =
2 let url="10.0.0.2:80" in
3 let c=connect(url) in
4 let skA=(rsa_keygen ()) in
5 let pkA=(rsa_pub skA) in
6
7 let x0=Net.send c (concat

(keytobytes pkA) host
) in

8
9 let (pkb ,dest)=(iconcat(

Net.recv c)) in
10
11 // A -> B: (A,nA)_pkB
12 let pk=asympubkey(pkb) in
13 let nA=mkNonce () in
14 log tr (BeginA(host ,dest

,nA));
15 let x1=Net.send c (

rsa_encrypt pk (concat
host nA)) in

16
17 // B -> A : (nA, nB)_pkA
18 let m=(rsa_decrypt skA (

Net.recv c)) in
19
20 let (nA1 , nB)=iconcat m

in
21 if nA1=nA then
22 (
23 // A -> B : (nB)_pkB
24 let x2=(Net.send c (

rsa_encrypt pk nB)) in
25 let z=(close c) in 0l
26)
27 else let z=(close c) in

0l

Listing 1.6: Role of A in F$.

1 int32_t roleA (Data_bytes host) {
2 Prims_string u r l =" 1 0 . 0 . 0 . 2 : 8 0 "

;
3 Net_conn c = Net_connect (u r l) ;
4 Crypto_key skA =

Crypto_rsa_keygen () ;
5 Crypto_key pkA = Crypto_rsa_pub

(skA) ;
6 Prims_int x0 = Net_send (c ,

Data_concat (Crypto_keytobytes
(pkA) , host)) ;

7 K___Data_bytes_Data_bytes s c ru t
= Data_iconcat (Net_recv (c)) ;

8 Data_bytes pkb = sc ru t . f s t ;
9 Crypto_key pk =

Crypto_asympubkey (pkb) ;
10 Data_bytes nA = Crypto_mkNonce

() ;
11 Prims_int x1 = Net_send (c ,

Crypto_rsa_encrypt (pk ,
Data_concat (host , nA))) ;

12 Data_bytes m =
Crypto_rsa_decrypt (skA ,
Net_recv (c)) ;

13 K___Data_bytes_Data_bytes
s c ru t0 = Data_iconcat (m) ;

14 Data_bytes nA1 = sc rut0 . f s t ;
15 Data_bytes nB = scrut0 . snd ;
16 i f (__eq__Data_bytes(nA1 , nA))
17 {
18 Prims_int x2 = Net_send (c ,

Crypto_rsa_encrypt (pk , nB)) ;
19 Prims_int z = Net_close (c) ;
20 re turn (int32_t) 0 ;
21 }
22 e l s e
23 {
24 Prims_int z = Net_close (c) ;
25 re turn (int32_t) 0 ;
26 }
27 }

Listing 1.7: Role of A generated by
KaRaMeL.

Fig. 3: Input code of A’s role in F$ and generated C code.

13

are published on the network. A listens for the public key of B 4. After this
initialization phase, the protocol can start and A generates a nonce and sends it
and her name encrypted with the public key of B according to the first step of
the protocol. Then A waits for the answer of B. Once B’s response is received,
A checks the correspondence between the nonce sent in the first message and
the one received from B. If the nonces match them A confirms to B that she has
received NB by sending it back to B encrypted by B’s public key.

The C code produced by BIFROST is given in the code 1.7. It follows exactly
the same steps and use all libraries proposed by the tool. Moreover, we argue
that even for an automatically generated code. It stays fairly understandable
and possible to analyze with C static analyzers such as Frama-C or CPPcheck.

6.3 Attacker Implementation Generation

The F$ code of the role of A displayed in Listing 1.6 is translated into pi-calculus
by FS2PV and can be analyzed by ProVerif 5. To do so, we need to provide a
query (i.e., a security property) for ProVerif to verify. In this example, this query
is shown in Listing 1.8 and requires the last message received by B from A to
actually be sent by A for B earlier, ensuring authentication of A to B on NB .

1 query ev :Ev(BMessageB(a , b , nb)) ==> ev :Ev(AMessageA(a , b , nb)) .

Listing 1.8: Query used by ProVerif

Using this query, ProVerif is able to find an attack. The trace is also quite
long and we chose to narrow down the output to what is shown in Listing 1.9.

1 new T55 c r e a t i n g T55_1 at {90}
2 new T53 c r e a t i n g T53_1 at {92}
3 new T51 c r e a t i n g T51_1 at {94}
4 out (NethttpChan , CryptoAsymPrivKey (DataFresh (M))) with M =

T51_1 at {96}
5 out (NethttpChan , CryptoAsymPubKey(DataBin (M_1))) with M_1 =

DataPK(DataFresh (T53_1)) at {97}
6 event Ev(BStart (DataUtf8 (SBobS ()) , DataUtf8 (SAl iceS ()))) at

{128}
7 event Ev(AStart (DataUtf8 (SAl iceS ()) , DataUtf8 (SIntruderS ())))

at {100}
8 new T49 c r e a t i n g T49_1 at {102}
9 out (NethttpChan , DataBin (M_2)) with M_2 = DataAsymEncrypt (

DataBin (DataPK(DataFresh (T51_1))) , DataConcat (DataUtf8 (
SAl iceS ()) , DataFresh (T49_1))) at {104}

10 in (NethttpChan , [. . .]) = DataAsymEncrypt (DataBin (DataPK(
DataFresh (T53_1))) , DataConcat (DataUtf8 (SAl iceS ()) ,
DataFresh (T49_1))) at {130}

11 new T29 c r e a t i n g T29_1 at {135}

4 This is a common modeling practice in protocol verification, allowing the intruder
to choose who A is going to talk to.

5 As this code is really long, we will not show it in this article.

14

12 out (NethttpChan , DataBin (M_3)) with M_3 = DataAsymEncrypt (
DataBin (DataPK(DataFresh (T55_1))) , DataConcat (DataFresh (
T49_1) , DataFresh (T29_1))) at {137}

13 in (NethttpChan , DataBin (M_3)) with M_3 = DataAsymEncrypt (
DataBin (DataPK(DataFresh (T55_1))) , DataConcat (DataFresh (
T49_1) , DataFresh (T29_1))) at {105}

14 out (NethttpChan , DataBin (M_4)) with M_4 = DataAsymEncrypt (
DataBin (DataPK(DataFresh (T51_1))) , DataFresh (T29_1)) at
{111}

15 in (NethttpChan , [. . .]) = DataAsymEncrypt (DataBin (DataPK(
DataFresh (T53_1))) , DataFresh (T29_1)) at {138}

Listing 1.9: Attack trace found by ProVerif.

The attack found by using ProVerif is actually the same as the one discovered
by Lowe and presented in Section 6.1. It can be read as the following (with lines
1-5 prior to the roles of A and B): Line 1 : creation of skA; Line 2 : creation of
skB ; Line 3 : creation of skI ; Line 4 : share skI for the intruder; Line 5 : share
pkB for the intruder; Line 6-7 : start event from B and A Line 8 : creation of
nonce NA; Line 9 : A sends (A,NA)pkI

; Line 10 : B receives (A,NA)pkB . This
message is built by the intruder using the message from A. Line 11 : creation of
nonce NB ; Line 12 : B sends (NA, NB)pkA

; Line 13 : A receives (NA, NB)pkA
;

Line 14 : A sends (NB)pkI
; Line 15 : B receives (NB)pkB

. This message is built
by the intruder using the message from A.

The F$ representation of the role of the intruder generated by the Python
parser can be found in Listing 1.10. The reader may take note that it follows
the steps of the attack described above. The C implementation is generated by
KaRaMeL, similarly to the roles of A and B, and after compilation it can be
executed along with the two roles in order to play the attack. Finally, when we
add Lowe’s correction to the protocol model (described in Section 6.1), we can
indeed see that ProVerif declares the protocol safe for the given properties.

1 let roleI skI pkB adr1 adr2: Int32.t =
2 let c2 = connect adr2 in
3 let c1 = listen adr1 in
4 let m_04 = skI in
5 let m_05 = pkB in
6 let m_09 = Net.recv(c1) in
7 let m_13 = utf8("Alice") in
8 let m_15 = rsa_decrypt m_04 m_09 in
9 let (m_16 ,m_17) = iconcat m_15 in

10 let m_14 = m_17 in
11 let m_12 = concat m_13 m_14 in
12 let m_10 = rsa_encrypt m_05 m_12 in
13 let m_11 = Net.send c2 m_10 in
14 let m_20 = Net.recv(c2) in
15 let m_21 = Net.send c1 m_20 in
16 let m_22 = Net.recv(c1) in
17 let m_25 = rsa_decrypt m_04 m_22 in

15

18 let m_23 = rsa_encrypt m_05 m_25 in
19 let m_24 = Net.send c2 m_23 in
20 let z = Net.close c2 in 0l

Listing 1.10: Role of the intruder in F$

7 Conclusion

We present BIFROST, a toolchain allowing to automatically generate C code
from an abstract model of cryptographic protocols. BIFROST takes as inputs a
protocol modeled in F$ and output C files. To generate these files BIFROST uses
KaRaMeL to obtain an implementation of the protocol that corresponds to the
model. Moreover, BIFROST transforms the F$ specifications into a π-calculus
file using FS2PV and this file is sent to ProVerif to verify if the protocol is safe or
not. If ProVerif finds a flaw, then we produce the additional C files that allow us
to mount the attack on the protocol implementation. For this we have designed
a parser of ProVerif’s output, able to generate F$ model describing the attack
trace. This F$ file can be translated into C code using KaRaMeL in the same
way as other roles. Moreover, BIFROST can deal with several cryptographic
primitives and network parameters. The choice of using ARM mBedTLS as a
backend relies on its common use within industry products, especially within
embedded systems. However, support with HACL*6 which is a formally verified
cryptographic library would be possible and make sense to have a completely
verified toolchain. On a similar note, gcc/clang could be switched to CompCert7,
a formally verified compiler.

As a future work, we intend to switch FS2PV for an F* compatible translator
that will allow us to support multiple verification tools alongside ProVerif. This
will allow us to not rely on F# anymore and have a protocol representation only
requiring to be compatible with F*. We also aim to extend BIFROST to be able
to consider equational theories and advanced trace-based security properties like
forward secrecy and post-compromise security. Security against side-channel and
fault attacks could also be studied.

References

1. ARM mBed. https://tls.mbed.org/, accessed: 2022-01-21
2. OpenQuantumSafe. https://openquantumsafe.org, accessed: 2022-01-21
3. OpenSSL. https://www.openssl.org/, accessed: 2022-01-21
4. Python Lark parser. https://lark-parser.readthedocs.io/en/latest/, ac-

cessed: 2022-01-21
5. Cve-2008-0166 : Openssl 0.9.8c-1 (2008), https://security-tracker.debian.

org/tracker/CVE-2008-0166

6 https://github.com/hacl-star/hacl-star
7 https://compcert.org/

16

https://tls.mbed.org/
https://openquantumsafe.org
https://www.openssl.org/
https://lark-parser.readthedocs.io/en/latest/
https://security-tracker.debian.org/tracker/CVE-2008-0166
https://security-tracker.debian.org/tracker/CVE-2008-0166
https://github.com/hacl-star/hacl-star
https://compcert.org/

6. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge university
press (2005)

7. Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V.,
Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.Y.: Jasmin: High-assurance
and high-speed cryptography. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1807–1823 (2017).
https://doi.org/10.1145/3133956.3134078

8. Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cremers, C., Liao, K.,
Parno, B.: Sok: Computer-aided cryptography. In: 42nd IEEE Symposium on Secu-
rity and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. pp. 777–795.
IEEE (2021). https://doi.org/10.1109/SP40001.2021.00008, https://doi.org/10.
1109/SP40001.2021.00008

9. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) Advances in Cryp-
tology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6841, pp. 71–90. Springer (2011). https://doi.org/10.1007/978-3-642-22792-
9_5, https://doi.org/10.1007/978-3-642-22792-9_5

10. Basin, D., Mödersheim, S., Vigano, L.: An on-the-fly model-checker for security
protocol analysis. In: European Symposium on Research in Computer Security.
pp. 253–270. Springer (2003). https://doi.org/10.1007/978-3-540-39650-5_15

11. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols. In: Proceedings of the
thirtieth annual ACM symposium on Theory of computing. pp. 419–428 (1998).
https://doi.org/10.1145/276698.276854

12. Benaissa, N., Méry, D.: Cryptographic protocols analysis in event b. In: Interna-
tional Andrei Ershov Memorial Conference on Perspectives of System Informatics.
pp. 282–293. Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_24

13. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.:
Refinement types for secure implementations. ACM Transactions on
Programming Languages and Systems (TOPLAS) 33(2), 1–45 (2011).
https://doi.org/10.1145/1890028.1890031

14. Bhargavan, K., Bichhawat, A., Do, Q., Hosseyni, P., Küsters, R., Schmitz, G.,
Würtele, T.: Dy*: a modular symbolic verification framework for executable cryp-
tographic protocol code. In: EuroS&P 2021-6th IEEE European Symposium on
Security and Privacy (2021). https://doi.org/10.1109/EuroSP51992.2021.00042

15. Bhargavan, K., Corin, R., Deniélou, P.M., Fournet, C., Leifer, J.J.: Crypto-
graphic protocol synthesis and verification for multiparty sessions. In: 2009 22nd
IEEE Computer Security Foundations Symposium. pp. 124–140. IEEE (2009).
https://doi.org/10.1109/CSF.2009.26

16. Bhargavan, K., Fournet, C., Corin, R., Zalinescu, E.: Cryptographically
verified implementations for tls. In: Proceedings of the 15th ACM con-
ference on computer and Communications security. pp. 459–468 (2008).
https://doi.org/10.1145/1455770.1455828

17. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interop-
erable implementations of security protocols. ACM Transactions on
Programming Languages and Systems (TOPLAS) 31(1), 1–61 (2008).
https://doi.org/10.1145/1452044.1452049

18. Bieber, P., Boulahia-Cuppens, N., Lehmann, T., van Wickeren, E.: Ab-
stract machines for communication security. In: 1993 Proceedings Com-

17

https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-540-39650-5_15
https://doi.org/10.1145/276698.276854
https://doi.org/10.1007/978-3-642-11486-1_24
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1109/EuroSP51992.2021.00042
https://doi.org/10.1109/CSF.2009.26
https://doi.org/10.1145/1455770.1455828
https://doi.org/10.1145/1452044.1452049

puter Security Foundations Workshop VI. pp. 137–146. IEEE (1993).
https://doi.org/10.1109/CSFW.1993.246632

19. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001. pp.
82–96. IEEE (2001). https://doi.org/10.1109/CSFW.2001.930138

20. Blanchet, B.: A computationally sound mechanized prover for security protocols
(2006). https://doi.org/10.1109/SP.2006.1, https://doi.org/10.1109/SP.2006.1

21. Ceelen, P., Mauw, S., Radomirović, S.: Chosen-name attacks: An overlooked class
of type-flaw attacks. Electronic Notes in Theoretical Computer Science 197, 31–43
(02 2008). https://doi.org/10.1016/j.entcs.2007.12.015

22. Cortier, V., Warinschi, B., Zălinescu, E.: Synthesizing secure protocols. In: Euro-
pean Symposium on Research in Computer Security. pp. 406–421. Springer (2007).
https://doi.org/10.1007/978-3-540-74835-9_27

23. Cremers, C.J.: The scyther tool: Verification, falsification, and analysis of security
protocols. In: International conference on computer aided verification. pp. 414–418.
Springer (2008). https://doi.org/10.1007/978-3-540-70545-1_38

24. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c. In: International conference on software engineering and formal methods.
pp. 233–247. Springer (2012). https://doi.org/10.1007/978-3-642-33826-7_16

25. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246, August (2008)

26. Dolev, D., Yao, A.: On the security of public key protocols.
IEEE Transactions on information theory 29(2), 198–208 (1983).
https://doi.org/10.1109/TIT.1983.1056650

27. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., et al.: The matter of heartbleed. In: Proceedings
of the 2014 conference on internet measurement conference. pp. 475–488 (2014).
https://doi.org/10.1145/2663716.2663755

28. Escobar, S., Meadows, C., Meseguer, J.: Maude-npa: Cryptographic protocol anal-
ysis modulo equational properties. In: Foundations of Security Analysis and Design
V, pp. 1–50. Springer (2009). https://doi.org/10.1007/978-3-642-03829-7_1

29. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange.
In: Annual international cryptology conference. pp. 110–125. Springer (2003).
https://doi.org/10.1007/978-3-540-45146-4_7

30. Lafourcade, P., Puys, M.: Performance evaluations of cryptographic protocols
verification tools dealing with algebraic properties. In: Foundations and Prac-
tice of Security - 8th International Symposium, FPS 2015, Clermont-Ferrand,
France, October 26-28, 2015, Revised Selected Papers. pp. 137–155 (2015).
https://doi.org/10.1007/978-3-319-30303-1_9

31. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
fdr. In: International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 147–166. Springer (1996). https://doi.org/10.1007/3-540-
61042-1_43

32. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: International Conference on Computer
Aided Verification. pp. 696–701. Springer (2013). https://doi.org/10.1007/978-3-
642-39799-8_48

33. Modesti, P.: AnBx: Automatic generation and verification of security protocols
implementations. In: International Symposium on Foundations and Practice of
Security. pp. 156–173. Springer (2015). https://doi.org/10.1007/978-3-319-30303-
1_10

18

https://doi.org/10.1109/CSFW.1993.246632
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1016/j.entcs.2007.12.015
https://doi.org/10.1007/978-3-540-74835-9_27
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-319-30303-1_9
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-30303-1_10
https://doi.org/10.1007/978-3-319-30303-1_10

34. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM 21(12), 993–999 (1978).
https://doi.org/10.1145/359657.359659

35. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for
higher-order logic, vol. 2283. Springer Science & Business Media (2002).
https://doi.org/10.1007/3-540-45949-9_5

36. Otway, D., Rees, O.: Efficient and timely mutual authentication. SIGOPS Oper.
Syst. Rev. 21(1), 8–10 (jan 1987). https://doi.org/10.1145/24592.24594, https:
//doi.org/10.1145/24592.24594

37. Pozza, D., Sisto, R., Durante, L.: Spi2Java: Automatic cryptographic protocol
java code generation from spi calculus. In: Proceedings of the 18th Interna-
tional Conference on Advanced Information Networking and Application (2004).
https://doi.org/10.1109/AINA.2004.1283943

38. Protzenko, J., Zinzindohoué, J.K., Rastogi, A., Ramananandro, T., Wang, P.,
Béguelin, S.Z., Delignat-Lavaud, A., Hritcu, C., Bhargavan, K., Fournet, C.,
et al.: Verified low-level programming embedded in f. Proc. ACM program. lang.
1(ICFP), 17–1 (2017). https://doi.org/10.1145/3110261

39. Sprenger, C., Basin, D.: Developing security protocols by refinement. In: Proceed-
ings of the 17th ACM conference on Computer and communications security. pp.
361–374 (2010). https://doi.org/10.1145/1866307.1866349

40. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-
order programs with the Dijkstra monad. In: Proceedings of the 34th annual ACM
SIGPLAN conference on Programming Language Design and Implementation. pp.
387–398. PLDI ’13 (2013). https://doi.org/10.1145/2499370.2491978

19

https://doi.org/10.1145/359657.359659
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1145/24592.24594
https://doi.org/10.1145/24592.24594
https://doi.org/10.1145/24592.24594
https://doi.org/10.1109/AINA.2004.1283943
https://doi.org/10.1145/3110261
https://doi.org/10.1145/1866307.1866349
https://doi.org/10.1145/2499370.2491978

	Automatic Implementations Synthesis of Secure Protocols and Attacks from Abstract Models

