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Abstrat. We show several results about uni�ation problems in theequational theory ACUNh onsisting of the theory of exlusive or withone homomorphism. These results are shown using only tehniques ofautomata and ombinations of uni�ation problems.We show how to onstrut a most-general uni�er for ACUNh-uni�ationproblems with onstants using automata. We also prove that the �rst-order theory of ground terms modulo ACUNh is deidable if the signaturedoes not ontain free non-onstant funtion symbols, and that the exis-tential fragment is deidable in the general ase. Furthermore, we showa tehnial result about the set of most-general uni�ers obtained for gen-eral uni�ation problems.
1 IntrodutionIn this paper we are interested in uni�ation, disuni�ation, and more generallyin deiding the �rst-order theory of terms modulo the equational theory ACUNh.This theory onsists of the following equational axioms:(A) x⊕ (y ⊕ z) = (x⊕ y)⊕ z(C) x⊕ y = y ⊕ x(U) x⊕ 0 = x(N) x⊕ x = 0(h) h(x⊕ y) = h(x)⊕ h(y)Our interest in these problems was raised by our reent work on the symboliveri�ation of ryptographi protools modulo the equational theory ACUNh[DLLT06℄. The result of that paper is a omplete onstraint solving algorithmfor the partiular kind of symboli onstraints that orrespond to the existeneof an attak against the seurity of a ryptographi protool, taking into aountsome properties of the ryptographi primitives desribed by the equational the-ory ACUNh. The onstraint solving algorithm proeeds by several suessivesimpli�ation steps. The ompleteness of these steps relies on the notion of anon-ollapsing solution: A solution σ to a onstraint system C is non-ollapsing
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if sσ 6= tσ for di�erent terms s, t taken from some �nite set derived from theonstraint system C.In order to use ompleteness assertions for non-ollapsing solutions to showoverall ompleteness of our algorithm we had at one step to guess the equationsbetween terms (how this is done is desribed in [DLLT06℄), and for eah guessof equations ompute a �nite and omplete set of uni�ers (this is subjet of thepresent paper).Furthermore, in the ase of uni�ation with free funtion symbols (generaluni�ation) we needed a tehnial lemma assuring that the most general uni-�ers obtained do not introdue �new strutural elements� not already presentin the onstraint system. This was neessary sine one of the early steps of ouralgorithm onsisted in guessing a partiular speialization of our onstraint sys-tem by guessing from the strutural elements present in the onstraint system.The tehnial lemma assures us that the guessing of equalities and the subse-quent appliation of the resulting uni�ers does not invalidate our earlier hoie of�strutural elements�. The de�nition of �strutural elements� and the statementof the tehnial lemma will be made preise later in the paper.Finally, our onstraint solving algorithm for ryptographi protools relieson a notion of well-de�nedness, whih is in partiular satis�ed for all determin-isti protools. Determinism of a protool an be expressed as a dis-uni�ationproblem in the equational theory ACUNh.The equational theory ACUNh is one example of a monoidial, or more gener-ally a ommutative equational theory. There is a wealth of results on this lassof equational theories and on partiular theories from this lass. Before reallingthe existing results relevant in our ontext let us reall the lassial syntatihierarhy of E-uni�ation problems [BS01℄:� elementary E-uni�ation problems are systems of equations between termsbuilt with funtions symbols in E and variables;� E-uni�ation problems with onstants are systems of equations where theterms are built with funtions symbols from E, free onstants, and variables;� general E-uni�ation problems are systems of equations of terms built fromfuntion symbols from E, free funtion symbols, and variables.ACUNh-uni�ability with onstants has been shown in [GNW00℄ to be deid-able in polynomial time (this problem has been alled elementary uni�ationthere, in deviane from the now established terminology). Furthermore, thatpaper states NP-ompleteness of the general ACUNh-uni�ation problem, refer-ring to the Baader-Shulz ombination tehnique [BS96℄ for the existene of anNP-algorithm, and for NP-hardness to the proof of NP-hardness of the similartheory ACUN in [GNW00℄.Baader gives an algorithm for the uni�ation of several equational theoriesthat involve homomorphism, for instane Abelian groups [Baa93℄. On the onehand the results obtained in this and subsequent papers are general in that theyapply to a whole lass of ommutative theories. Their drawbak, on the otherhand, is that they rely on the mahinery of Gröbner bases for solving equationsover the semi-ring assoiated to an equational theory.2



Some results obtained by general methods for uni�ation problems in om-mutative theories (see [BS01℄) useful in our ontext are:� ACUNh is unitary for elementary uni�ation. This has been shown in [Baa93℄for the similar theory AGh (Abelian groups with a homomorphism). Thisproof should transfer immediately to our setting ACUNh. An independentproof is given in this paper.� As a onsequene, and due to the fat that the orresponding semi-ring
Z/2Z[h] is a ring, ACUNh is unitary for uni�ation with onstants [BS01℄.� Again as a onsequene, ACUNh is �nitary for general uni�ation [BS01℄.In this paper we use an alternative proof tehnique based on automata theoryand prove that even the omplete �rst-order theory of terms modulo ACUNh withfree onstants (but without free non-onstant funtions symbols) is deidable. Weobtain from our automata onstrution an alternative algorithm for omputing a�nite omplete most general set of uni�ers for uni�ation with onstants. Finally,we use ombination tehniques [BS96℄ to obtain algorithms for omputing �niteomplete sets of most general uni�ers for general ACUNh-uni�ation, and todeide general ACUNh-disuni�ation problems. The above mentioned result ofgeneral ACUNh-uni�ation not introduing �new strutural elements� is basedon an analysis of the ombination algorithm applied to our setting.Deidability of the �rst-order theory of terms modulo ACUNh in presene offree funtion symbols remains open.

2 Preliminaries: Automati StruturesThe exposition of the general method of automati strutures follows [BG00℄whih is the �rst systemati investigation of this onept.The basi idea is to �rst provide an enoding of elements of the strutureby words, and then to onstrut for any formula an automaton that aepts ex-atly those words that enode a solution of the formula. For tehnial reasons,this onstrution is restrited two purely relational signatures, that is signatureswhih do not ontain onstant symbols of funtion sysmbols. Note that it isalways possible to transform a struture into a struture over a relational signa-ture: we just have to replae the onstants by unary prediates, and replae all
n-ary funtions by n+ 1-ary relations.Another tehnial problem onsists in the fat that the set of solutions of aformula is not a set of values, but a set of n-tuples of values where n is the numberof free variables of the formula. That is, we have to provide a way to extend ourenoding of elements of the struture to enodings of tuples of elements.De�nition 1. Let Σ be a �nite alphabet and � 6∈ Σ. The onvolution of words
x1, . . . , xn ∈ Σ

∗ is de�ned as
x1 ⊗ . . .⊗ xn :=
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where l = max{|xi| | i ≤ i ≤ n} is the length of the longest word among the xi,and
xj

i =

{ the j-th symbol of xi if j ≤ |xi|
� otherwiseDe�nition 2. Let A be a struture over a relational signature with relationsymbols R1, . . . , Rn. An automati representation of A is given by1. a �nite alphabet Σ.2. a regular language Lδ ⊆ Σ

∗3. a surjetive funtion ν : Lδ → A4. a regular language LR ⊆ (Σ ∪ {�})∗ for every relation symbol R of thesignature of A, suh that for all x1, . . . , xn ∈ Lδ :
x1 ⊗ . . .⊗ xn ∈ LR i� (ν(x1), . . . , ν(xn)) ∈ RAA struture having an automati representation is alled automati.Note that there may be several possible automata for a given atomi formulasine the behaviour of the automaton is not spei�ed when the input word isnot in Lδ ⊗ · · · ⊗ Lδ.Theorem 1 ([BG00℄). Let A be a relational struture with an automati rep-resentation. Then the theory of A is deidable.The probably best-known example of an automati struture is Presburgerarithmeti (see, for instane, [CDG+97℄).3 Uni�ation and Diophantine EquationsIn this setion we reall the relation between uni�ation with onstants in ACUNhand linear equation solving in the ring Z/2Z[h]. This is in fat an instane of theby now lassial onnetion between E-uni�ation with onstants for monoidialequational theories and linear equation solving over the assoiated semi-ring (see,for instane, [Nut90℄). This setion just serves as a reminder of some basi andwell-known results used in the following setions.In the rest of the paper, we use some notations that are useful to deal withterms and polynomials of Z/2Z[h]. The multipliation between polynomials pand q is denoted by p · q. A polynomial p(h) ∈ Z/2Z[h] an be written ∑n

i=0
bih

iwhere bi ∈ Z/2Z. The produt ⊙ of a polynomial by a term is a term de�ned asfollows:
(

n
∑

i=0

bih
i)⊙ t =

n
∑

i=0 | bi 6=0

hi(t)For instane (h2 +1)⊙ (X⊕h(a)) = h2(X)⊕X⊕h3(a)⊕h(a). Conversely, aterm t suh that V(t) = {X1, . . . , Xp} an be written tX1⊙X1⊕. . .⊕t
Xp⊙Xp⊕t0for some tX1 , . . . , tXp ∈ Z/2Z[h], and t0 a ground term.Note that we use the symbol + for the addition operation in Z/2Z[h], while

⊕ is the binary operator of the term algebra.We denote by deg(p) the degree of a polynomial, that is deg(∑n
i=0

bih
i) = nin ase bi 6= 0. By extension, deg(p1, . . . , pn) = (deg(p1), . . . , deg(pn)).4



3.1 Linear Diophantine Equations in Z/2Z[h]Let (HE) be a homogeneous system of equations of the following form:






A1,1 ·X1 + . . .+A1,n ·Xn = 0
. . .
Am,1 ·X1 + . . .+ Am,n ·Xn = 0

(HE)
where the Ai,j 's are polynomials in Z/2Z[h], and the unknowns take values in
Z/2Z[h]. We denote by Sol(HE) the set of solutions to (HE).De�nition 3. We de�ne a quasi-order on (Z/2Z[h])m by

(p1, . . . , pm) . (q1, . . . , qm)⇔ ∀1 ≤ i ≤ m : deg(pi) ≤ deg(qi)The pertaining strit order is derived from this as usual by
(p1, . . . , pm) < (q1, . . . , qm)⇔ (p1, . . . , pm) . (q1, . . . , qm)and not (q1, . . . , qm) . (p1, . . . , pm)For instane, (h2, 1) < (h2, h3) and (h3 + h, h2) . (h3, h2 + 1), while (h2, h3)and (h, h4) are not omparable by the quasi order .. Note that the strit order

< is well-founded.From this quasi-order we derive an equivalene relation as usual:De�nition 4. We de�ne an equivalene relation on (Z/2Z[h])m by
(p1, . . . , pm) ∼ (q1, . . . , qm)⇔ (p1, . . . , pm) . (q1, . . . , qm)and (q1, . . . , qm) . (p1, . . . , pm)In other words, (p1, . . . , pm) ∼ (q1, . . . , qm) i� deg(pi) = deg(qi) for eah i. Notethat the equivalene lasses of ∼ are uniquely identi�ed by m-tuples of integers(the vetor of degrees of the polynomials), and that every equivalene lass is�nite (sine the oe�ients are in {0, 1}).Fat 1 The number of minimal solutions to a system of equations (HE) is �nite.Proof. We reall Dikson's lassial lemma [Di13℄: every in�nite sequene ofdistint tuples of natural numbers ontains at least two (atually in�nitely many)omparable tuples.Let us assume that the number of minimal solutions to (HE) is in�nite. Thisyields an in�nite sequene T1,T2, . . . of distint inomparable tuples of polyno-mials. Therefore we would have an in�nite sequene of inomparable tuples ofnatural numbers deg(T1), deg(T2), . . ., in ontradition to Dikson's lemma. ⊓⊔Fat 2 Every solution to (HE) is a linear ombination (with oe�ients in

Z/2Z[h]) of minimal solutions to (HE).
5



Proof. Let σ be a non-minimal solution to (HE). Sine < is well-founded thereexists a minimal solution τ to (HE) with τ < σ. Let
d = min{deg(σi)− deg(τi)|1 ≤ i ≤ m}We de�ne σ′ by

σ′(Xi) = σ(Xi)− h
d · τ (Xi) for all i, 1 ≤ i ≤ mwhih obviously is again a solution to (HE) sine the set of solutions is losedunder multipliation with salars and under sums. Furthermore, by the hoieof d, σ′ < σ. The laim follows by indution. ⊓⊔3.2 From Linear Equations over Z/2Z[h] to ACUNh-Uni�ation withConstantsThe rest of this setion is devoted to the onstrution of a most general uni�erfor a given ACUNh-uni�ation problem with onstants. As a onsequene of theonstrution, ACUNh is unitary for uni�ation with onstants.Let ΣC = {c1, . . . , ck} be a given �nite set of free onstant symbols. Weonsider a uni�ation problem, i.e. a onjuntion of equations sj = tj for j =

1, . . . ,m where sj , tj are terms ontaining free onstants from ΣC , the homo-morphism symbol h, the binary operator ⊕, and the onstant 0. Let x1, . . . , xnbe the variables ourring in the uni�ation problem. Using the notation intro-dued in the previous setion and the algebrai properties of ⊕, we get that theuni�ation problem is equivalent to a system of equations (U):
i=n
∑

i=1

Ai,j ⊙ xi = bj for j = 1, . . . ,m (U)where Ai,j are polynomials of Z/2Z[h], the bj are ground terms, and where thevariables xi range over terms. Let (HU) be the equation system obtained from(U) by replaing all the right hand sides by the term 0:
i=n
∑

i=1

Ai,j ⊙ xi = 0 for j = 1, . . . ,m (HU)We denote by Sol(U) (resp. Sol(HU)) the set of ground substitutions that aresolutions to (U) (resp. (HU)).Fat 3 For any σ ∈ Sol(U) we have Sol(U) = σ ⊕ Sol(HU)Proof. This follows immediately from the properties ACUNh. ⊓⊔An arbitrary ground solution of (U) an be obtained as follows: Eah of theterms ourring on the right-hand side of (U) an be deomposed as
bj =

i=k
∑

i=1

Bi
j ⊙ ci
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For any i = 1, . . . , k, let (Ei) be the equation system
i=n
∑

i=1

Ai,j ·Xi = Bi
j for j = 1, . . . ,m (Ei)where the variables Xi range over polynomials from Z/2Z[h]. If σi is a solutionto (Ei) for eah i = 1, . . . , k, then we obtain a solution σ to (U) by

σ(xj) =

i=k
∑

i=1

σi(Xj)⊙ ciA most-general uni�er of (HU) is obtained as follows: Let (HE) be the equa-tion system
i=n
∑

i=1

Ai,j ·Xi = 0 for j = 1, . . . ,m (HE)where variables Xi range over polynomials from Z/2Z[h]. By Fat 1, the system(HE) has a �nite set of minimal solutions {σ1, . . . , σµ}. In the follwoing we denote
Iµ = {1, . . . , µ}.Fat 4 The homogeneous uni�ation problem (HU) has a most general uni�er
σH de�ned by xiσH = Σk∈Iµ

Pi,k ⊙ yk where σk = {X1 ← P1,k, . . . , Xn ← Pn,k}with Pi,k ∈ Z/2Z[h], and where the yk are fresh variables.Proof. � Firstly we prove that σH is a solution of (HU). For j = 1, . . . ,m, wehave:
(Σi=n

i=1Ai,j ⊙ xi)σH = Σi=n
i=1Ai,j ⊙ (xiσH)

= Σi=n
i=1Ai,j ⊙ (Σk∈Iµ

(Pi,k ⊙ yk))
= Σi=n

i=1Σk∈Iµ
(Ai,j ⊙ (Pi,k ⊙ yk))

= Σi=n
i=1Σk∈Iµ

(Ai,j · Pi,k)⊙ yk)
= Σk∈Iµ

((Σi=n
i=1Ai,j · Pi,k)⊙ yk)

= 0� Then we prove that any solution σ of (HU) is an instane of σH .Let Z be the set of variables ouring in xiσ. Sine these variables are nolonger instantiated, they are treated as onstants in the following. For i =
1, . . . , n we have xiσ = (Σc∈ΣC

Xc
i ⊙ c)⊕ (Σz∈ZZ

z
i ⊙ z) and (x1σ, . . . , xnσ)is a solution of (HU) i� for eah c ∈ ΣC , for eah z ∈ Z we have that

(Xc
1 , . . . , X

c
n) and (Zz

1 , . . . , Z
z
n) are solutions of (HE).Therefore for eah c ∈ ΣC , (Xc

1 , . . . , X
c
n) is a linear ombination of theminimal solution of (HE), i.e. Xc

i = Σk∈Iµ
Qc

k · Pi,k for i = 1, . . . , n wherethe Qc
k's are the oe�ients of the linear ombination. For eah z ∈ Z, thesame holds for (Zz

1 , . . . , Z
z
n)'s, yielding Zz

i = Σk∈Iµ
Rz

k · Pi,k.Therefore for i = 1, . . . , n,
xiσ = (Σc∈ΣC

(Σk∈Iµ
Qc

k · Pi,k)⊙ c)⊕ (Σz∈Z(Σk∈Iµ
Rz

k · Pi,k)⊙ z)
= Σk∈Iµ

((Σc∈ΣC
Pi,k ⊙ (Qc

k ⊙ c))⊕ (Σz∈ZPi,k ⊙ (Rz
k ⊙ z)))

= Σk∈Iµ
(Pi,k ⊙ (Σc∈ΣC

(Qc
k ⊙ c))⊕ (Pi,k ⊙Σz∈Z(Rz

k ⊙ z)))
= Σk∈Iµ

Pi,k ⊙ (Σc∈ΣC
Qc

k ⊙ c⊕Σz∈ZR
z
k ⊙ z)7



whih terminates the proof (hoose yk = (Σc∈ΣC
Qc

k⊙c)⊕(Σz∈ZR
z
k⊙z)). ⊓⊔Fat 5 Let σ be a ground solution to (U) and σH a most-general uni�er of (HU).The substitution σ ⊕ σH is a most-general uni�er of (U).Proof. This follows from Fats 3 and 4 sine σ is ground. ⊓⊔Fat 6 The theory ACUNh is unitary for uni�ation with onstants.Proof. This follows from Fat 5. ⊓⊔

4 Finding Minimal Solutions of Systems of EquationsUsing AutomataWhat we need is a way to ompute the minimal solutions to a homogeneoussystem of Diophantine equations (HE), and to ompute some (small) solutionto an inhomogeneous system (E). One possible approah is to perform algebraiomputations similar to what is done by AC-uni�ation algorithms. Instead, weshall use an automata-theoreti approah that yields a more general result:Let 〈Z/2Z[h],.,+, 0, h〉 denote the struture onsisting of the universe Z/2Z[h]with the relation . and the operations +, 0, and h. We show that the �rst-ordertheory of this struture is deidable sine it is an automati struture [BG00℄.Lemma 1. The �rst-order theory of 〈Z/2Z[h],.,+, 0, h〉 is deidable.Proof. We show that the struture is automati [BG00℄.A polynomial p(h) =
∑i=n

i=1
bih ∈ Z/2Z[h], where bi = 1, is represented bythe word ν(p) = b0 · · · bn (that is, the least signi�ant bit �rst). The polynomial

0 is represented by the the word 0. The image of ν is desribed by the regularexpression 0 ∪ 0∗1 and hene reognizable.We now give automata aepting the representations of tuples of polynomialsthat are in the three relations of the struture 〈Z/2Z[h],.,+, 0〉 (We have toreplae the onstant 0 by a unary relation X1 = 0, and the funtion h bya relation X1 = h(X2)). The general onstrution as explained in Setion 2requires usage of a padding symbol � when representing tuples of values. In thease of arithmeti, we an for the sake of simpliity just replae the symbol �by the symbol 0.The automaton for X1 = 0 is trivial and omitted. The automaton for X1 .

X2 is given in Figure 1.The automaton for X1 = X2 + X3 is given in Figure 2. Note that the au-tomaton is simpler than the automaton for the addition of Presburger arithmetisine there is no arry-over to deal with.The automaton aepting the pairs (X1, X2) suh that X1 = h(X2) is moreomplex: it ontains two states whih remember the previous values of X2. It isdesribed in Figure 3. ⊓⊔8
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We an now easily obtain a small ground solution for an inhomogeneous sys-tem of linear equations by onstruting the automaton for the equation system,and reading o� a short solution (for instane one whih does not pass twie bythe same state). We also obtain the minimal solutions to a homogeneous systemof Diophantine equations (HE).Fat 7 The set of minimal solutions to a homogeneous system of linear Dio-phantine equations is omputable.Proof. A vetor X is a minimal solution to a system of Diophantine equations
φ(X) i� it is a solution of the following formula:

φ(X) ∧ ∀Y
(

Y . X ∧ φ(Y )→X . Y
)

The set of elements X whih satisfy this formula is aepted by an automatonwhih is e�etively omputable. The language of this automaton is �nite sinethere is only a �nite number of minimal solutions. To obtain the set of minimalsolutions, we simply use the automaton to generate all the terms of its language.
⊓⊔

5 General ACUNh-Uni�ation5.1 A Uni�ation AlgorithmTo apply the ombination algorithm of [BS96℄, we must prove that uni�ationwith linear onstant restrition is �nitary. Given a uni�ation problem (i.e. a�nite set of equations si = ti), we assoiate to eah onstant c appearing in theproblem a set Vc of variables that are the variables in whih c must not our.Assume that we have a linear ordering < on the set of onstants ΣC andvariables X , then we de�ne Vc = {x ∈ X | x < c}. A uni�ation problem withlinear onstant restrition is a uni�ation problem with the additional onstraintrestrition orresponding to the given ordering <. This amounts to stating thateah variable x of the problem an be instantiated only by terms ontainingonstants c suh that x 6∈ Vc. This set is omputable and �nite and we an write
x = Σ{x6∈Vc}Xi,c⊙c forXi,c a polynomial of Z/2Z[h]. Therefore uni�ation prob-lems with linear onstant restrition are solved in the same way as uni�ationproblems are.As a result, we get a uni�ation algorithm for the theory ACUNh in Σ ex-tended with free symbols as a simple appliation of the ombination algorithm(atually we an even hoose the simpler version designed for the ombinationwith the empty theory, see [BS96℄).5.2 A Tehnial Result about Uni�ationTo prove the next result (Lemma 2), we shall rely on notations and algorithmsintrodued in the study of ombination algorithms, see [BS96℄ for more details.10



From now on, we assume that F = Σ ⊎Σ′ where Σ′ is a set of free symbolswhih ontains at least one symbol of arity greater than or equal to 2. Theontext notation is extended as follows: t = C[t1, . . . , tn] if C is a ontext madeof symbols of Σ only and the ti's do not have a symbol from Σ at their root, orif C is a ontext made of symbols of Σ′ and the ti's do not have a symbol from
Σ′ at their root.If a term t ontains only symbols of Σ and variables, or only symbols of Σ′and variables we say that it is pure.The number of theory alternation in a term is de�ned by #(t) = 0 if t ispure, otherwise #(C[t1, . . . , tn]) = 1 +max{#(ti) | i = 1, . . . , n}.De�nition 5. The set AF (t) of alien fators of t is de�ned by:� AF (t) = {t} if t is pure,� AF (t = C[t1, . . . , tn]) = {t} ∪AF (t1) ∪ . . . ∪AF (tn)De�nition 6. The set StE(t) of subterms of t is the smallest set suh that:� 0, t ∈ StE(t),� if f(t1, . . . , tn) ∈ StE(t) with f ∈ Σ′ then t1, . . . tn ∈ StE(t),� if s = f(t1, . . . , tn) ∈ StE(t) with f ∈ Σ then AF (s) ⊆ StE(t).Example 1. Let t1 = h2(a) ⊕ b ⊕ x and t2 = h(〈a, b〉) ⊕ x, we get StE(t1) =
{t1, a, b, x} and StE(t2) = {t2, 〈a, b〉, a, b, x}.Lemma 2. Let P be a general (that is, inluding free funtion symbols) uni�-ation problem in the theory E = ACUNh and θ be an mguE of P . Then for all
x ∈ dom(θ) and v ∈ StE(xθ) \ V(xθ) there exists t ∈ StE(P ) suh that v =E tθ.Atually, we prove the result for the omplete set of uni�ers omputed bythe ombination algorithm desribed by Baader and Shulz in [BS96℄.Proof. Firstly, we remark that the lemma is true for a pure uni�ation with linearonstant restrition. This is obvious for the empty theory, and for ACUNh it isa onsequene of our results on uni�ation: a solution of a system of equations
⊕

i∈I Pi(h)⊙xi⊕
⊕

j∈J Qj(h)⊙cj = 0 with linear onstant restrition is a linearombination of fresh variables and ci's.To generalize to the union of the theories, we analyze the ombination algo-rithm. We reall this (non-deterministi) algorithm.(1) Replae eah non pure term t = C[t1, . . . , tn] by C[xt1 , . . . , xt1 ] and add theequations xti
= ti where the xti

's are fresh variables.(2) Replae eah equation s = t suh that s, t are pure but not in the sametheory by xs,t = t ∧ xs,t = s where xs,t is a new variable.(3) Choose a partition of the set of variable X1, . . . ,Xp, for eah Xi hoose arepresentative xi and replae all variables x ∈ Xi by xi (this amounts toadding equations xi = x for all x ∈ Xi).(4) Label eah variable by Σ or Σ′ non-deterministially, and hoose a linearordering x1 < . . . < xn. 11



(5) The problem is deomposed into two pure uni�ation problems with linearonstant restritions (otherwise return fail). Eah problem is solved by takingthe variable of the other theories as onstant and the variables of the theoryas variables. The uni�er is given by the ombination of the solutions ofboth uni�ation problems (some replaement an be done to get the atualsubstitution).We use the following properties of the algorithm. Assume that the algorithmreturns the substitution θ.� For eah pair of variables x, y in the same equivalene lass xθ = yθ.� For eah alien fator t = C[t1, . . . , tn] of P , there exist variables xt, xt1 , . . . , xtnsuh that xtθ = tθ = C[xt1θ, . . . xtn
θ].� For variable xs,t, we have xs,tθ = sθ = tθ.� For eah term C[x1, . . . , xl] ourring in the �nal pure uni�ation problems,there exist yt1 in the same equivalene lass as x1,. . . , ytl

in the same equiv-alene lass as xl suh that C[t1, . . . , tl] is an alien fator of P .The solution of the pure uni�ation problems has the form: x = C ′[x1, . . . , xn]or x is a linear ombination of fresh variables and variables xi's and onstantsof Σ. In any ase the fators of xθ for a variable x of the initial problems areeither Xθ, or are some xtθ for a variable xt hene there are some tθ for a fator
t of P or fresh variables. ⊓⊔Atually, the ombination algorithm omputes a omplete �nite set of uni-�ers. To �nd the atual most general and minimal set of uni�ers, one must adda last step whih detets the uni�ers that are subsumed by other uni�ers. Thisstep does not hange the result and it is irrelevant for our purpose, sine whatis required in our result is that all possible ground substitutions overed by theset of uni�ers that we onsider.
6 Disuni�ation and Beyond6.1 General Disuni�ationWe now turn to disuni�ation problems, that is the problem of deiding theexistential fragment of the �rst-order theory. In the following lemma we denote by
=AC the equality relation modulo the axioms of assoiativity and ommutativity.Let us reall that = denotes equality modulo the axioms ACUNh.Lemma 3. Let t1, s1, . . . , tn, sn ∈ T (F ,X ) terms in normal form. Then thefollowing two assertions are equivalent:1. There exists no ground substitution σ with t1σ 6= s1σ ∧ . . . ∧ tnσ 6= snσ2. ti =AC si for some i ∈ {1, . . . , n}
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Proof. (2)⇒(1): If ti =AC si for some i then ti = si and tiσ = siσ for allsubstitutions. Hene, there exists no substitution σ with t1σ 6= s1σ∧ . . .∧ tnσ 6=
snσ.(1)⇒(2): Let us assume that (1) does not hold. Let T = {s1, . . . , sn, t1, . . . , tn}.If ti 6=AC si for all i, 1 ≤ i ≤ n, then we proeed by indution on the ardinality
n of the set V(T ) of free variables of T .� If n = 0 then the si and the ti are ground. Hene, the empty substitution ǫsatis�es that t1ǫ 6= s1ǫ ∧ . . . ∧ tnǫ 6= snǫ� If n > 0 then let x ∈ V(T ), and let g be some ground term that1. is di�erent from 02. does not ontaining the symbol +3. is not a syntati subterm of a term in TLet t′i = ti[x 7→ g] and s′i = si[x 7→ g] for 1 ≤ i ≤ n. We have that

t′i 6=AC s′i for all i, and all the t′i and s′i are terms in normal form. Sine
{t′1, . . . , t

′
n, s

′
1, . . . , s

′
n} ontains n− 1 variables there exists by indution hy-pothesis a substitution σ′ suh that

t′1σ
′ 6= s′1σ

′ ∧ . . . ∧ t′nσ
′ 6= s′nσ

′Hene, setting σ = σ′ ◦ [x 7→ g] we obtain that
t1σ 6= s1σ ∧ . . . ∧ tnσ 6= snσ �Theorem 2. The existential fragment of the �rst-order theory of terms modulothe equational theory ACUNh is deidable.Proof. Given a losed existential formula φ = ∃x̄ψ, where ψ is a quanti�er-freeformula, let c1 ∨ . . . ∨ cn be a disjuntive normal form of ψ. Validity of φ isequivalent to validity of some ∃x̄ci.Let

c = (r1 = u1 ∧ . . . ∧ rm = um ∧ s1 6= t1 ∧ . . . ∧ sn 6= tn)This formula is satis�able if there exists a most general uni�er µ of
r1 = u1 ∧ . . . ∧ rm = umsuh that the following formulas is satis�able:

s1µ 6= t1µ ∧ . . . ∧ snµ 6= tnµThere is a �nite set of most general uni�ers µ whih an be omputed, andsatis�ability of the disequations is deidable due to Lemma 3. ⊓⊔6.2 The First-Order Theory with ConstantsTheorem 3. The �rst order theory of terms over ACUNh with �nitely manyfree onstants is deidable.Proof. This follows immediately from Lemma 1 sine the algebra of ground termsmodulo the equational theory ACUNh with m free onstants is isomorphi to the
m-fold diret produt of 〈Z/2Z[h],+, h, 0〉. ⊓⊔
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7 ConlusionsWe have shown that the �rst-order theory of ground terms modulo ACUNh is de-idable if the signature ontains only the symbols from ACUNh and free onstantsymbols, and that the existential fragment of this �rst-order theory is deidablefor arbitrary signatures. The obvious question whether the omplete �rst-ordertheory is deidable in the general ase remains open.As a onsequene of the fat that the �rst-order theory of 〈Z/2Z[h],+, h, 0〉is automati, and by the nature of the isomorphism between the m-fold produtof this struture and the algebra of ground terms module ACUNh with m freeonstants, it follows that the latter struture is itself automati. This result doesnot seem to extend to the general ase: The natural extension to free funtionsymbols would onsist in using tree automata with omponent-wise equalitytests. Unfortunately, this lass of tree automata has an undeidable emptinessproblem [SAN+05℄, and is of no help in establishing deidability results.
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