
MARSHAL: Messaging with Asynchronous Ratchets
and Signatures for faster HeALing

Abstract. Secure messaging applications are deployed on devices that can be
compromised, lost, stolen, or corrupted in many ways. Thus, recovering from
attacks to get back to a clean state is essential and known as healing. Signal is a
widely-known, privacy-friendly messaging application, that uses key-ratcheting
mechanism updates keys at each stage to provide end-to-end channel security,
forward secrecy, and post-compromise security. We strengthen this last property,
by providing a faster healing. Signal needs up to two full chains of messages
before recovering, our protocol enables recovery after the equivalent of a chain of
only one message. We also provide an extra protection against session-hijacking
attacks. We do so, while building on the pre-existing Signal backbone, without
weakening its other security assumptions, and still being compatible with Signal’s
out-of-order message handling feature.

1 Introduction

Asynchronous messaging protocols like Signal [11] or OTR [5] allow two parties that
are not always simultaneously online to communicate securely. The protocol must guar-
antee the confidentiality and authenticity of the exchanged messages with respect to a
PitM1. Forward security additionally requires that if a party is compromised (loses its
long-term keys), past communications are still secure. Signal pioneered a new property,
formalized by Cohn-Gordon et al. as post-compromise security2 (PCS) [7]. It entails a
renewal of the protocol’s original security guarantees even after a complete compromise
of a party’s secrets. Cohn-Gordon et al. later showed that Signal attains PCS [6] under
certain assumptions. Signal’s healing ability follows from the gradual insertion of fresh
Diffie-Hellman (DH) material into the current session secrets.

In Fig. 1, we give a toy-example of a Signal conversation between an initiator Alice
and the responder Bob. Each message comes at a protocol stage3, denoted by (x, y).
The y value increases when the speaker changes (Alice starts at y = 1, then y turns to
2 when Bob speaks, etc.). The x value increases with each new message from the same
speaker, and is reset to 1 for each new value of y. Each stage (x, y) is associated with
a message key mkx,y , used to encrypt and authenticate that stage’s message. To evolve
from a key mkx,y to mkx+1,y (next message, same speaker), the two peers use a key-
derivation function (KDF) with no further freshness. This is called a symmetric ratchet,
denoted by [S] in Fig. 1. To update a key mkx,y to mk1,y+1 (new speaker), a DH share
is used as freshness into the KDF. This is called the asymmetric ratchet, denoted by [A].

Signal’s PCS guarantee is limited by two main factors: the lack of persistent authen-
tication (noticed by Blazy et al. [4]) and the frequency of asymmetric ratchets, which is
our key motivation.

1 Person-in-the-Middle is a politically-correct version of Man-in-the-Middle.
2 This property is also called healing.
3 We use a different notation of stages from [6].

2

Sender Key(s) AD Message MARSHAL Signal

Alice mk1,1: (1,Rchpk1A) Hi Bob X X
[S] mk2,1 (2,Rchpk1A) How are you ? × ×
[S] mk3,1-mk17,1 (3,Rchpk1A)-(17,Rchpk

1
A) (... 15 messages) X ×

[S] mk18,1 (18,Rchpk1A) Cinema tonight ? X ×

Bob : [A] mk1,2 (1,Rchpk2B) Hi Alice X ×
[S] mk2,2 (2,Rchpk2B) I’m good, thanks X ×
[S] mk3,2-mk12,2 (3,Rchpk2B)-(12,Rchpk

2
B) (... 10 messages) X ×

Alice : [A] mk1,3 (1,Rchpk3A) Great X X

Fig. 1: Toy example for Signal and MARSHAL. Messages are encrypted with the keys
in the second column (indexed by the stage) and have the associated data (AD) in the
third column. The labels [A] and [S] indicate asymmetric and symmetric ratcheting
respectively. The security (X) and insecurity (×) of messages is given, assuming Alice
is compromised at message 2. Italics show that several messages are sent in the same
chain.

Persistent authentication [4]. In Signal, the two parties initially use long-term identity-
keys to authenticate. However, subsequent authentication only relies on knowledge of
a previous stage-specific key. This allows an adversary to impersonate entities by only
compromising a party’s ephemeral state; then the adversary hijacks the session by forc-
ing a ratchet. Two events follow: (i) the keys between the honest endpoints diverge ir-
revocably from those derived by the adversary and the non-compromised endpoint; and
(ii) the non-compromised endpoint is unaware of this. In Fig. 1, an adversary can com-
promise Alice after her second message, learning the private key rchk1A corresponding
to the public key4 Rchpk1A. The attacker then blocks all messages from Alice to Bob,
and waits for Bob to ratchet (with “Hi Alice”). The adversary, impersonating Alice,
forces a ratchet by sending a new message. At this point, Bob and the adversary ratchet
to keys depending on the DH product of RchpkA and Rchpk2B . Alice, however, can no
longer ratchet to those keys, even given Bob’s and the adversary’s transcript.

Frequency of asymmetric ratchets. In Signal, parties asymmetrically ratchet when-
ever the speaker changes. The private key for that ratchet can, however, be leaked to an
adversary. A compromise of, say, Alice compromises the security of Alice’s entire chain
of messages, then Bob’s entire chain of responses. The protocol only heals once Alice
chooses new ratcheting material and safely sends it to Bob. In Fig. 1, if the adversary
compromises Alice after she’s sent the first message, it obtains 30 message keys.

Contributions. Our protocol MARSHAL (Messaging with Asynchronous Ratchets and
Signatures for faster HeALing) achieves persistent authentication and faster healing
than Signal, requiring just one message to recover MARSHAL’s original security once
the attacker has compromised all of Alice’s ephemeral information and even some com-
bination of long-term keys. In MARSHAL, the parties ratchet at every stage, even when
the speaker has not changed. This causes two technical challenges. First, there is the

4 The adversary also has access to chain and message keys computed at this point, and to the root
key necessary for the ratchet. However, none of Alice’s long-term information is necessary for
the attack.

Title Suppressed Due to Excessive Length 3

question of how Alice (the initiator) will ratchet at the start of the protocol, before Bob
comes online. We handle this by requiring Bob to register an extra ephemeral DH ele-
ment on the semitrusted server. A second challenge concerns out-of-order messages. To
handle those, the sender will send at each stage a concatenation of all the public ratchet
keys used so far in that chain, in order, in the associated data.

In MARSHAL, session-hijacking attacks require long-term credentials such as the
party’s identity- or signature key. By contrast, an adversary can hijack a Signal session
with only ephemeral information, like the current message and/or chain key.

MARSHAL provides almost instant healing: unless it holds the party’s long-term
keys and ephemeral information, the attacker cannot compromise more than one mes-
sage at a time. As soon as either party ratchets honestly, the adversary loses the ability
to decrypt any fresh messages.

These strong properties come at a cost. Apart from registering an additional DH
element and having to perform DH computations at each stage, MARSHAL adds to
the complexity of Signal in two ways: (1) requiring the transmission of a number of
DH elements that is linear in the maximal depth of the chain; (2) using signatures to
transmit the encrypted messages and stage metadata. The former allows us to provide
message-loss resilience: if this is not needed, metadata size can be reduced. The second
source of complexity, the signatures, serve a double purpose: they help preserve AKE
security, and they restrict an adversary’s ability to impersonate parties upon corruption.

Related Work. Ratcheted key-exchange (RKE) was introduced as a unidirection, single-
move primitive by Bellare et al. [3], who used it to define and instantiate ratcheted en-
cryption. This security model was later extended by work such as [15,9] to treat double
ratchets, but also more generic RKE. A crucial difference between generic RKE and our
work is that we focus on the full message transmission process, as in the case of [6,4].

The work of Alwen et al. [1] provides a complete security model for protocols like
Signal, which also handles out-of-order messages (which they call immediate decryp-
tion). Alwen et al. view asynchronous messaging protocols as a composition of three
parts: a hash function that generates pseudorandom output (PRF-PRNG), a primitive
called forward-secure AEAD (FS-AEAD) which captures symmetric ratchets, and con-
tinuous key-agreement (CKA) which captures asymmetric ratchets. While this work
does capture Signal and allows for modular security proofs, it is not so well suited to
the analysis of our protocol, for three main reasons. First, MARSHAL does not em-
ploy any symmetric ratcheting; second, we want to capture the properties of the actual
message transmission; third, we do not use AEAD solely, but rather combine it with a
public-key authentication mechanism. This would minimally indicate a need to modify
the FS-AEAD primitive. We therefore prefer a security model that is less modular, but
comes closer to the protocol, similar to the one used in [4]. We have adapted one of the
properties they consider to our security model, namely that of message-loss resilience.

The works of Jost et al. [10,8] provide efficient instantiations of bidirectional ratch-
eted key-exchange by using relatively inexpensive primitives (unlike previous work
such as e.g., that of Poettering and Rössler [15]). However, these protocols are differ-
ent and do not follow the structure of Signal. In addition, features such as out-of-order
messages are not included, because some of these constructions require the parties to
receive each message. Starting from Signal’s structure, we preserve properties such as

4

out-of-order messages, and have stronger healing by persistent authentication and more
frequent asymmetric ratchets.

Our work comes closest to the SAID protocol of Blazy et al. [4], whose notion of
persistent authentication prevents hijacking attacks. SAID therefore authenticates each
ratchet by using identity keys. As long as the identity keys are safely stored, session-
hijacking cannot happen because the adversary cannot convince Bob he is ratcheting
with the correct person. While we also ensure persistent authentication, our work uses
the backbone of Signal and its security assumptions: public-key cryptography and a
semi-trusted middle server. By contrast, Blazy et al. constructed their protocol in the
paradigm of identity-based cryptography.

2 Background

Notations. Let g be a generator of a cyclic group G of prime order q. A user’s Diffie-
Hellman public key is an exponentiation of g to the private exponent k: pk = gk

mod p for a large prime p. Like [6] we end names of public keys in pk and private
keys ending in k. For instance Rchpk is a ratchet public key with corresponding private
key rchk. Let DH(x, y) = xy denote the exponentiation of x ∈ G to a power y ∈ Zq .
A key generated by party P is denoted by ikP while the public key is denoted ipkP .
Stage-specific keys have stages as superscript e.g., , mk1,1. In this paper we assume
that all signature schemes involve hashing, and omit the hashing in the notation, i.e.,
SIGNsk(m) := Signsk (H(m)) for a hash function H . We use the notations AEAD.Enc
and AEAD.Dec for encryption and decryption respectively of an AEAD-scheme.

The Signal Protocol. While Signal is post-compromise secure and has forward secrecy,
a session that is severely compromised by an adversary can take a long time to heal.
In Signal, message keys are derived from chain keys by means of a key-derivation
function (KDF), which outputs a new chain key ck(x+1,y) and a message key mk(x,y)

from a chain key ck(x,y). If an adversary compromises ck(1,1), it will have access to
every message on the chain y = 1 (stages from (1, 1) up to, but not including (1, 2)).
However, if the adversary does not know Alice’s private ratchet key rchk1 for the stages
with y = 1, then as soon as Bob’s asymmetric ratchet comes (at stage (1, 2)), the chain
heals. If rchk1 is known, then two full chains of messages are compromised.

Active attacks are even more dangerous. So far, attacks consisted of compromis-
ing a party’s state, then inspecting and decrypting traffic. If, upon corrupting ck

(1,1)
A ,

the adversary replaces Alice’s original ratchet key by a key of its own, then the attack
renders the chain impossible to heal without starting a new conversation. The fact that
the adversary can do this while in possession of a single chain key (which is a piece of
temporary, stage-specific data) is troubling. Adding persistent authentication would pre-
vent such attacks, ensuring that all key derivations require long-term keys. MARSHAL
enhances the original Signal protocol in order to achieve near-optimal security against
both passive and active attackers. More details are given in Appendix A.

Title Suppressed Due to Excessive Length 5

3 The MARSHAL protocol

The protocol we propose, MARSHAL, runs –like Signal– in several stages: registration,
session setup, and communication. We describe in Fig. 2 the session-setup and commu-
nication phases of MARSHAL. As a novelty, MARSHAL requires two types of ratchet
keys: same-user ratchet keys, and cross-user ratchet keys. Same-user ratchet keys are
indexed by stage, and generated whenever a new message is sent: for instance Rchpk2,1

denotes the ratchet public key at stage (2, 1) (the second message sent in the first mes-
sage chain). Cross-user ratchet keys are only generated at the beginning of a chain of
messages and indexed only by the y-component of the stage (called a chain index). We
denote by Ti the public key generated during the i-th message chain and by T0 an initial
public key registered by the session’s responder (and recovered by its initiator).

While stages are indexed as (x, y) with x, y ≥ 1, special indexes x = 0 and
y = 0 denote special ratchet keys used for initialization. The first same-user ratchet
key Rchpk0,1 is only used to compute the master secret of a session. Additionally, a
ratchet key T0 is registered by each user. The initiator of a session uses its correspon-
dent’s initial ratchet key during the first chain of communication (y = 1). Note that this
method of ratcheting uniquely associates stages and chain indexes to the party generat-
ing them.

3.1 Registration

To use MARSHAL, each party P must first register, by generating private keys and
uploading the corresponding public keys to the server: a long-term identity key ikP ; a
medium-term prekey prekP , and a signature on that key (generated with the identity key
ikP); multiple ephemeral one-time-use prekeys ephpkP ; multiple medium-term stage
keys T0. The last of these keys is a cross-user ratchet key (see above): a novelty with
respect to Signal, which will help Alice asymmetric-ratchet in the first chain of mes-
sages, when she has not yet had a message (and therefore a ratcheting key) from Bob. In
addition to these keys users will also generate and subsequently use a pair of long-term
signature keys (skP , pkP). These keys will not be registered on the server, but rather
included in the associated data in each partner’s first respective chain of messages.

3.2 Session Setup

Whenever Alice A wants to contact Bob B , she runs a protocol similar to that of Signal
and [12], with some small tweaks.

The master secret. To initiate a session with B , Alice queries the server for Bob’s
following values: the identity key ipkB , a signed prekey prepkB , a one-time prekey
ephpkB (if available), and a medium-term stage key T0

B , denoted in short T0. Having
received those keys, A generates its own ephemeral key ekA. The master secret ms =
prepkikAB ||ipk

ekA
B ||prepk

ekA
B ||ephpkB ekA is a concatenation of DH values, as computed in

Signal.

First keys. Alice randomly generates a same-user ratchet keypair (rchk0,1,Rchpk0,1).
She computes a DH of her ratchet key and prepkB , and the result is fed to a key deriva-
tion function along with ms to produce a chain key ck1,1.

6

Alice (ikA, ipkB , prepkB , ephpkB , T0) Bob (ikB , ipkA, prekB , ephkB , T0)

Session initialization: initiator Alice, responder Bob.

ekA, rchk
0,1, t1, rchk

1,1 $←− Zq;
T1 = gt1 ; EpkA = gekA ;

Rchpk0,1 = grchk
0,1

;Rchpk1,1 = grchk
1,1

ms = prepkikAB ||ipk
ekA
B ||prepk

ekA
B ||ephpkB

ekA

ck1,1 = KDFr
(
prepk

rchk0,1

B ||ms
)

(ck2,1,mk1,1) = HKDF(ck1,1 ||σ1,1||(ipkB)rchk
1,1

)

First message: stage (1, 1), Alice is the sender, Bob, the receiver.

ADy=1 = EpkA||ipkA||ipkB ||prepkB ||
ephpkB ||T0||Rchpk0,1||T1

AD1,1 = (1, 1)||Rchpk1,1||σ1,1 c1,1, SIGNskA (c1,1),

c1,1 = AEAD.Encmk1,1(M1,1;AD1||AD1,1)
pkA,SIGNikA

(pkA)
−−−−−−−−−−−−→ Verify signature on pkA and σ1,1

ms = ipk
prekB
A ||EpkikBA ||Epk

prekB
A ||EpkephkBA

ck1,1 = KDFr((Rchpk
0,1)prekB ||ms)

(ck2,1,mk1,1) = HKDF(ck1,1||σ1,1||(Rchpk1,1)ikB)
M1,1 = AEAD.Decmk1,1(c1,1).

`-th message: stage (`, 1), Alice is the sender, Bob, the receiver.

rchk`,1
$←− Zq , set Rchpk`,1 = grchk

`,1

(ck`+1,1,mk`,1) = HKDF(ck`,1||σ`,1||ipk
rchk`,1

B)

AD`,1 = (`, 1)||{Rchpkx,1}1≤x≤`||σ`,1 c`,1, SIGNpkA (c`,1),

c`,1 = AEAD.Encmk`,1(M`,1;AD1||AD`,1)
pkA,SIGNikA

(pkA)
−−−−−−−−−−−−→ Verify leftover signatures

(ck`+1,1,mk`,1) = HKDF(ck`,1, ||σ`,1||(rchk`,1)ikB)
M`,1 = AEAD.Decmk`,1(c`,1).

Switching speakers: Bob comes online and begins a new ratcheting chain.

t2, rchk
1,2 $←− Zq; T2 = gt2 , Rchpk1,2 = grchk

1,2

ck1,2 = HKDF(T1
ikB ||ipkAt0)

(ck2,2,mk1,2) = HKDF(ck1,2, σ1,2||(ipkA)rchk
1,2

)

Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.

ADy=2 = T2

c1,2, SIGNpkB (c1,2), AD1,2 = (1, 2)||Rchpk1,2||σ1,2

Verify signature on pkB and σ1,2

pkB ,SIGNikB
(pkB)

←−−−−−−−−−−−− c1,2 = AEAD.Encmk1,2(M1,2;AD2||AD1,2)

ck1,2 = KDFr((ipkB)
t1 ||(T0)

ikA)

(ck2,2,mk1,2) = HKDF(ck1,2||σ1,2||(Rchpk1,2)ikA)
M1,2 = AEAD.Decmk1,2(c1,2)

Fig. 2: MARSHAL protocol execution between Alice and Bob for the first few stages.
The yellow boxes indicate modifications with respect to Signal protocol [6]. The trans-
mitted data is also different and not in yellow for more clarity.

Signature keys. A also needs a signature key, as described in Section 3.1.

3.3 Communication phase

We first make a few remarks about the protocol.

MARSHAL ratcheting. Our protocol heals faster than Signal because both parties
ratchet asymmetrically at every stage. Thus, even at stage (1, 1), Alice needs ratch-
eting randomness from Bob, which in MARSHAL comes in the form of the registered
public key T0 (see Section 3.1). For stages (1,m) with integer m ≥ 1, the party whose

Title Suppressed Due to Excessive Length 7

X3DH

ms HKDF ck1,1

σ1,1||
DH(ipkB , rchk

1,1)

HKDF ck2,1

mk1,1

σ2,1||
DH(ipkB , rchk

2,1)

HKDF ck3,1

mk2,1

. . . chain y = 1

DH(T0, ikA)||
DH(T1, ikB)

HKDF ck1,2

σ1,2||
DH(ipkA, rchk

1,2)

HKDF ck2,2

mk1,2

σ2,2||
DH(ipkB , rchk

2,2)

HKDF ck3,2

mk2,2

. . . chain y = 2

DH(T1, ikB)||
DH(T2, ikA)

HKDF ck1,3

σ1,3||
DH(ipkB , rchk

1,3)

HKDF ck2,3

mk1,3

σ2,3||
DH(ipkB , rchk

2,3)

HKDF ck3,3

mk2,3

. . . chain y = 3

Fig. 3: MARSHAL key schedule diagram, where σx,y = SIGNskA
(
Ty−1||Rchpk

x,y
)

for y odd and σx,y = SIGNskB
(
Ty−1||Rchpk

x,y
)

for y even. The yellow boxes indicate
modifications with respect to Signal protocol [6].

turn it is to speak will generate a cross-user ratcheting value tm and compute the corre-
sponding public value Tm. The Tm value is sent as part of the metadata of all messages
with chain index m, and will be used for the ratchet at stage (1,m+ 1).

Moreover at each stage (`,m) for `,m ≥ 1, the current speaker also generates
a same-user key-pair (rchk`,m,Rchpk`,m) which will be used to generate chain and
message keys for stage mk`+1,m. To account for out-of-order messages we then con-
catenation of all the public ratchet keys as metadata to each stage message.

MARSHAL auxiliary data. Each message will be sent end-to-end encrypted, together
with some additional metadata, which is meant to tell Bob how to run the key-schedule.
At each stage (`,m) with `,m ≥ 1, the auxiliary value will consist of two elements:
ADy=m and AD`,m. The former will include elements of the metadata that are universal
across the chain (i.e., all stages (·,m)), whereas the second includes metadata that is
stage-specific.

We detail each of the classes of stages, cf. Fig. 2 and 3 for further reference.

Alice’s first message. At session setup, Alice has generated its cross-user ratchet keys
(t1,T1), and computed the chain key ck1,1. Now she generates the same-user ratchet
key rchk1,1 and computes Rchpk1,1 = grchk

1,1

. The message and chain-keys are com-
puted as follows (ck2,1,mk1,1) ← HKDF(ck1,1||σ1,1||(ipkB)rchk

1,1

) where σ1,1 :=
SIGNskA

(
T0||Rchpk1,1

)
. We use:

σx,y :=

{
SIGNskA

(
Ty−1||Rchpk

x,y
)

, y odd
SIGNskB

(
Ty−1||Rchpk

x,y
)

, y even
At chains y = 1 and y = 2, apart from cross-user ratchet keys, each user will

need to include metadata that is universal for the session, and which helps at ses-
sion setup. The metadata for ADy=1 thus includes the public identity keys of Alice
and Bob, the medium-term and ephemeral keys of Bob as recovered by Alice from
server, the value T0 from the server, Alice’s ephemeral public key used in the com-
putation of the master secret, and two of Alice’s ratchet public keys: its first same-

8

user ratchet key Rchpk0,1, and its first cross-user ratchet key t1. Finally, the stage-
specific data contains: the stage index (1, 1) and the same-user ratcheting public key
Rchpk1,1. Alice computes the authenticated encryption of the message herself: c1,1 =
AEAD.Encmk1,1(M1,1;ADy=1||AD1,1) and sends: c1,1, a signature on it, Alice’s public
signature key pkA, and a signature on it.

Alice’s (`, 1) message, ` > 1. Having already computed t1,T1, ADy=1, ratcheting
material Rchpk1,1,Rchpk2,1, . . . ,Rchpk`−1,1, and the key ckl,1, Alice generates new
same-user ratcheting key rchk`,1 and computes Rchpk`,1 = grchk

`,1

. The key update re-
lies on both long-term keys, for persistent authentication, and this same-user ratcheting

key, for healing: (ck`+1,1,mk`,1) ← HKDF(ck`,1, σ`,1||ipk
rchk`,1

B). The stage-specific
metadata consists of the stage (`, 1) and all the ratcheting keys {Rchpkx,1}1≥x≥`. Then
Alice computes c`,1 and sends: the ciphertext, a signature on it, its signature public key,
and a signature on that.

Note that this procedure applies to all messages (`,m) for ` > 1 and m ≥ 1, in
replacing the y stage-index above, from 1 to m.

Decryption (Bob side). When B comes online, he first needs to compute the same
session-setup values as Alice, including the master secret ms and the first chain key
ck1,1. To do so, B queries the server for A’s registered identity key and verifies that it
is identical to the one included in ADy=1. Then, B verifies the signature on pkA, and,
if the verification returns 1, it stores that key as A’s signature key. From now on, B
will use that key to verify A’s signatures. In particular, the verification of pkA is only
done for the first message that Bob actually checks in the y = 1 chain. Once pkA is
validated, B retraces Alice’s steps to compute ms, the chain keys, and eventually, the
first message key. Then he uses authenticated decryption to decrypt the first message.

Bob’s first message. B generates a new cross-user ratcheting value t2 with correspond-
ing public value T2 and a same-user ratcheting key rchk1,2 and computes Rchpk1,2 :=

grchk
1,2

. Bob computes: ck1,2 ← KDFr((Rchpk
0,1)rchk

0,2 ||rk1||(T1)ikB ||ipk
rchk1,2

A), then
its first sending keys (ck2,2,mk1,2)← HKDF(ck1,2||σ1,2||(ipkA)rchk

1,2

).
Then analogously to Alice’s first message, Bob splits the metadata into the two

auxiliary values ADy=2 and AD1,2. The signed public key pkB is also appended to
each of the messages in stages with chain-index y = 2, cf. Fig. 2.

Switching speakers. Similar computations will take place: generating cross-chain ratch-
eting public keys and new same-user ratcheting keys at every new message. The only
differences with respect to stages (1, 1) and (1, 2) respectively will be that now the par-
ties will no longer need to compute long-term keys or the master secret. In addition,
starting from chain-index y ≥ 3, the public key for signatures is no longer included in
the message transmission.

Out-of-order messages/multiple messages. MARSHAL handles both out-of-order and
lost messages to the same extent as Signal. Indeed, at each stage, the receiving party
gets a list of ratcheting elements used along that chain, which will allow it to update
correctly, even if some messages were lost in between. The parties will update their
state in the order they receive the messages. In other words, say that Bob receives a

Title Suppressed Due to Excessive Length 9

message from Alice at stage (1, 1), but then the next received message comes at stage
(4, 1) (thus, Bob is missing messages (2, 1) and (3, 1)). Nevertheless, Bob will use the
metadata at stage (4, 1) to ratchet, thus computing the keys for stages (2, 1) and (3, 1)
as well. If subsequently Bob receives message (2, 1) with conflicting metadata, Bob
disregards that.

In the same way, if multiple messages are received for some stage, the receiver will
rely on the metadata (and message) received first, chronologically speaking.

4 Security Analysis

Our security models adapts and extends that of Blazy et al. [4]. We provide the general
intuition for our framework and security games below, but since the details are lengthy,
we leave the full syntax to the full version [2].

Syntax. We work in an environment with parties P ∈ P , which have long-term key
pairs (sk, pk), indexed by type. For instance in MARSHAL users have both identity
and signature keys. Protocol sessions take part between two party instances. The i-th
instance of P is denoted πi

P . Beside long-term credentials, party instances also store:
pid: the identifier of the instance’s purported partner, denoted πi

P .pid.
sid: the session identifier πi

P .sid: an evolving set of instance-specific values5.
sidsk: instance-specific private keys (like ephemeral session keys), denoted sidskiP .
sidpk: the public keys sidpkiP corresponding to sidskiP .
stages: a list with elements (s, ·), associating stages s = (x, y) to values v ∈ {0, 1}

depending on whether a message was received (1) or not (0). We write s ∈ πi
P if,

and only if, (s, v) ∈ πi
P .stages.

Tr: the instance’s transcript πi
P .T r, associating to each stage s all data sent or received

at that stage (in plaintext) – denoted πi
P .T r[s].

rec: a list of subsets πi
P .rec, indexed by stage s and indicating messages and metadata

received, in order. A special symbol ⊥ is used for sending stages.
var: a set πi

P .var of ephemeral values used to compute stage keys, indexed by stage.
For MARSHAL this includes rchksP , mks and ckx−1 ,y .
While Signal only allows one conversation per pair of parties, MARSHAL permits

multiple conversations between the same two peers. Compared to Blazy et al. [4], we
add the private/public key-pair (sidsk, sidpk), which allows us to separate one-time
session-specific randomness required for the master secret from stage-specific, recur-
ring randomness. In addition, the same-user ratcheting at every stage compels us to
extend π.rec to include all the messages and metadata received, not just the first one.

As in Cohn-Gordon et al. [6], we abstract the semitrusted server from the setup,
assuming it behaves honestly. It implies an authentication of each user upon registration.

We define asynchronous messaging protocols ID-AsynchM to be tuples of five
algorithms (aKGen, aStart, aRKGen, aSend, aReceive), such that:
aKGen(1λ)→ (sk, pk) : this algorithm outputs long-term credentials.

5 In the case of our protocol, sid will be instantiated as a concatenation of all the auxiliary
information sent throughout the protocol, ordered by stage.

10

aStart(P , role, pid)→ πi
P : creates a new instance of (existing) party P with partner

pid, such that P has a role role ∈ {I,R} (initiator/responder). The new instance is
instantiated with that party’s long-term keys.

aRKGen(1λ)→ (rchk,Rchpk) : outputs a public/private ratcheting keypair.
aSend(πi

P , s,M,AD, aux)→ (πi
P , C,AD

∗, aux∗) ∪ ⊥ : runs the sending part of the
protocol for πi

P on stage s, message M associated data AD, and auxiliary data
aux; it outputs a ciphertext C with new associated and auxiliary data.

aReceive(πi
P , s, C,AD

∗, aux∗)→ (πi
P ,M,AD, aux) ∪ ⊥ : runs the receiving part

of the protocol for instance πi
P on stage s, ciphertext C, associated data AD∗,

and auxiliary data aux∗; it outputs a message M and some (possibly transformed)
associated and auxiliary data.

Definition 1 (Matching conversation). Two instances πi
A and πi

B of an asynchronous-
messaging protocol have matching conversation if and only if πi

A.sid = πj
B .sid and

πi
P .pid = B and πj

B .pid = A.

Correctness. Assume πi
A and πj

B have matching conversation (A is the initiator). The
protocol guarantees correctness if, in the absence of an adversary, for every stage s =
(x, y) with s ∈ πi

A and s ∈ πj
B it holds simultaneously:

– Both instances have identical keys mkx,y and ckx−1,y at stage s.
– Assuming (πu

P , s, C,AD
∗, aux∗) was output by aSend on input (πi

P , s,M,AD, aux)
for (P , u) ∈ {(A, i), (B, j)} if (πv

Q , s, C,AD
∗, aux∗) is input to aReceive, then

M is the message output by πv
Q for (Q , v) = {(A, i), (B, j)} \ (P , u).

Threat Model. The guarantees we want to prove for MARSHAL are: AKE security (in-
cluding authentication), post-compromise security, and out-of-order resilience within a
fully adversarially-controlled network. The first two properties make up a single secu-
rity definition, written as a game between the adversary and the challenger. The adver-
sary can register malicious users, corrupt users to obtain long-term secrets, reveal stage-
and session-specific ephemeral values, access (a function of) the party’s secret key as
a black box, prompt new instances of existing parties, and sending/receiving messages.
The adversary ultimately has to distinguish from random a real message key generated
by an honest instance speaking with another honest instance. As a result, instances will
also need to keep track of the following attribute:
πi
P .b[s]: a challenge bit randomly chosen for each instance at each stage it reaches. If

set to 1 at stage s, the adversary gets a real message key; elseA sees a random key.
We briefly review our oracles and winning conditions in the following. Our games

begin with a set of nP honest parties P for which long-term keys are generated. We
instantiate an empty set P∗ of malicious parties6. The adversary is given all the public
keys, and will have access to the following oracles:
oUReg(P , pk)→ ⊥∪ OK: allows A to register public keys pk to malicious P 6∈ P .
oCorrupt(P , ktype) → sk ∪ ⊥: corrupts P ∈ P , giving A P ’s long-term key of type

ktype7.

6 We assume that each party in P has a unique identifier.
7 In MARSHAL this could be either the identity or the signature key.

Title Suppressed Due to Excessive Length 11

oStart(P , role, pid)→ πi
P ∪⊥: creates a new instance of an existing honest party with

the specified role, by running aStart.
oReveal(πi

P , ktypes, s)→ key.set∪⊥: for stage s, it leaks the set key.set of ephemeral
values requested by key type.

oAccessSK(P , fct, q.input)→ ⊥∪q.rsp: givesA oracle access to a function of one of
the long-term keys with the given input. We restrict the space of functions to those
naturally occurring in the protocol, i.e., exponentiations of the form hikP for ikP
and signatures for the skP .

oTestb(π
i
P , s) → ⊥ ∪ K: for honest parties, valid instances and stages, the oracle

yields either the true message key or a random key of the same length (depending
on πi

P .b[s] = 0).
oSend(πi

P , s, AD, aux)→ ⊥∪ (AD∗, aux∗): this oracle works in two modes: honest
and adversary-driven. For AD, aux equal to ⊥ and valid other values, then πi

P

ratchets normally for stage s, outputting ratcheting information and auxiliary values
(like signatures). For adversarially-chosen AD, aux the oracle uses the given input
(as much as possible) to update.

oReceive(πi
P , s, AD, aux)→ ⊥: again, this oracle has an honest or adversarial mode,

simulating the reception of a message. In honest mode, AD, aux are the correct
values output by oSend at stage s by πi

P ’s partner. For the adversarial mode, the
receiver checks the data and ratchets with the new values if it deems them correct.
Like in Blazy et al. [4], A is not given the true ciphertext, which can help A distin-

guish the message keys. However, A can use oSend and its own, chosen input private
keys to force parties to ratchet. Then A receives AD, a signature on AD (in aux), and
other elements like skP and a signature on it.

4.1 Post-compromise security game

Our PCS AKE game is parametrized by the security parameter λ and a number nP
of honest parties. The challenger starts by generating the nP honest parties and long-
term secrets, giving the public keys and all system parameters to A. The adversary can
access all the oracles except oTest. At each new stage of each honest-party instance,
the challenger generates a fresh test bit πi

P .b[s
?] for that instance and stage.

At some point, A outputs a party instance π?P and a stage s?. The challenger runs
oTest on these inputs, outputting the returned key K (either the real message key of
stage s?or a randomly-chosen key from the same key-space, depending on πi

P .b[s
?].

Finally, A outputs a bit d, which is the adversary’s guess for b?. We say A wins the
experiment if d = b? and if the adversary has played the game such that the active
danger event Act.Dan(sid,mkx

∗,y∗) as defined at the end of this section is not triggered.
If the adversary terminates without outputting d, the challenger picks d uniformly at
random, treating it as A’s final output.

Definition 2 (PCS-AKE security). Let Π be an asynchronous messaging protocol. Π
is said to be PCS-AKE secure if for any polynomial time adversary A, the adversary’s
advantage is negligibly close to 0 as a function of the security parameter. We define:

AdvPCS−AKEΠ (A) :=
∣∣∣P[A wins ExpPCS-AKE

Π (λ,A)]− 1

2

∣∣∣

12

ExpPCS-AKE
Π (λ,A)

(P = {P1, · · ·PnP })← C(λ, nP)
(ski, pki)← CaKGen(1

λ) ∀i ∈ {1, · · · , nP}
P∗ ← ∅

OPCS ←
{
oUReg(·, ·), oCorrupt(·, ·), oStart(·, ·, ·), oReveal(·, ·, ·), oSend(·, ·, ·, ·),
oReceive(·, ·, ·, ·), oAccessSK(·, ·, ·),RO1(·),RO2(·)

}
;

(π?P , s
?)← AOPCS(1λ)

K ← oTestb?(π
?
P , s

?)
d← AOPCS(λ, nP ,K)

A wins iff. d = b? and ¬Act.Dan(π?P .sid, π?P .mks
∗
)

Fig. 4: Description of the PCS AKE game, denoted ExpPCS-AKE
Π (λ,A) between adver-

sary A and chalenger C. The game is parametrized by the security parameter λ and the
number of honest parties nP . The set of accessible oracles by A is denoted O.

Trivial attacks. We retroactively restrict A’s otherwise full control of the oracles to
rule out attacks that trivially break security. For instance, the oTest oracle is queried
on a malicious party, it will win right away, since the protocol is designed to let both
endpoints compute message keys. In general, such restrictions to the adversary indicate
potential weaknesses in the protocol (which the adversary exploits): the more restric-
tions, the weaker the protocol’s security.

In Signal querying oReveal for the chain and ratchet keys used at stage s = (x, y)
allows A to know: all chain and message keys for stages (x∗, y) with x∗ ≥ x; and all
chain and message keys at stages (x∗, y + 1) with x ≥ 1. Moreover, A can hijack the
conversation, using oReceive to learn future keys. These attacks are weaknesses specific
to Signal, but they do not translate to MARSHAL. In fact, MARSHAL provides strictly
stronger security than Signal.

Winning conditions. Recall that the adversary’s goal is to guess the test bit correctly
for the stage and instance queried to oTest. However, we need to rule out trivial attacks,
which we present as predicates (conjunctions and disjunctions of Boolean events). Each
Boolean event is called a danger to a specific value, and we divide these into passive
(compromising a party’s state, but without hijacking) and active (A will also attempt
hijacking) attacks.

Say A has queried oTest for instance πi
A of initiator Alice, and stage s∗ = (x∗, y∗)

(the winning conditions are mirrored for Bob). Assume πi
A has session identifier sid,

and let πj
B be an honest instance with which πi

A has matching conversation (party B is
the partner of πi

A).

We first list trivial attacks components (dangers) in passive attacks:

- Danger(πi
A) is the event that either A ∈ P∗ or πi

A.pid ∈ P∗;

Title Suppressed Due to Excessive Length 13

- Danger(sid,ms) is the event that either ms is queried directly to oReveal for πi
A or

πj
B , or that all these four dangers are triggered:
• Danger(prepkikAB): the event thatA corrupts A or that it reveals the key prekB ,

or that it learns the exponentiation result from oAccessSK.
• Danger(sid, ipkekAB): the event that A corrupts B to learn its identity key or

that it learns the key ekA or that it learns the exponentiation result through
oAccessSK.

• Danger(sid, prepkekAB): the event that A reveals either prekB or ekA.
• Danger(sid, ephpkB

ekA): the event that A reveals either ephkB or ekA.
- Danger(sid, ck1,1): the event thatA queries oReveal for ck1,1 from either πi

A or πj
B

or that both the following events are triggered:
• Danger(sid,ms) as defined above.
• Danger(sid, (prepkB)

rchk0,1
): the event that A queries oReveal on prekB or

rchk0,1.
- Danger(sid, ck1,y) for y > 1: the event that A queries oReveal for ck1,y and πi

A or
πj
B or that both the following events occur:
• Danger(sid, (Ty−1)

ikB): the event that A queries oReveal on ty−1 or oCorrupt
on ikB , or oAccessSK on the exponentiation.

• Danger(sid, (ipkA)
ty−1): the event thatA queries oReveal on ty−2 or oCorrupt

on ikA or oAccessSK on the exponentiation.
- Danger(sid, ckx,2m+1) (x > 1, chain-index is odd): the event thatA queries oReveal

for ckx,2m+1 to πi
A or πj

B , or that both the following events occur:
• Danger(sid, ckx−1,2m+1) recursive part ot the defintion.
• Danger(sid, (Rchpkx−1,2m+1)

ikB
): the event thatA queries oCorrupt on ikB or

oReveal on rchkx−1,2m+1, or oAccessSK on the exponentiation.
- Danger(sid, ckx,2m) (x > 1, chain-index is even): the event that A queries oReveal

for ckx,2m+1 to πi
A or πj

B , or that both the following events occur:
• Danger(sid, ckx−1,2m), recursive part ot the defintion.

• Danger(sid, (Rchpkx
∗−1,y∗)

ikA
): the event that A queries oCorrupt on ikA or

oReveal on rchkx−1,2m, or oAccessSK on the exponentiation.
Regarding the (passive) danger to the message key we conclude as follows:

- Danger(sid,mkx,y): the event that A queries oReveal for mkx,y to πi
A or πj

B , or
that Danger(πi

A) occurs, or that both the following events occur:
• Danger(sid, ckx,y)

• Danger(sid, (Rchpkx
∗−1,y∗)

ikX
): the event that A queries oCorrupt on ikX (if

y is even, then X = A, if y is odd, then X = B) or oReveal on rchkx−1,y , or
oAccessSK on the exponentiation.

Beside these passive-attack strategies, A can also hijack a session, i.e., obtain cre-
dentials from an endpoint and use them to impersonate that endpoint to its partner,
inserting its own ratcheting information into the key schedule.

We define the hijacking of a session run between πi
A and its partner πj

B at some
stage sh = (xh, yh) (for which we assume w.l.o.g. that A is the sender) the event that
the following conditions hold simultaneously:

– A has queried oReceive(πj
B , sh, ADh, auxh);

14

– the values (ADh, auxh) were never output by an oSend(πi
A, sh, ·, ·) query;

– there exists a value v ∈ ADh ∪ auxh, but such that v 6∈sidskiA∪πi
B .var[sh].

We call stage sh successfully hijacked if, in addition to the conditions above, it also
holds that the oReceive query in the first bullet point has yielded an output that is dif-
ferent from ⊥. Let Hijack(sid, sh) be the event that the adversary successfully hijacked
a session with identifier sid at stage sh.

Let s∗ = (x∗, y∗) be the stage for which A has queried oTest. We define the active
danger to mkx

∗,y∗ , denoted Act.Dan(sid,mkx
∗,y∗), as follows:

- Act.Dan(sid,mkx
∗,y∗): is the event that either Danger(sid,mkx

∗,y∗) is triggered, or
the following events all occur:
• Hijack(sid, sh) was triggered for sid at stage sh = (xh, yh), such that sh is

prior to s∗;
• A has queried oTest for πj

B ;
• Depending on whether y∗ − yh is odd or even, precisely one of the following

events is triggered:
- If y∗ − yh is even: either A has queried oCorrupt on skA or oAccessSK

was queried on the AD input to oReceive cast on πj
B for stage s∗.

- If y∗ − yh is odd: A has queried oCorrupt for ikA, or oReveal on πj
B for

rchkx
∗,y∗ , or oAccessSK on (Rchpk∗)ikA such thatA has received Rchpk∗

as part of the AD of B ’s message at stage s∗ (via oSend).

4.2 Message-loss resilience

For the message-loss resilience game we need an additional notion. Let πi
P be such

that s ∈ πi
P for some stage s. We denote by next(πi

P , s) the stages reachable for that
instance from stage s. This depends on P ’s role (sender or receiver) at stage s = (x, y).
If P was a sender, then next(πi

P , s) = {(x′, y)|x′ ≥ x + 1}. If P was a receiver, then
next(πi

P , s) = {(x′′, y + 1)|x′′ ≥ 1}.
The message-loss resilience game begins like PCS-AKE, by creating nP honest

parties and their long-term credentials. We provide an illustration of it in Fig. 5. The
adversary receives the public keys, then gets access to the oracles oStart, oCorrupt,
oReveal, oAccessSK, and a crippled version of oSend and oReceive (A must always
use these oracles in honest mode). The adversary finally stops, outputting a protocol
instance/stage pair πi

P , s
∗, for which the challenger must produce the key mks

∗
(or ⊥

if it does not know it). We say A wins if, and only if, the challenger has output ⊥ and
there exists a stage s ∈ πi

P such that s∗ ∈ next(πi
P , s).

4.3 The security of MARSHAL

The following theorem describes the security of MARSHAL in terms of PCS-AKE se-
curity and MLR-security, as defined in Fig. 4 and Fig 5. This security holds in the
random oracle model (we replace the two KDFs by random oracles).

Theorem 1. If the GDH [14] assumption holds, if our signature scheme is EUF-CMA-
secure, then the MARSHAL protocol is PCS-AKE secure in the random oracle model
(we model the two KDFs asRO1,RO2). In addition, MARSHAL is MLR-secure.

Title Suppressed Due to Excessive Length 15

ExpMLR
Π (λ,A)

(P = {P1, · · ·PnP })← C(λ, nP)
(ski, pki)← CaKGen(1

λ) ∀i ∈ {1, · · · , nP}

OMLR ←
{
oCorrupt(·, ·), oStart(·, ·, ·), oReveal(·, ·, ·), oSend∗(·, ·, ·, ·),
oReceive∗(·, ·, ·, ·), oAccessSK(·, ·, ·)

}
;

(π?P , s
?)← AOMLR(1λ)

mk ← C

A wins iff. mk 6= ⊥

Fig. 5: Description of the MLR game, denoted ExpMLR
Π (λ,A) between adversaryA and

chalenger C. The game is parametrized by the security parameter λ and the number
of honest parties nP . Oracles oSend∗ and oReceive∗ are the crippled versions of the
original oSend and oReceive, restricted to honest mode only.

The proof of this theorem is not technically complex, but includes a lot of special
cases (just like the proof of Cohn-Gordon et al. [6]). This is a direct consequence of our
having excluded only trivial attacks from the winning conditions. However, we note
that this was done in order to provide a more direct and honest comparison to the Signal
protocol; indeed, with our winning conditions, Signal fails to attain security, whereas
MARSHAL can be proved secure.

Proof (Sketch). The first game-hops ensure that there are no collisions between DH key
values that are generated honestly, then the challenger must guess the target instance and
stage that will be input to the oTest oracle. Note that we do not rely on the security of
AEAD (since in fact the authentication of the AD is done also as part of the signature).

At this point, the proof moves “backwards”, from the point where the test took place.
What makes the proof tedious is that we have allowed the adversary a lot of power in
the winning conditions; thus, it is harder to rule out any specific queries a priori. We
replace the true message key at stage s∗ with a random (consistent) one, and must show
that this is not detectable by the adversary.

One key observation is that the only hijacking attempts (on the partnering instance)
that we worry about for active adversaries must occur before the test stage. However,
due to the restrictions imposed in Act.Dan(sid,mks

∗
), the adversary will not be able

to impose its own key (nor compute the message key on a receiving stage) unless it is
able to either forge a signature on behalf of the hijacked party (if s∗ is a sending stage
for the hijacked party) or learn a value (Rchpk∗)ik where the identity key belongs to
the hijacked party. Since our predicate Act.Dan(sid,mks

∗
) forbids the adversary from

learning the long-term key involved (depending on the nature of that stage), if the ad-
versary does forge the signature or submits an input including the value (Rchpk∗)ik to
RO2, we construct reductions to EUF-CMA security and respectively to GDH.

Note that without these two vital ingredients, even if A has successfully hijacked
and controlled the target instance’s partner so far, it cannot compute the message key by

16

itself. We proceed to rule out other means for the adversary to distinguish the key from
random. Since we have modelled both KDFs as a random oracle, our next step is to
rule out an adversary learning the input that the honest party (or parties) use to compute
mks

∗
. The event Danger(sid,mks

∗
) rules out combinations of queries that A could

make that would give it the values directly. We bound the probability that the adversary
has managed to input the correct value (Rchpk∗)ik to RO2 without endangering it, by
a reduction to GDH. Then we move on to the input chain key and continue working
through the particular cases. ut

Complexity. The security of MARSHAL comes at a cost compared to Signal. First, each
party must generate 2 long-term keys (instead of 1), and it must also register (and store)
a number of medium-term ratchet keys (these do not exist in Signal). As precomputation
(for multiple sessions), each party also signs the signature key with the identity key. We
compare computational overhead in terms of three types of computations: session setup
(beginning of session to first message keys), sending messages, and receiving messages.
Note that in all these stages we remove the need for root keys. At session setup, we re-
quire an additional signature, but otherwise the runtime remains comparable (although
our KDFs take larger input). Sending messages adds one random-value generation, two
group exponentiations, and two signature computations compared to Signal. Receiving
messages adds one group exponentiation, and two signature verifications. Finally, sent
and received messages involve much larger associated data than in Signal (the size is
linear in the maximal chain depth in order to achieve MLR). Finally, in terms of com-
munication overhead, all messages involve larger associated data (linear in the chain
depth) and one (constant-size) signature. Finally, the first two chains (y=1,2) also serve
to transmit an additional signature.

5 Conclusion

Our main contribution is providing an alternative design to Signal, which achieves much
stronger security properties at comparatively little cost. Unlike alternative approaches
to designing ratcheted key-exchange, which follow a modular design (typically based
on KEMs), we try to stick close to Signal’s original structure, thus showing how that
protocol could be modified to achieve better post-compromise security (PCS).

Our protocol departs from the key observation that Signal’s comparative lack of PCS
is due to the frequency of asymmetric ratchets and lack of persistent authentication. The
latter is fixed by adding long-term keys at every new stage. The former is dealt with by
adding asymmetric ratchets at every stage. To do so, we require a long-term key stored
on the semi-trusted Signal server, and we ensure that message-loss resilient is achieved
by providing the a list of correct ratcheting keys at every stage of a given chain.

Our protocol’s security heals after only one message, even in the presence of a
strong, active adversary, assuming that at least one long-term credential remains secure
(depending on the stage, this could be the signature or identity keys). This data should
therefore be stored separately from ephemeral data, in a secure component.

Title Suppressed Due to Excessive Length 17

References
1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and modular-

ization for the signal protocol. In: EUROCRYPT’19 (2019)
2. Anonymous: Full version (2021), https://drive.google.com/file/d/

1fw5bJf_M492dBjgygbFyNL1AdgWcE011/view?usp=sharing
3. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted encryption and

key exchange: The security of messaging. In: CRYPTO’17 (2017)
4. Blazy, O., Bossuat, A., Bultel, X., Fouque, P., Onete, C., Pagnin, E.: SAID: reshaping signal

into an identity-based asynchronous messaging protocol with authenticated ratcheting. In:
EuroS&P’19 (2019)

5. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to use pgp.
In: WPES ’04. ACM (2004)

6. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal Security
Analysis of the Signal Messaging Protocol. EuroS&P’17 (2017)

7. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In: CSF’16
(2016)

8. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement with linear
complexity. In: IWSEC’19 (2019)

9. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state compromise:
The safety of messaging. In: CRYPTO’18 (2018)

10. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guarantees for
secure messaging. In: EUROCRYPT’19. Springer (2019)

11. Marlinspike, M., Perrin, T.: The double ratchet algorithm (2016), https:// whispersys-
tems.org/docs/specifications/doubleratchet/doubleratchet.pdf

12. Marlinspike, M., Perrin, T.: Double Ratchet Algorithm. Signal (2016)
13. Marlinspike, M., Perrin, T.: The X3DH Key Agreement Protocol. Signal (2016)
14. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the security

of cryptographic schemes. In: PKC (2001)
15. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: CRYPTO’18

(2018)

A Signal

We briefly describe the Signal protocol, see [6] for more details. Signal can be described
in terms of four main steps:
Registration: Each party P registers by uploading on a semi-trusted server a number

of (public) keys: a long-term key denoted ipkP , a medium-term key prepkP signed
with ikP , and optional ephemeral public keys ephpkP .

Session Setup: Alice wants to initiate communication with Bob. She retrieves Bob’s
credentials from the server, generates an initial ratchet key-pair (rchk1A,Rchpk

1
A)

and an ephemeral key-pair (EpkA, ekA), and uses the X3DH protocol [13] to gen-
erate an initial shared secret ms (master secret): ms := (prepkB)

ikA ||(ipkB)
ekA ||

(prepkB)
ekA ||(ephpkB)

ekA . This value is used in input to a key derivation function
(KDFr), outputting the root key rk1 and the chain key ck1,1. The latter is used to
derive the first message key mk(1,1) that Alice uses to communicate with Bob. The
following associated data (AD) is appended to that message: the value 1 (for the
index x), Alice’s ephemeral public key EpkA, the ratchet key Rchpk1, as well as
Alice’s and Bob’s identities.

18

Symmetric Ratchet: Whenever a sender P chooses a new message to send, the stage
changes from (x, y) to (x+1, y) and a new symmetric ratchet takes place. At stage
(x, y), the message key is mkx,y , derived from a stage secret ckx,y . In fact, given
ckx,y , the sender computed (at stage (x − 1, y)) the values ckx+1,y and mkx,y . At
stage (x + 1, y), the sender inputs ckx+1,y to the key-derivation function KDFm
and receives the output ckx+2,y and mkx+1,y . The key mkx+1,y is then used for
the authenticated encryption of the sender’s message at stage (x + 1, y). The AD
sent at this stage will be the ratchet key Rchpky and the stage index8 x + 1. The
same process takes place on the receiving side, in order to authenticate and decrypt
messages.

ikA ekA rchk0,1A

ipkB prepkB rchk0,2B

(prepkB)
ikA (ipkB)

ekA (prepkB)
ekA

(prepkB)
rchk

0,1
A

ms

X3DH

KDFr

ck1,1A

KDFm

ck2,1Amk1,1A

KDFm

ck3,1Amk2,1A

rk1

(rchpk0,1A)rchk
0,2
B

KDFr

ck1,2B

KDFm

ck2,2Bmk1,2B

KDFm

ck3,2Bmk2,2B

KDFr

rchk0,3A

(rchpk0,2B)rchk
0,3
A

ck1,3A

rk2

KDFm

ck2,3Amk1,3A

KDFm

ck3,3Amk2,3A

Fig. 6: Effect of a compromise at initial state for Signal protocol (we use the X3DH
protocol without the optional fourth value). This figure contains the key-schedule of
Signal, with A denoting the initiator Alice and B, the responder Bob. The adversary
compromises A during setup. The keys that are now compromised are in bold, black
boxes.

Asymmetric Ratchet: If the speaker changes (that is Alice stops sending messages
and Bob starts instead), the new speaker inserts fresh Diffie-Hellman elements into
the key-derivation. Assume that we are at stage (x, y) and the speaker changes (thus
yielding stage (0, y + 1)). Different computations are made depending on whether
the new speaker is the initiator or the responder.
1. First assume that initiator Alice was the speaker at stages (·, y); therefore y is

even at each stage (·, y) and the encrypted message included associated data
Rchpky . When Bob comes online, he chooses a new ratchet key rchky+1, and
the public key Rchpky+1 is then computed. A temporary value t and the chain

8 In the original protocol, the sender also sends the identity public keys of Alice and Bob; since
these values are public and constant for all stages, we omit them.

Title Suppressed Due to Excessive Length 19

key ck(0,y+1) are calculated from the root key9 rky and the Diffie-Hellman
product (Rchpky)rchk

y+1

via KDFr. Then, the chain and message keys are com-
puted as described in the previous item. From that point onwards, keys evolve
by symmetric ratcheting until the speaker changes again.

2. Now assume that the responder was the speaker at stages (·, y); therefore y
is odd and at each stage (·, y) the encrypted message includes associated data
Rchpky . When Alice comes online, she chooses new ratcheting information
rchky+1,Rchpky+1 and computes a new root key rky+1 and the base chain key
ck(0,y+1) from the value t computed at stage (0, y) (see the bullet point before)
and the Diffie-Hellman product (Rchpky)rchk

y+1

. From here the key derivation
proceeds as described in the bullet point on symmetric ratcheting.

We depict in Fig. 6 the extent of a full compromise in the case of the Signal protocol.
We note that a compromise of Alice’s ephemeral values (including the stage-specific
ratchet key) leads to two entire chains of messages being leaked.

B Winning conditions

In this appendix we describe the winning conditions in a pictographic way. Due to lack
of space, we choose sometimes to only handle one of two alternative situations (for
instance just y is odd or y is even, rather than both). The adversary can be a passive
or an active adversary, as described in Section 4. The active adversary has all the full
capacities (and restrictions in winning conditions) as the passive one, as shown in Fig. 7.

Active adversary

Passive adversary∧Authentication

Forgery ability
∨ Access to skA

Fig. 7: General description of an active adversary.

Subsequently, we show the conditions under which the adversary successfully hi-
jacks a session at a stage with odd y, in Fig. 8. In Fig. 9 through to Fig. 13 we represent
the most important danger events for passive adversaries.

C Proof of Theorem 1

Proof. The security statement is parametrized by the maximal number of stages nS run
by any given instance, the number of parties generated by the adversary nP, the number

9 Root keys are only computed when one reverts back to the initiator, so in our notation, on
stages (0, y) for even values of y.

20

Act.Dan(mkx,y)

Danger(σxh,yh)Danger(ckx−1,y) ∧∧Danger(ipk
rchkxh,yh

B)

Adversarially
generated Danger(ckx−2,y)

oCorrupt(A)
∨oAccessSK(skA)

Fig. 8: Conditions for A to hijack the communication at stage s = (x, y) with yh odd.

Danger(ms)

Danger(sid, ephpkekAB)∧Danger(sid, prepkekAB)∧Danger(sid, ipkekAB)∧Danger(prepkikAB) Danger(rev ms)() ∨

oReveal(πj
B , ephkB , (0, 0))

∨oReveal(πi
A, ekA, (0, 0))

oReveal(πj
B , prekB , (0, 0))

∨oReveal(πi
A, ekA, (0, 0))

oCorrupt(B , ik)
∨oReveal(πi

A, ekA, (0, 0))

∨oAccessSK(B ,EpkikBA , (ik,EpkA))

oCorrupt(A, ik)
∨oReveal(πj

B , prekB , (0, 0))

∨oAccessSK(A, prepkikAB , (prepkB , ik))

oReveal(πi
A,ms, (0, 0))

∨oReveal(πj
B ,ms, (0, 0))

Fig. 9: Conditions for A to learn ms.

(

Danger(ck1,1)

Danger(rev ck1,1)Danger(ms)∧)∨Danger((prepkB)
rchk0,1)

oReveal(πi
A, ck

1,1, (1, 1))

∨oReveal(πj
B , ck

1,1, (1, 1))
oReveal(πj

B , prekB , (0, 0))
∨oReveal(πi

A, rchk
0,1, (0, 0))

Fig. 10: Conditions forA to learn ck1,1.

(

Danger(ck1,y)

Danger((Ty−1)
ikB)∧Danger((ipkA)

ty−2) Danger(rev ck1,y)) ∨

oCorrupt(B , ik)
∨oReveal(πi

A,T1, (1, y))

∨oAccessSK(B , (Ty−1)
ikB , (ik,Ty−1))

oCorrupt(A, ik)
∨oReveal(πj

B ,Ty−2, (1, y))

∨oAccessSK(A, (Ty−2)
ikA , (ik,Ty−2))

oReveal(πi
A, ck

1,y)

∨oReveal(πj
B , ck

1,y)

Fig. 11: Conditions for A to learn ck1,y .

(

Danger(ckx,y)

Danger((Rchpkx−1,y)
ikB)∧Danger(ckx−1,y)) ∨ Danger(rev ckx,y)

oCorrupt(B , ik)
∨oReveal(πi

A, rchk
x−1,y, (x− 1, y))

∨oAccessSK(B , (Rchpkx−1,y)
ikB , (ik,Rchpkx−1,y))

oReveal(πi
A, ck

x,y, (x, y))

∨oReveal(πj
B , ck

x,y, (x, y))

Fig. 12: Conditions for A to learn ckx,y where y is odd (i.e., Alice’s chain).

Danger(ckx,y)

Danger((Rchpkx−1,y)
ikA)∧Danger(ckx−1,y)() ∨ Danger(rev ckx,y)

oCorrupt(A, ik)
∨oReveal(πi

A, rchk
x−1,y, (x− 1, y))

∨oAccessSK(A, (Rchpkx−1,y)
ikA , (ik,Rchpkx−1,y))

oReveal(πi
B , ck

x,y, (x, y))

∨oReveal(πj
A, ck

x,y, (x, y))

Fig. 13: Conditions for A to learn ckx,y where y is even (i.e., Bob’s chain).

Title Suppressed Due to Excessive Length 21

of medium-term keys nprek deployed, and the number of instances nπ created by any
given party.

We prove the statement in a sequence of game hops, as follows.

G0: This is the ExpPCS-AKE
Π (λ,A) described in Section 4. We denote by Adv0 the max-

imal advantage an adversary A to win this game.
G1: This game is identical to G0, except, whenever prompted to generate randomness

within a protocol step, any honestly-created instance of the protocol will produce
unique, random values. In other words, we remove the probability of having a col-
lision for any of the private material, including:
• Long-term keys: ik, sk;
• Medium-term keys: prek, t0;
• Session-setup ephemeral keys: ek, rchk0,1;
• Stage-specific ephemeral keys: same-user ratchet keys rchkx,y avec x ≥ 0,

and, at every fresh y > 0, a new cross-user ratcheting key ty .
For ease of notation, we will upper-bound the number of fresh cross-user ratcheting
keys by the total number of stages nS(the bound is tight if we have only one message
per chain). Let Adv1 be the advantage of the adversary A in this game.
It holds that:

Adv0 ≤
(nP+nP·nprek+nπ·(2+2nS)

2

)
q

+ Adv1 .

G2: This game is identical to G1, except that the challenger guesses and outputs (pri-
vately w.r.t. the adversary) a tuple consisting of an instance πi

P and a stage index
s∗. The game is lost if these do not coincide with the tuple output by the adversary
to oTest. Let the advantage of the adversary in this hop be Adv2. Then:

Adv1 ≤
1

nPnπnS
Adv2.

Note that the challenger’s guess πi
P , s
∗ gives it more information than just the target

instance and stage. In particular, the challenger now knows: the target party P , the
role of P in the target session (initiator/responder), the role of party P in πi

P at
stage s∗ (sender/receiver), as well as the role of P at every prior or future stage in
that conversation.

G3: This game hop is identical to G2 except that the challenger will now refuse to an-
swer the adversary’s hijacking queries (oReceive queries with adversarially-chosen
input substituted for output of honest oSend queries) for the following queries:
• If A queries oReceive maliciously for an instance of some party other than P ;
• If A queries oReceive maliciously for an instance of P other than πi

P ;
• If A queries oReceive maliciously for the target instance πi

P for a stage s that
comes after s∗;

• If A queries oReceive maliciously for πi
P , such that: s precedes s∗ and πi

P

already has a message key mk set for the target stage or any other stage in that
chain at the time of the oReceive query.

22

We argue that the adversary’s advantage in this game, denoted Adv3, is undimin-
ished with respect to G2 , because: (1) as of G1 we have unique session identifiers;

(2) we are using random oracles for the key derivation; (3) once key material is ac-
cepted for the target stage (or an ulterior one in the same stage), that automatically
sets the ratcheting information, which cannot be reset by the malicious oReceive
query. Thus:

Adv2 = Adv3;

Note that, starting from this game, the only hijacking attempts that will work are
those for the target instance, for stages prior to the target stage.

G4: This game behaves identically to the previous game, except that the adversary in-
stantly loses (the game returns a random bit) if the following conditions hold:
• The adversary successfully hijacks the session run by πi

P by a malicious oReceive
query to πi

P at some stage sh prior to s∗;
• The adversary has not triggered Danger(πi

P .sid,mks
∗
).

We claim that the advantage of the adversary in this game, denoted Adv4 is such
that:

Adv3 ≤ MAX
[
AdvEUF−CMA

Sign (B),AdvGDH(C)
]
+ Adv4,

for reductions B against the unforgeability of the signature scheme and C against
the Gap-DH problem.
To understand this claim, we first note that the adversary can find itself in one of
two situations: at target stage s∗, the target instance πi

P is either the sender, or the
receiver. The two situations are mutually exclusive, and as soon as the challenger
guesses the target instance and stage, it will know which of those situations it is in.
Moreover, note that once successful hijacking is achieved, the instance πi

P will no
longer be partnered with its honest partner (which A has successfully imperson-
ated), but rather, with the adversary itself.
We now consider the two options described above.
Suppose first that πi

P is the receiver at stage s∗. In this case, we can construct a
reduction B to the unforgeability of the signature scheme. This reduction generates
all the private keys with the exception of skQ , where Q = πi

P .pid. Then the reduc-
tion simulates the game faithfully, querying its signature oracle whenever it needs
a signature on behalf of Q .
In order to win its game A will need to query oTest for the honest instance πi

P at
stage s∗. Suppose that A has not queried oReceive for πi

P at stage s∗. In this case,
our reduction will fail, but so willA, since πi

P will have no key mks
∗

set. Since πi
P

no longer has an honest partner, A cannot receive honest input from that partner.
As a result, the only way for the adversary to make P ratchet to stage s∗ is to
produce a valid message at stage s∗ (since P is the receiver at that stage), including
a valid signature using skQ . Note also that A may not simply query corrupt Q for
that signature key (a query that B would not be able to respond to), nor can it use
oAccessSK (since either of those actions would trigger the active danger event).
Hence, the adversary’s only choice is to forge the signature.
We have two situations. EitherA does not produce that message/signature pair – in
which case, both A and B lose, or A does produce the message/signature pair, in
which case B can forward it, and wins.

Title Suppressed Due to Excessive Length 23

Now we turn to the other situation, in which πi
P is the sender at the target stage s∗.

In this case, we construct an adversary C against the GDH problem that wins with
at least as much probability as A wins its game.
The reduction C will simulate the game correctly, except that it will embed, as it
elements ga, gb, the public identity key of Q (pkQ) and the public ratcheting key
Rchpks

∗
(forwarded by P at stage s∗). We note that the only way the adversary can

distinguish mks
∗

from random is if it queried input that includes (Rchpks
∗
)skQ to

the random oracle RO2. Note that the reduction generates all the other keys, and
uses its DDH oracle to ensure consistency with respect to the challenge elements.
When the adversary queries RO2 with an input that allows the DDH oracle to
return 1, the reduction forwards that input as its guess for gab.
We have two cases. Either A never queries a correct input to RO2, in which case
both A and C fail, or A does query the correct input, in which case C wins.
This gives the required bound.
Note that we have now effectively ruled out active attacks made by the adversary.
We can now focus on only passive attacks.
From this point on, we will have to move through the options given in the winning
conditions, starting from the target stage.

G5: This game is identical to the previous one, except the adversary loses (the game
returns a random bit) if it does not trigger the event Danger(πi

P .sid, (pkR)
rchks

∗

),
where R is the receiving party in the target session at stage s∗ (thus, R could be
either P or its partner). In the following we show that except for breaking the GDH
problem, the adversary’s view of the two games is identical.
Let Adv5 be the adversary’s advantage in G5. It holds that:

Adv4 ≤ AdvGDH(D0) + Adv5,

where D0 is an adversary that breaks the GDH problem.
The reduction is very similar to the second case of game G4 (reduction C). The
adversary cannot simply leak the value of mks

∗
(as per the winning conditions) and

it cannot perform an active attack (as per the previous game). Its only option is to
query RO2 for the correct input that yields mks

∗
, including the value (pkR)

rchks
∗

.
The reduction only has to embed its challenge tuple into that value and return it
when A queries it to the random oracle.
As of this game, we can therefore assume that the adversary A triggers the event
Danger(πi

P .sid, (pkR)
rchks

∗

). Note that, as per the winning conditions, the adver-
sary cannot now also trigger the event Danger(πi

P .sid, ck
s∗). In addition: honest

instances cannot produce ratcheting keys duplicating rchk(x
∗−(j−5),y∗)(as per G1),

and while pkR will be used in other instances, the reduction knows the other share
in the DH product. Finally, note that in order to win, the adversary must input a
value for cks

∗
toRO2.

G6-G5+x∗ : At each subsequent game hop G5+j , with j ∈ {1, . . . , x∗ − 1}, we move one
step backwards along the x axis of the challenge stage s∗ = (x∗, y∗). At each
step, the adversary will lose (and the game will return a random bit) if the event

24

Danger(πi
P .sid, (pkR)

rchk(x
∗−j,y∗)

) is not triggered, where j is the number of the
game hop. For each game we use the same argument as above to prove:

Advj ≤ AdvGDH(Dj) + Advj+1.

Here, Dj is at each time a new reduction (j ∈ {1, . . . , x∗ − 1}) against the GDH
problem. The latter will be embedded at each time in the input toRO2, which is of
the form: (pkR)rchk

(x∗−j,y∗)
.

After every individual game hop, the conclusion is the same: in order to produce
the correct input to RO2, the adversary somehow has to have a correct value for
the chain key – without triggering the danger event to that value.

G6+x∗ -G6+nS : In these games we continue making reductions to Gap-DH as we move backwards
through the various stages (chains y∗− 1, y∗− 2, . . . , 1). Each time we lose a term
AdvGDH(Dj), for j ∈ {x∗, . . . nS}.

G7+nS : This game hop consists of case-by-case reductions for the security of the master
secret ms, similar to the analysis given by Cohn-Gordon et al. in Appendix C1 of
the full version of their Signal-analysis paper. We notably replace this master secret
by a consistent, but random value. For each case, we focus on which values are not
endangered by the adversary (the winning conditions will not allow the adversary,
by that point in the game, to know all the parts). In each case, we will lose a term
equivalent to a reduction to GDH.

G8+nS : In this game hop we replace all the chain keys from ck1,1 to cks
∗

by consistent, but
random values. We argue that, due to the previous gamehops, the adversary has no
means of endangering this value, and as such, we can guarantee that no such input
has been made to the random oracles. At this point the adversary’s advantage will
be 1

2 , thus concluding the proof.

