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Abstract

Intruder deduction problem constitutes the first step in cryptographic protocols verification for a passive
intruder. In the case of an active intruder, we know that undecidability of the unification problem implies
undecidability of the secrecy problem. In this paper, we analyze the link between the unification problem
and the intruder deduction problem. Through examples using equational theories, we show that these two
problems are not linked. We present situations where one problem is decidable and the other one is not,
or the both are decidable or not. All these examples prove that the two problems are independent for a
passive intruder.
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1 Introduction

There are different approaches for modeling cryptographic protocols and analyzing

their security properties. One of them was introduced by Dolev and Yao in [DY83].

This approach consists in modeling the attacker capabilities by a deduction system.

This method is used to analyze the security of protocols against a passive attacker,

i.e an intruder which obtains some information by eavesdropping on the network

the communication between honest participants and deduces some information from

these messages. The question whether a passive attacker can obtain a certain secret

informations from observed messages on the network is called the intruder deduction

problem.

The Dolev-Yao model has been extended by several equational theories to an-

alyze in a more realistic way the cryptographic protocols. These new models al-

lows searchers to find new attacks (see [CDL06] for a survey) by developing so-

lutions to the intruder deduction problem modulo an equational theory for in-
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stance, for exclusive-or, Abelian groups [CLS03,CKRT03], a homomorphism symbol

alone [CLT03], and combinations of these theories [LLT05,Del06a,CR05].

We note that small changes in equational theory can turn decidability into un-

decidability as it has been observed for the active case with exclusive-or and homo-

morphism. With this equational theory the secrecy problem is decidable [DLLT06],

but with Abelian group and homomorphism it is undecidable [Del06b].

Recently in [ANR07], the authors investigate sufficient decidability conditions on

the rewriting system modeling the intruder’s abilities to ensure if there exists a cap

solving the intruder deduction problem (a cap consists of all possible actions doable

by an intruder on eavesdropped terms). In Section 6, they obtain undecidability for

a cap with one hole, i.e. the intruder cannot reuse terms. It shows that even in a

restricted case it is not obvious to solve the intruder deduction problem.

We also notice that in the active case, as we explain in [CDL06], undecidability

of the unification problem implies undecidability of the secrecy problem. The idea

of this result is that we can build a protocol between two agents A and B. First

A sends to B a set of n messages. If B is able, using the n received messages, to

produce a message composed of the encryption of the two terms u[x1, . . . , xn] and

v[x1, . . . , xn], and if A receives a message composed of two identical term then he

sends the secret on the network. Hence the secret is published only if B solved the

unification problem between u and v.

One can imagine that the link between unification which has been exhibited for

the active case, already exist in the intruder deduction problem. By consequence

we are exploring in this paper if there is for a passive case any relation between the

unification problem and the intruder deduction problem.

Contributions:

We present first an extended Dolev-Yao system modulo an equational theory.

Then we analyze the link between the intruder deduction problem and the unifica-

tion problem. We recall the locality method which is the main technique used in the

intruder deduction problem. Through examples using equational theories, we show

that these two problems are not linked. We present situations where one problem is

decidable and the other one is not, or both are decidable or not. All these examples

prove that the two problems are independent in the case of a passive intruder.

Outline:

In the next section, we introduce some notations used in the rest of the paper,

then in Section 3 we present the Dolev-Yao intruder deduction system classically

used and a natural extension for equational theory. In Section 4, we consider the

case where the intruder deduction problem is decidable and show that the unification

can be decidable or not using two well-known examples. In Section 5, we construct

two equational theories where the intruder deduction problem is undecidable and

the unification is decidable in one example and not in the another one. In last

section we conclude by summarizing our results.
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2 Preliminaries

We give basic notations used here, see [DJ90,BN98] for an overview of rewriting.

Terms: Let Σ be a signature. T (Σ,X) denotes the set of terms over the signa-

ture Σ and the set of variables X, that is the smallest set such that

(i) X ⊆ T (Σ,X);

(ii) if t1, . . . , tn ∈ T (Σ,X), and f ∈ Σ has arity n ≥ 0, then f(t1, . . . , tn) ∈ T (Σ,X).

We abbreviate T (Σ, ∅) as T (Σ); elements of T (Σ) are called Σ-ground terms. The

set of variables occurring in a term t is denoted by V ars(t).

The set of occurrences of a term t is defined recursively as O(f(t1, . . . , tn)) =

{ǫ} ∪
⋃

i=1...n i · O(ti). For instance, O(f(a, g(b, x))) = {ǫ, 1, 2, 21, 22}. The size |t|
of a term t is defined as its number of occurrences, that is |t| = cardinality(O(t)).

If o ∈ O(t) then the subterm of t at position o is defined recursively by

• t |ǫ= t

• f(t1, . . . , tn) |j·o= tj |o

St(t) is the set of subterms of the term t, that is St(t) = {t |o | o ∈ O(t)}. We also

call it syntactic subterm because there is no equational theory used.

Equations and Rewriting Systems:

A Σ-equation is a pair (l, r) ∈ T (Σ,X), commonly written as l = r. The relation

=E generated by a set of Σ equations E is the smallest congruence on T (Σ) that

contains all ground instances of all equations in E.

A Σ-rewriting system R is a finite set of so-called rewriting rules l → r where

l ∈ T (Σ,X) and r ∈ T (Σ, V ars(l)). A term t ∈ T (Σ,X) rewrites to s in one step

by R if there is a rewriting rule l → r in R, an occurrence o and a substitution σ

such that t |o= lσ and s = t[o← rσ]. We write →∗ for the reflexive and transitive

closure of →. A term t is in normal form if there is no term s with t→ s. If t→∗ s

and s is a normal form then we say that s is a normal form of t, and write s = t ↓,
or t→! s. A term rewriting system is called convergent if it is

• terminating, that is if there is no infinite sequence of the form t1 → t2 → t3 → · · · .

• locally confluent, that is if t → s1 and t → s2 then there exists a term r with

s1 →
∗ r and s2 →

∗ r.

Every convergent rewriting system is confluent, that is if t→∗ s1 and t→∗ s2 then

there exists a term r with s1 →
∗ r and s2 →

∗ r (see, e.g., [DJ90]). Hence in a

convergent rewriting system every term has a unique normal form.

By R/S we denote the so-called class rewriting system composed of a set R =

{li → ri} of rewriting rules and a set S = {ui = vi} of equations. Generalizing the

notion of term rewriting, we say that s rewrites to t modulo S, denoted s →R/S t,

if s =S u[lσ]p and u[rσ]p =S t, for some context u, position p in u, rule l→ r in R,

and substitution σ.

Definition 1 We write A ⊆fin B if:

• A ⊆ B

• A is a finite set
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3 Extended Dolev-Yao Model and Locality Result

We first present the classic model of deduction rules introduced by Dolev and

Yao [DY83] in order to model the deductive capacities of a passive intruder. In this

model, an intruder may use any term he has previously observed on the network,

and construct new terms by pairing, unpairing, using a free constructor, encryption

and decryption, where in the last two cases the intruder also has to know the key.

Notice we only consider symmetric encryption (our results can be easily transferred

to the case of asymmetric encryption).

Our aim in this section is to extend this model by an equational theory. We

give a first variant of the Dolev-Yao model extended by equational reasoning. The

extension consists of a rule for passing from one term to a term which is equivalent

in the equational theory. Then we present a more effective variant of the extended

Dolev-Yao model for the case where the equational theory can be presented by a

convergent term rewriting system modulo a background equational theory. In this

case we can work with normal forms of terms modulo the background theory, instead

of allowing for unrestricted equational reasoning modulo the equational theory. In

Theorem 1, we prove that these two models are indeed equivalent. The material

follows the presentation of [CLT03], but is here extended to the case of an additional

background equational theory.

3.1 The Dolev-Yao Model Extended by Equational Reasoning

Let Σ be a finite signature which can be partitioned as Σ = {〈·, ·〉, {·}·} ⊎ Σ−. We

write A ⊎ B for the union of two disjoint sets A and B. The signature Σ consists

of pairing 〈·, ·〉, encryption {·}·, and some set Σ− of so-called free function symbols.

Let E be an equational theory over the signature Σ.

We use sequents of the form T ⊢E w, where T ⊆fin T (Σ) is a finite subset and

w ∈ T (Σ) the free terms algebra described by Σ. The intended meaning of such

a sequent T ⊢E w is that an intruder with a certain set of deduction capabilities

can deduce the term w from his knowledge T and using the equational theory E.

In the context of cryptographic protocols, T is typically a set of messages that an

intruder has previously observed on a network. Different deduction capabilities can

be defined by different deduction systems for these sequents.

The classic Dolev-Yao model [DY83] defines the deduction capacities of an in-

truder assuming perfect cryptography. This deduction system is composed of the

following rules: (A) the intruder knows any term that he has previously observed,

(P) the intruder can build a pair of two messages, (UL, UR) he can extract each

member of a pair, (C) he can encrypt a message m with a key k, (D) if he knows a

key k he can decrypt a message encrypted by the same key, (F) he can construct a

new term using a free function symbol f ∈ Σ−.

Finally, we give to the intruder the power to use equational reasoning modulo a

given set E of equational axioms by the rule (Eq). The resulting set of deduction

rules is given in Figure 1.

Definition 2 (Proof) A Σ, E-sequent is an expression of the form T ⊢E u where

E is an equational theory over Σ, T ⊆fin T (Σ), and u ∈ T (Σ).

4
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(A)
u ∈ T

T ⊢E u

(P )
T ⊢E u T ⊢E v

T ⊢E 〈u, v〉

(C)
T ⊢E u T ⊢E v

T ⊢E {u}v

(Eq)
T ⊢E u u =E v

T ⊢E v

(UL)
T ⊢E 〈u, v〉

T ⊢E u

(UR)
T ⊢E 〈u, v〉

T ⊢E v

(D)
T ⊢E {u}v T ⊢E v

T ⊢E u

(F )
T ⊢E u1 . . . T ⊢E un

T ⊢E f(u1, . . . , un)

Fig. 1. Dolev-Yao System extended equations theory E

A proof of a Σ, E-sequent T ⊢E u is a tree whose nodes are labeled by either

Σ, E-sequents or expressions of the form “v ∈ T”, such that:

• Each leaf is labeled by an expression of the form v ∈ T , and each non-leaf node

is labeled by an Σ, E-sequent.

• Each node labeled by a sequent T ⊢E v has n children labeled by T ⊢E s1, . . . , T ⊢E

sn such that there is an instance of an inference rule with conclusion T ⊢E v and

hypotheses T ⊢E s1, . . . , T ⊢E sn.

• The root of the tree is labeled by T ⊢E u.

Example 3.1 From the initial knowledge T = {{m}k, k} an intruder can learn the

message m with the following deduction:

{m}k ∈ T

(A)

T ⊢E {m}k

k ∈ T

(A)

T ⊢E k

(D)

T ⊢E m

3.2 The Dolev-Yao Model Extended by Rewriting

The above model is not appropriate for automated proof search since the Eq(E) rule

allows equational reasoning at any moment of a proof. In order to define a more

effective model, we split the equational theory E into a background theory S and a

rewrite system R.

Definition 3 (Rewrite Presentation of an Equational Theory) Let E and S

be equational theories over a signature Σ, and R a Σ-term rewriting system. (R,S)

is a rewrite presentation of E if and only if

• R is locally confluent modulo S

• R is terminating modulo S

• For all closed Σ-terms u, v : u =E v iff u ↓R/S=S v ↓R/S .
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In this case we can consider a variant of the extended model of Dolev-Yao defined

previously which works on the normal form modulo S of the term at each step of

the proof. The idea is that equivalence modulo S is easy to decide, such that

we may omit the Eq(S) rule and just work with equivalence classes modulo S.

We have to verify that the rewriting systems associated to each of all equational

theories are confluent and terminating (we can for instance use the rewriting tool

CiME [CM96]).

To define the right notion of a normal form we need that the term rewriting

system modulo the background equational theory is convergent. Notice that lo-

cal confluence and termination modulo an equational theory of the term rewriting

system imply its convergence. We now define normal forms for a such system.

Definition 4 (Term in Normal Form) Let (R,S) be a rewrite presentation of

some equational theory E. A term t is in normal form if there is no term v such

that t →R/S v (t reduces to v by a rule of the rewriting system of R modulo S).

If t →∗ v and v is in normal form then we call v the normal form of t, denoted

v = t ↓.

Note that normal forms are unique only up to S-equivalence. Normal forms have

the following properties:

• ∀u, v : u =E v ⇒ u ↓ =S v ↓

• ∀u : u =E u ↓

Remark: if t[.] is a context and u a ground term then t[u ↓] ↓ =S t[u] ↓. In

particular f(u1, . . . , un) ↓ =S f(u1 ↓, . . . , un ↓) ↓. We omit the rule (Eq(E)) and

consider a new system ⊢ presented in Figure 2 which only works on normal forms.

(A)
u ∈ T

T ⊢ u ↓

(P )
T ⊢ u T ⊢ v

T ⊢ 〈u, v〉 ↓

(C)
T ⊢ u T ⊢ v

T ⊢ {u}v ↓

(F )
T ⊢ u1 . . . T ⊢ un

T ⊢ f(u1, . . . , un) ↓

(UL)
T ⊢ r

T ⊢ u ↓
if〈u, v〉 →! r

(UR)
T ⊢ r

T ⊢ v ↓
if〈u, v〉 →! r

(D)
T ⊢ r T ⊢ v

T ⊢ u ↓
if{u}v →

! r

Fig. 2. A Dolev-Yao proof system working on normal forms modulo a background equational theory.

Theorem 1 Let (R,S) be a rewrite presentation of the equational theory E, T ⊆fin
T (Σ), and T ∈ T (Σ). If the equational theory has the following property 〈u, v〉 ↓ =

〈u ↓, v ↓〉 and {u}v ↓ = {u ↓}v ↓, then we have that:

T ⊢E u if and only if T ⊢ u ↓

Proof. The two properties 〈u, v〉 ↓ = 〈u ↓, v ↓〉 and {u}v ↓ = {u ↓}v ↓ assure that

the pair and encryption symbols functions do not disappear using the equational

theory in the rewriting system. They are used in the proof of the case of the rules

(C) and (P).

6
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Given a proof of T ⊢ u ↓ we can easily find a proof of T ⊢E u by inserting

Eq(E)-steps.

For the other direction we transform a proof in ⊢E into a proof in ⊢ by the

transformations of Figure 3. These transformations do not change the leaves of

a proof tree. We show by induction that if there is a proof of T ⊢E u then the

transformation yields a proof of T ⊢ u ↓.

ψ1

(R)

T ⊢E u u =E v

(Eq(E))

T ⊢E v
=⇒

ψ1

(R)

T ⊢ v ↓

ψ1

(R1)

T ⊢E u1 · · ·

ψn

(Rn)

T ⊢E un

(R)

T ⊢E v
=⇒

ψ1

(R1)

T ⊢E u1 · · ·

ψn

(Rn)

T ⊢E un

(R)

T ⊢ v ↓

Fig. 3. Transformations of a proof of T ⊢E u into a proof of T ⊢ u ↓.

We proceed by case distinction on the last deduction rule:

• (A): obvious.

• (Eq(E)): Since (R,S) is a rewrite presentation of E we get u ↓ = v ↓ (modulo S)

so we obtain a proof of T ⊢ u ↓

• (P), (C) or (F): by induction hypothesis on all the hypotheses of the rule and

with the fact f(u1, . . . , un) ↓ = f(u1 ↓, . . . , un ↓) ↓, where f can be encryption or

pairing symbol, hence we get the result.

• (D), by induction T ⊢ {u}v ↓ and T ⊢ v ↓, with {u}v ↓ = {u}v ↓ ↓ and the rule (D)

we get T ⊢ u ↓, hence a proof in ⊢.

• (UL) or (UR) by induction we obtain the result.

2

In the following we always work with the system ⊢ which uses on normal forms

modulo an equational theory.

4 Intruder deduction problem is decidable

We present here two examples, where the intruder deduction problem is decidable

modulo an equational theory, whereas the associated unification problem is decid-

able in the first example and not in the second one.

Our starting point is the locality technique introduced by McAllester [McA93],

for example used in [CLS03,CKRT03]. McAllester shows that there exists an al-

gorithm to decide the deducibility of a term w from a finite set of terms T , if the

deduction system has the so-called locality property. A deduction system has the

locality property if any proof can be transformed into a local proof, that is a proof

7
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where all nodes are in the set of syntactic subterms of T ∪{w} denoted St(T ∪{w}).
The idea of the proof is to check the existence of a local proof by a saturation al-

gorithm which computes all subterms of T ∪ {w} that are deducible from T, if the

number of rules is finite. In [LLT05], we have extended McAllester’s approach to

take into account some equational theories by generalizing syntactic subterm to a

new notion of subterm. The difficulty resides in designing the right subterm function

for a given equational theory and proving the existence of a local proof.

4.1 Unification problem is decidable

We consider the empty theory. It is know that the unification modulo this equa-

tional theory is decidable [Her30,Rob65,CB83,MM82,PW78]. Thus only Dolev-Yao

intruder system has to be considered, as we know in this case the intruder deduction

problem is decidable. Here, we only recall the main idea of the proof (see [Laf06]

for more details). The usual syntactic subterms are enough to prove the locality

result by induction for a term w and a set of hypothesis T considering minimal

proof. By using the McAllester’s result, we deduce the decidability of the intruder

deduction problem. As the size of the subterm is computable in polynomial time

in the size of the inputs w and T , and all rules of the Dolev-Yao deduction system

can be applied in polynomial time, we have a polynomial time procedure to solve

the intruder deduction problem without an equational theory.

4.2 Unification problem is undecidable

We consider the equational theory where we have an associative and commutative

operator plus a homomorphic symbol h over the exclusive-or symbol. In [Nar96]

P. Narendran shows by coding the tenth Hilbert problem that unification modulo

this equational theory is undecidable.

In [LLT05,Del06a] the intruder deduction problem modulo this equational theory

was shown decidable. In [LLT05], we first provide an exponential procedure to solve

this problem using two construction rules, one for the homomorphism symbol and

another one for the exclusive-or. The set of subterms is exponential in the size of the

inputs. Indeed, we have to consider all possible “sums” and very special minimal

proofs called eager, because we try to apply as eagerly as we can the exclusive or

operator. Finally, in [Del06a], S. Delaune improved our result by considering an

unique rule for these two operators. In this approach, intermediary sums do not

appear in the proof tree and considering the minimal proof is enough to obtain a

polynomial set of subterms and the locality result. The difficulty is pushed to the

application of a rule, composed of combinations of the homomorphism symbol and

the exclusive-or one. This problem is now solved by equation systems in ring of

polynomials over Z/2Z, using mathematical results [KKS87,Sch86].

5 Intruder deduction problem is undecidable

In this section, we design two examples of equational theories in which intruder

deduction problem is undecidable and then associated unification problem is either

decidable or undecidable.
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We first construct an equational theory called E where the so-called word prob-

lem is undecidable, i.e. knowing if two ground terms (i.e. without variables) are

equal modulo this equational theory is undecidable. The word problem modulo

an equational theory is a special case of the unification problem modulo this the-

ory. Thus, if the word problem is undecidable then the unification problem is also

undecidable.

5.1 An undecidable problem

We recall first that an instance of the word problem is composed of two ground

terms t1 and t2, and a set of equations E. The problem is to find out if using

equations in E we can establish the equality between the two given terms (i.e. if

t1 =E t2). We construct an equational theory E such that the word problem is

undecidable modulo E.

A deterministic Turing machine is defined by M = (Q,Σ,�, δ, q0, qf ) where:

• Q is a finite set of states.

• Σ is a finite alphabet for the tape.

• � ∈ Σ is the “empty” symbol (it can appear infinitely often on the tape).

• δ : Q × Σ → Q × Σ × {L,R, 0} is a partial function called transition function,

where L corresponds to a shift of the tape on the left, R a right shift and 0 no

move of the tape.

• q0 ∈ Q is the initial state.

• qf ∈ Q is the unique accepting state.

A configuration of a Turing machine is represented by a term:

q

x a

y

where the machine is in the state q ∈ Q, the tape on the left is represented by the

variable x ∈ V ars, the tape on the right side is the symbol a ∈ Σ and the variable

y ∈ V ars. We denote this configuration by q(x, a(y)). We assume that no transition

starts from a final configuration, i.e. a configuration which contains the final state

qf . A Turing machine stops if the final configuration is reached.

Assuming that a Turing Machine is given, for each transition δ of this Turing

machine we associate an equation of E. We now explain in detail the different

equations of E derived from the transitions of the Turing machine. For all a, b, ǫ ∈ Σ,

p, q ∈ Q, and x, y ∈ V ars:

9
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• transition (q, a)→ (p, b,R) gives, with a move to the right, the following equation:

q

x a

y

= p

b

x

y

We denote this shortly by: q(x, a(y)) = p(b(x), y).

• transition (q, a)→ (p, b, L) gives the equation: ∀f ∈ Σ, q(f(x), a(y)) = p(x, f(b(y)))

• transition (q, a)→ (p, b, 0) gives equation: q(x, a(y)) = p(x, b(y))

• We add the following equation qf (x, y) = t2 once final state reached.

Notice that a and f can be the empty symbol. The term t1 represents the following

initial configuration q0 = (ǫ, w1(. . . (wn(ǫ))))), where wi ∈ Σ. The ground term t2 is

associated to the final configuration qf (x, y) of the Turing machine. We summarize

the different equations of E in Figure 4.

E =































q(x, a(y)) = p(b(x), y)

q(f(x), a(y)) = p(x, f(b(y)))

q(x, a(y)) = p(x, b(y))

qf (x, y) = t2

Fig. 4. Equational theory E

We show now that the word problem t1 =E t2 is equivalent to the halt of the

Turing machine with the input associated to the configuration t1.

Theorem 2 Let t1 and t2 be two ground terms and E be the equational theory

constructed above. Solving word problem t1 =E t2 is equivalent to deciding the halt

of the Turing machine with the input associated to the configuration t1.

Proof: ⇐ By construction of E, if the Turing machine with the input associated

to the term t1 stops on an accepting state then t1 =E t2.

⇒ Given an equation between two terms t1 and t2 using E, we orient from left

to right all equations of E. We select the smallest sequence of equations applied

from left to right to prove t1 =E t2. This minimal sequence is finite and has no

loops. We prove the result by induction on the size of this sequence.

• Base case: there is no equation between t1 and t2, i.e. t1 and t2 are syntacti-

cally equal. We obtain directly that the initial configuration is also the final

configuration, hence the Turing machine stops.

• Induction: We consider a minimal sequence t1 =E t′ =E . . . =E t(n−1) =E t2 of n

equations between t1 and t2 . We first notice that the final configuration qf (x, y)

represents the term t2. Consider the first equation between t1 and t′, there are

n− 1 equations between t′ and t2. We can apply the induction hypothesis, hence

the Turing machine stops with the initial configuration associated to t′. The

equation between t1 and t′ has been produced from a transition, then with this

10
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transition the Turing machine moves from the initial configuration associated to

t1, to a state from which it terminates by induction hypothesis.

5.2 Intruder deduction modulo E is undecidable.

We prove that the intruder deduction problem modulo equational theory E is un-

decidable. We reduce in Lemma 5.1 the word problem t1 =E t2 to the intruder

deduction problem modulo E defined in Figure 4.

Lemma 5.1 Let t1 and t2 be two ground terms and E the equational theory defined

in Figure 4. Solving word problem t1 =E t2 is equivalent to solving the intruder

deduction problem modulo E.

Proof: We prove that t1 ⊢ t2 ⇔ t1 =E t2.

• (⇐) If t1 =E t2 then we build with an axiom and the rule (Eq) a proof of t1 ⊢ t2

• (⇒) Consider the minimal proof of t1 ⊢ t2 (minimal in number of nodes). We

analyze now the last rule of this proof case by case.

· The term t2 is not a pair neither an encryption, hence it can not have been

generated by the rule (P ), neither the rule (C).

· Let the last rule be one of the rules (UR), (UL) or (D). The only term in

the initial knowledge is the term t1 which is not an encryption neither a pair.

We also know that the equations in E have no pair symbol neither encryption

symbol. Hence, the only possibility for having an application of one of the rules

(UR), (UL), or (D) is to have an application of a constructor rule of pair or

encryption on t1. This implies that we can build a smaller proof of t1 ⊢ t2
by cutting the proof between the constructor rules and the destructor rules

leading and starting with the same term. Hence we have a contradiction with

the minimality of the proof. We conclude that the last rule cannot be one of

the following rule (UR), (UL) and (D).

· If the proof ends by an application of the rule (Eq), we get a smaller proof

ending on t′2, we can apply the induction hypothesis. Hence t1 =E t′2. Using

the equation applied in the rule (Eq), we obtain the result t1 =E t′2 =E t2.

5.3 Unification modulo E is undecidable.

Using Theorem 2, the word problem is undecidable for the equational theory E, by

consequence the unification problem associated to this equational theory is undecid-

able. The equational theory E is our example which shows that the two problems

can be at the same time undecidable.

Now we modify E to obtain a new equational theory Es, where the unification

is decidable and the intruder deduction problem is not.

5.4 Unification modulo Es is decidable.

New Equational Theory

We modify the equational theory E defined previously by adding a new symbol

function s, we obtain Es described in Figure 5.

11
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ES =































s(q(x, a(y))) = p(b(x), y)

s(q(f(x), a(y))) = p(x, f(b(y)))

s(q(x, a(y))) = p(x, b(y))

s(qf(x, y)) = t2

Fig. 5. Equational theory Es

5.5 Intruder deduction modulo Es is undecidable

We use the following extended Dolev-Yao deduction system, modulo Es, by giving

the possibility to the intruder to apply the symbol s to any term:

(A)
u ∈ T

T ⊢Es
u

(P )
T ⊢Es

u T ⊢Es
v

T ⊢Es
〈u, v〉

(C)
T ⊢Es

u T ⊢Es
v

T ⊢Es
{u}v

(Eq)
T ⊢Es

u u =Es
v

T ⊢Es
v

(UL)
T ⊢Es

〈u, v〉

T ⊢Es
u

(UR)
T ⊢Es

〈u, v〉

T ⊢Es
v

(D)
T ⊢Es

{u}v T ⊢Es
v

T ⊢Es
u

(S)
T ⊢Es

u

T ⊢Es
s(u)

Fig. 6. Dolev-Yao deduction system extended by the equational theory (Es).

The rewriting system RES
presented in Figure 7, obtained by orienting to the

right the equations in Es, terminates since the number of applications of s decreases

and is confluent because there are no critical pairs. Using, results of Section 3, we

can delete the rule (Eq) in the extended Dolev-Yao system of Figure 2 and work

only using normal forms. In this new Dolev-Yao deduction system we can code an

equivalent of the Turing machine used in the previous section.

Consider the previous Turing machine where we add the symbol on both sides

of the transitions. This artifact does not affect the decidability of the halt of the

Turing machine. We now show that with the intruder deduction problem modulo

the equational theory Es we can generate all the transitions of a deterministic

Turing machine. The classical rules of Dolev-Yao deduction system, i.e. (P ), (C),

(D), (UL), and (UR), are not used to obtain from the term t1 the term t2. Indeed,

the proof is only built with applications of the rules (S) and (Eq). Alternating

the applications of these two rules we can construct all transitions of the equivalent

Turing machine with symbol s on both sides. Thus, the intruder deduction problem

modulo the equational theory Es is also undecidable.

Unification modulo Es is decidable.

We transform the equation system Es into the rewriting system RES
presented

in Figure 7.

The number of applications of the function s decreases, and consequently the

rewriting system of Figure 7 terminates. As the construction of Es is based on a

12
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REs
=































s(q(x, a(y))) → p(b(x), y)

s(q(f(x), a(y))) → p(x, f(b(y)))

s(q(x, a(y))) → p(x, b(y))

s(qf (x, y)) → t2

Fig. 7. Rewriting system RES
associated to Es.

deterministic Turing machine, there is no superposition between the terms. This

implies that there are no critical pairs. We conclude that the rewriting system

RES
is confluent and consequently convergent. We recall now the definition of the

narrowing presented in [CK01].

Definition 5 (Narrowing) A term t is narrowed into t′, at the position non vari-

able p ∈ Dom(t), using the rewriting rule l → r and the substitution σ, where σ is

the most general unifier of t|p and l, and t′ = σ(t[r]p), denoted by t [p,l→r,σ] t
′. We

always assume that there is no conflict of variables between rules and terms (this is

always possible by renaming), i.e. V ars(l, r) ∩ V ars(t) = ∅.

For a given term rewriting system R, this generates a binary relation on terms

called narrowing relation and denoted  R.

Note that the narrowing is a natural extension of rewriting since unification is

used instead of matching. Thus, the rewriting relation is always included in the

narrowing one: →R⊆ R, since, for terms with disjoint sets of variables, a match is

always an unifier.

Example 5.2 If we consider the rule f(f(x)) → x then the term f(y) narrows at

the position Λ:

f(y) [Λ,f(f(x))→x,{(x→z),(y→f(y))}] z

We notice on this example that narrowing may introduce new variables, due to

the unification step.

According to the result by Hullot [Hul80], narrowing is complete for an equa-

tional theory represented by a convergent rewriting system (a clear presentation of

this result is given in a paper of F. Baader and W. Snyder [BS01] and in the paper

of A. Middeldorp [Mid94]). A consequence of this result is that if the narrowing ter-

minates for a theory represented by a convergent rewriting system then associated

unification problem is decidable.

We prove that narrowing terminates for the equational theory ES . This implies

decidability for the unification problem modulo this theory. Notice first that we have

a finite number of rewriting rules in REs
. Hence, narrowing has a finite number of

possibilities for possible applicable rules. Moreover, all left terms of the rules use

the symbol function s and all our rules preserve the set of variables, (V ars(l) =

V ars(r)). We consider the measure ns that computes the number of symbol s in

a term for proving the termination of the narrowing. Due to the particular form

of our equalities this measure decreases: variables are preserved and the s symbol

disappears. By construction of narrowing, σ is the most general unifier between t|p

13
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and l. We conclude that narrowing terminates hence the unification modulo Es is

decidable.

6 Conclusion

We have clearly established through examples that the unification problem modulo

an equational theory and the intruder deduction problem modulo the same equa-

tional theory are two independent problems. We recall in Figure 8 the different

equational theories exhibited in this paper for showing the independence of these

two problems. 2

Intruder Deduction Problem

Decidable Undecidable

Unification
Decidable ∅ Es

Undecidable ACh E

Fig. 8. Summary of results and equational theories obtained for comparing unification problem and intruder
deduction problem.
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