
Secure Key Renewal and Revocation for Wireless
Sensor Networks

Ismail Mansour, Gérard Chalhoub, Pascal Lafourcade, and François Delobel
Clermont University, LIMOS laboratory, France

firstname.name@udamail.fr

Abstract—Once a secure mechanism for authenticated com-
munication is deployed in a Wireless Sensor Network (WSN),
several situations may arise: a node can leave the network, a
new node can join the network, an intruder could try to join
the network or capture a node. Therefore it is important to
revoke and renew certain keys that are learned by a malicious
node. We propose several secure WSN protocols for revocations
and renewal of cryptographic keys in the network based on
symmetric encryption and elliptic curve cryptography (ECC). For
all our solutions, we provide a formal analysis of the security of
our protocols using Scyther, an automatic verification tool for
cryptographic protocols. All the proposed protocols are proven
secure but have different security levels by using different types
of keys. Finally we implemented all our protocols on real testbeds
using TelosB motes and compared their efficiency.

Keywords—Key Renewing, Key Revocation, WSN, Security.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) are more and more
used to monitor our environment and to interconnect modern
devices. Some applications are critical and often require cryp-
tographic mechanisms in order to achieve security [9]. Then
it is important to design secure communication mechanisms
between nodes of the network, using cryptography. Once this
secure communication channel is established, a node can leave
the network (running out of battery or even being destroyed),
or a new node can join the network. In addition, an intruder
could capture a node and learn all his secret data (includingse-
cret keys). An intruder node could also try to join the network
and be part of the authenticated nodes. In order to detect such
intruders several Intrusion Detection Systems (IDS) have been
proposed in the literature. In general IDS either monitor the
internal behavior of one node, or search for signs of malicious
activity in the network. For this, several methods are used like
signature-based or anomaly-based detection technique. Based
on the results of IDS, the next step is to revoke malicious
nodes that have been identified and to renew the network
keys. Moreover, it is widely admitted that, in WSNs, using
asymmetric encryption primitives based on exponentiation,
like for instance RSA or Elgamal, is not realistic, due to the
limited resources of sensor nodes. However several lightweight
cryptographic primitives that are more adapted for WSN exist
e.g. [2]. The low level of security of lightweight primitives
remains a real obstacle for their deployment. For instance,
in [10], using an improved differential fault analysis, authors
can break a lightweight block cipher for WSNs calledLBlock
using a typical personal computer within one hour. It is clearly
not surprising that lightweight encryption can be attackedin
few hours with more computation power than that of a sensor

node. In this context, it is therefore crucial to have efficient
revocation and renewal mechanisms in WSNs.

Related Work: One of the first key revocation protocols
was proposed in [4] and [3]. This proposition has been
enhanced by authors of [5] where they proposed a distributed
collaborative key revocation mechanism that divides the net-
work into regions. In each region, nodes collaborate to identify
a malicious node. Once a malicious node is identified, the base
station is informed and it sends a broadcast message containing
a list of keys to revoke. Unlike [4], [3], their contributionis
able to revoke all the keys with which the revoked node is
involved and does not need to know the network topology
before the deployment. The key revocation message sent by the
base station is based on trivariate polynomial authentication
and verified by each node according the region to which it
belongs. In [8], authors propose a key distribution based on
key chains where each key is obtained by applying a hash
function on the next key in the chain. These key chains are
either exchanged through a secure channel or installed in
nodes before deployment. Authenticating the keys is done by
verifying the hash result. A central node is used as a key
service entity that manages the key revocation process. This
entity shares a secret key with every node in the network.
Authors do not explain how this secret key is shared neither
how this secret is renewed. Protocols based on key chains
cannot easily update the chains, for their key renewal is based
solely on the hashing function and the root value of the chain.
Moreover chains should be long enough to last for the life
duration of the network. In [15], authors proposed a periodic
key renewal based on fragmentation of the key generation
function. This method supposes that nodes will assemble the
fragments sent by the base station. The process of assembling
the function is not authenticated and might be easily falsified
for it uses only one key which is a shared key between all
the nodes of the network, thus any compromised node is able
to interfere in the process. In [11], authors propose a key
renewal mechanism that is managed by a special entity called
the Command Node. The network is organized into clusters
with one Cluster Head node that is used for key revocation.
This cluster head receives the list of new keys for renewal
and sends them to the other cluster gateways which in turn
send them to the sensor nodes. Authors use the shared key
with the Command Node to update keys and do not propose
a mechanism for updating this shared key.

According to our knowledge, none of the existing re-
vocation and key renewal protocols were verified using an
automatic formal verification tool, in addition, most of the
existing results are obtained through simulations or complexity



estimation when evaluating the cost of the cryptographic
scheme. Our mechanism achieves authenticated key renewal
in the presence of malicious nodes to update all the keys in
a multihop network, we provide automatic formal verification
and real testbed implementation.

II. A UTHENTICATED JOIN PROTOCOLS

We use public key Elliptic Curve Cryptography (ECC),
using parameters secp160r1 given by the Standards for Ef-
ficient Cryptography Group [14]. Our implementation of ECC
on TelosB is based on optimized TinyECC library [12]. More
precisely we use Elliptic Curve Integrated Encryption Scheme
(ECIES 160 bits), the public key encryption system proposed
by Victor Shoup in 2001. For all symmetric encryptions we
use an optimized implementation of AES with a key of 128
bits proposed by [13]. We use the following notations to
describe exchanged messages in our protocols:I: a new node
that initiates the protocol;R: a neighbor of nodeI; S: the
sink of the network (also calledbase station); nA: a nonce
generated by nodeA; {x}k: the encryption of messagex
with the symmetric or asymmetric keyk; pk(A): the public
key of nodeA; sk(A): the secret (private) key of nodeA;
K(I, S) or K(S, I): the symmetric session key betweenI and
S; NK: the symmetric network key between all nodes of the
network;KDH(N,S) or KDH(S,N): the shared symmetric
key betweenN andS using the Diffie-Hellman key exchange
without interaction described below.

Before deployment, each nodeN knows the public key
pk(S) of the sink and also its own pair of public and private
keys, denotedpk(N) andsk(N) respectively. Based on ECC,
we have thatpk(N) = sk(N) × G, whereG is a generator
point of the elliptic curve. Using this material, each nodeN
can compute a shared key with the sinkS using a variation of
the Diffie-Hellman key exchange without interaction, denoted
KDH(N,S) = KDH(S,N).

III. R ENEWAL AND REVOCATION PROTOCOLS

a) Key Revocation Protocol (KR): The sink collects
the IDS results and determine the nodes that have to be
revoked. Then he sends a revocation request to nodeI using
the protocol (KR) described in Figure 1. In this protocol, the
sink sends to nodeI the listM1, . . . ,Mk of all revoked nodes
in the neighborhood ofI and a noncenS encrypted with
KDH(S, I). Then nodeI deletes all shared session keys with
all nodes included in the list and do not accept any further
communications with these nodes. In order to confirm the
reception of the list, nodeI sends back the noncenS encrypted
with KDH(S, I). NoncenS acknowledges the reception of the
list by nodeI, it also ensures the authentication.

b) Renewing Symmetric Keys (RSK): Figure 2 presents
protocol RSK that allows an initiator nodeI to renew a session
key with its neighborR. The protocol consists in sending the
new session keyK ′(I, R) encrypted with the previous session
key K(I, R) in order to confirm toR that I has the previous
session key. Then the message is encrypted again with the
public key ofR. Notice that an intruder should obtainK(I, R)
and sk(R) in order to learn the new session keyK ′(I, R).
This protocol clearly increases the security but will take alot
of execution time due to the extra public key encryption (see

Sink

S

Dest. node

I

{M1, ...,Mk, nS}KDH(S,I)

{nS}KDH(S,I)

Figure 1: Protocol KR: Revocation ofk malicious neighbor
nodes of nodeI.

Table I). Finally, the new keyK ′(I, R) is used as a nonce by
R to confirm the reception by sending back toI the message
{K ′(I, R)}K′(I,R).

Initiator

I

Neighbor

R

{{K′(I,R)}K(I,R)}pk(R)

{K′(I,R)}K′(I,R)

Figure 2: Protocol RSK: Renewing a symmetric or session key.

c) Renewing Asymmetric Keys (RAK): We give four
protocols to renew all asymmetric keys of the network. These
protocols use the existing key infrastructure to securely replace
all the asymmetric keys between the sink and all nodes of the
network. For this, the sink creates his own new public/private
keys (pk′(S), sk′(S)) and a new pair of public/private keys
(pk′(I), sk′(I)) for each nodeI in the network. Our four
protocols (RAKnka, RAKnkb, RAKdha and RAKdhb) are
based on the same idea: FirstS securely sendspk′(S) and the
new pair of keys for nodeI; then nodeI replies by sending
back his identity with the new shared keyK ′

DH(S, I). We use
different cryptographic primitives to distribute these new keys.

In Figure 3, we present two protocols RAKnka and
RAKnkb, where the new public key of the sinkpk′(S) is
broadcast to all nodes usingNK. In the first protocol RAKnka,
depicted in Figure 3a, the sink only sends to each nodeI the
new pair of keys usingKDH(S, I). ThenI computes the new
shared keyK ′

DH(S, I) = sk′(I) × pk′(S). In order to save
computation time for nodeI, we propose a second version
RAKnkb in Figure 3b, whereS pre-computesK ′

DH(S, I) =
sk′(S)× pk′(I) without using the secret key ofI.

An alternative is to use the pre-shared keyKDH(S, I)
instead ofNK in the distribution ofpk′(S), as depicted in
Figure 4. In Figure 4a, we explain the protocol RAKdha with
computation of the new key performed by nodeI. In Figure 4b,
we present the protocol RAKdhb where the sink pre-computes
K ′

DH(S, I). These two protocols use symmetric shared keys
on each hop preventing an intruder to learn the new key of the
sink by learning the network key as it is the case in protocols
of Figure 3. Nevertheless this solution requires more load on
the network since the transmission of the public key of the



sink is not a broadcast using the network key but an unicast
using a symmetric shared key between two nodes.

Sink

S

Dest. node

I

{pk′(S)}NK

{pk′(I), sk′(I)}KDH (S,I)

K′

DH
(S, I)

{I}K′

DH
(S,I)

K′

DH
(S, I)

(a) Protocol RAKnka: S andI computeK′

DH(S, I).

Sink

S

Dest. node

I

{pk′(S)}NK

K′

DH
(S, I)

{pk′(I), sk′(I),K ′

DH(S, I)}KDH(S,I)

{I}K′

DH
(S,I)

(b) Protocol RAKnkb: S computesK′

DH(S, I) and sends it toI .

Figure 3: Renewing asymmetric keys of a nodeI using the
network keyNK to broadcastpk′(S).

d) Renewing the Network Key (RNK): The sink decides
when to renew the network keyNK. We propose a secure
way for the sink to distribute this new key to all authenticated
nodes. This protocol, denoted RNK, is described in Figure 5.
It allows the sink to be sure that all nodes receive the new key
before to start using it. The sink generates a new network key
NK ′ and a noncen(S,I) and encrypts them using the shared
symmetric keyKDH(S, I) and sends them to nodeI. Then,
it waits until it receives all nonces before to start usingNK ′.

e) Formal Security Evaluation: Evaluating the security
of cryptographic protocols is not an easy task and is easy
to design flawed protocols. Moreover during the last decade
several tools have been developed to automatically verify cryp-
tographic protocols [1], [7]. In order to prove the securityof
all our protocols we use the cryptographic protocol verification
tool Scyther[7]. We choose this tool since it is one of the fastest
tools as it has been shown in [6] and one of the most user-
friendly. Scyther automatically proves security properties or
give an attack on a cryptographic protocol for bounded and
unbounded numbers of sessions and provides an easy way to
model security properties like secrecy and authentication.

We verified automatically all our protocols using Scyther
in few seconds on a regular PC. Scyther concludes that all our

Sink

S

Dest. node

I

{pk′(S)}KDH (S,I)

{pk′(I), sk′(I)}KDH(S,I)

K′

DH
(S, I)

{I}K′

DH
(S,I)

K′

DH
(S, I)

(a) Protocol RAKdha: S andI computeK′

DH(S, I).

Sink

S

Dest. node

I

{pk′(S)}KDH (S,I)

K′

DH
(S, I)

{pk′(I), sk′(I),K ′

DH(S, I)}KDH (S,I)

{I}K′

DH
(S,I)

(b) Protocol RAKdhb: S computesK′

DH(S, I) and sends it toI .

Figure 4: Renewing the asymmetric keys of a nodeI using
the symmetric shared keyKDH(S, I).

Sink

S

Dest. node

I

{NK′, n(S,I)}KDH (S,I)

{n(S,I)}KDH (S,I)

Figure 5: Protocol RNK: Renewing the Network Key.

protocols are secure and proves the secrecy of all sensitivedata
exchanged (keys and nonces) and also the authenticity of the
communication1. Moreover for each protocol, we minimize the
amount of exchanged data. For example, we use in the protocol
of Figure 2 the new symmetric key as a nonce.

IV. EXPERIMENTS

Using our own implementations on TelosB motes, we
compare the time execution of our different protocols.

1http://sancy.univ-bpclermont.fr/∼ lafourcade/scyther-lcn-code.tar



Protocol Name Figure Time with S (ms) Time withoutS (ms) Gain Standard deviation (ms)
Revocation KR 1 155.37 87.58 44% 3.82
Renewing SymKey RSK 2 10042.32 10042.32 0% 76.49
Renewing AsymKey RAKnka 3a 6797.75 3436.24 49% 4.26

RAKnkb 3b 3646.05 254.62 93% 3.95
RAKdha 4a 6797.75 3436.24 49% 4.26
RAKdhb 4b 3646.05 254.62 93% 3.95

Renewing Network Key RNK 5 221.09 121.4 45% 3.73

Table I: Time execution of all protocols.

Settings: To evaluate the efficiency of our solutions, we
used TelosB motes. These motes have a 8 MHz microcontroller
with 10 Kb of RAM, 48 Kb of ROM and a CC2420 radio
using the IEEE 802.15.4 standard. During the experiments,
we considered topologies without intermediate nodes, since
these nodes would only forward the packets without doing any
modification on the packet. The cost of these communications
is therefore negligible compared to the encryption and decryp-
tion costs. Moreover, this cost is the same for all protocols,
only the load of the network can change between unicast and
broadcast protocol. Hence for each situation we only consider
a minimal topology containing only the nodes involved in the
cryptographic operations.

Results and Discussion: In Table I, we provide the
execution time for all our protocols. We also present the
results without the execution time of the sink, since in many
applications the base station is a special node with extra
resources. All results are the averages of100 experiments of
each protocol. We also provide the standard deviations for
execution time including time ofS. The protocol KR (key
revocation) is the fastest. We also note that the sink performs
almost half of the cryptographic operations, thus by making
it doing more operations we avoid sensor nodes from doing
the heavy cryptographic computations. If the size of the list
of revoked nodes increases then the protocol KR will take
more time. For renewing the asymmetric key we proposed four
protocols, two of them use the symmetric network keyNK
and the other two use symmetric keysKDH . We see that since
they are using the same symmetric encryption mechanism they
take the same execution time. Hence, the execution time for
protocols RAKnka and RAKdha is the same and similarly
for protocols RAKnkb and RAKdhb. However, the second
version of these protocols RAKnkb and RAKdhb are faster than
protocols RAKnka and RAKdha (more so if we do not count
the sink execution time). It clearly shows that the computation
of the new key by a node is expensive. Therefore it is important
that a designer takes it into account during the conception of
the protocols in order to have efficient protocols and also to
preserve resources of the nodes.

V. CONCLUSION

We have proposed several protocols to revoke a set of
nodes, and renew symmetric and asymmetric keys. All our
protocols have been automatically verified using Scyther. This
ensures the security of our solutions. We also have imple-
mented our protocols on testbeds using TelosB motes in order
to compare their efficiency. Then, according to the context

(size of the network, size of the battery, type of mote, energy
consumption for communication, computation resources of the
motes) one solution might be better than another one. All these
parameters should be taken into account before to choose one
real solution. In our future work, we are planning to adapt
these protocols to support mobility.

Acknowledgemnt: This research was conducted with the
support of the Digital trust Chair from the University of
Auvergne Foundation.

REFERENCES

[1] B. Blanchet, “Automatic proof of strong secrecy for security protocols,”
in IEEE Symposium on Security and Privacy, May 2004, pp. 86–100.

[2] M. Cazorla, K. Marquet, and M. Minier, “Survey and benchmark of
lightweight block ciphers for wireless sensor networks,” in SECRYPT,
P. Samarati, Ed. SciTePress, 2013, pp. 543–548.

[3] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan, “On the distribu-
tion and revocation of cryptographic keys in sensor networks,” IEEE
Transaction on Dependable and Secure Computing, vol. 2, 2005.

[4] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” inIEEE S & P, 2003.

[5] S. Chattopadhyay and A. K. Turuk, “A scheme for key revocation in
wireless sensor networks,”International Journal on Advanced Com-
puter Engineering and Communication Technology, vol. 1, 2012.

[6] C. J. Cremers, P. Lafourcade, and P. Nadeau, “Comparing state spaces
in automatic protocol analysis,” inFormal to Practical Security, vol.
5458/2009. Springer, 2009, pp. 70–94.

[7] C. Cremers, “The Scyther Tool: Verification, falsification, and analysis
of security protocols,” inCAV’08, ser. LNCS, 2008.

[8] G. Dini and I. Savino, “An efficient key revocation protocol for wireless
sensor networks,” inInternational Symposium on a World of Wireless,
Mobile and Multimedia Networks, 2006.

[9] M. A. Hussain, P. Khan, and K. K. Sup, “Wsn research activities
for military application,” in Proceedings of the 11th international
conference on Advanced Communication Technology-Volume 1, 2009.

[10] K. Jeong, C. Lee, and J. Lim, “Improved differential fault analysis on
lightweight block cipher lblock for wireless sensor networks,” EURASIP
J. Wireless Comm. and Networking, vol. 2013, p. 151, 2013.

[11] G. Jolly, M. Kusçu, P. Kokate, and M. Younis, “A low-energy key
management protocol for wireless sensor networks,” inISCC’03, 2003.

[12] A. Liu and N. Ning, “Tinyecc: A configurable library for elliptic
curve cryptography in wireless sensor networks,” in7th International
Conference on Information Processing in Sensor Networks, 2008.

[13] N. Manica, M. Saloni, and P. Toldo, “WSN - secure comunications with
AES algoritms,” Univ. of Trento - Faculty of Computer Science, 2008.

[14] C. Research, “Standards for efficient cryptography, sec 1: Elliptic curve
cryptography,” September 2000.

[15] C. Wang, T. Hong, G. Horng, and W. Wang, “A key renewal scheme
under the power consumption for wireless sensor networks,”Journal of
Colloid and Interface Science, 2006.


